
Detecting Adversarial Spectrum Attacks via
Distance to Decision Boundary Statistics

Wenwei Zhao∗, Xiaowen Li†, Shangqing Zhao‡, Jie Xu§, Yao Liu†, Zhuo Lu∗
∗Department of Electrical Engineering, University of South Florida

†Department of Computer Science and Engineering, University of South Florida
‡School of Computer Science, University of Oklahoma

§Department of Electrical and Computer Engineering, University of Miami

Abstract—Machine learning has been adopted for efficient
cooperative spectrum sensing. However, it incurs an additional
security risk due to attacks leveraging adversarial machine
learning to create malicious spectrum sensing values to deceive
the fusion center, called adversarial spectrum attacks. In this
paper, we propose an efficient framework for detecting ad-
versarial spectrum attacks. Our design leverages the concept
of the distance to the decision boundary (DDB) observed at
the fusion center and compares the training and testing DDB
distributions to identify adversarial spectrum attacks. We create
a computationally efficient way to compute the DDB for machine
learning based spectrum sensing systems. Experimental results
based on realistic spectrum data show that our method, under
typical settings, achieves a high detection rate of up to 99% and
maintains a low false alarm rate of less than 1%. In addition, our
method to compute the DDB based on spectrum data achieves
54%–64% improvements in computational efficiency over ex-
isting distance calculation methods. The proposed DDB-based
detection framework offers a practical and efficient solution
for identifying malicious sensing values created by adversarial
spectrum attacks.

Index Terms—Spectrum sensing, adversarial machine learning,
attack detection

I. INTRODUCTION

With the ra pid development of wireless communication
technology, spectrum resources are strained [1], [2]. Coopera-
tive spectrum sensing can help improve the utilization of these
resources by allowing multiple nodes to collect sensing data
and report it to the fusion center [3], [4]. The fusion center
then uses the sensing data to determine whether a primary
channel is occupied or not such that unoccupied channels may
be utilized while minimizing interference to primary users
on occupied channels. However, it is possible for attackers
to manipulate the sensing data in an attempt to deceive the
fusion center into making incorrect decisions about channel
availability. Attacks against cooperative spectrum sensing can
take various forms, depending on the specific design of the
system and the goals of the attacker. For example, an attacker
could try to manipulate the sensing process by altering the
signals received by the nodes [5], or by introducing false
signals into the network [6]. An attacker could also try
to interfere with the communication between nodes, in an
attempt to disrupt the cooperative sensing process [7]. These
attacks can have serious consequences, including disruption to
primary user communication and low spectrum utilization.

The proliferation of machine learning techniques has facili-
tated some recent works [8], [9] to utilize machine learning for
automatically learning features from data to effectively accom-
plish spectrum sensing tasks. Machine learning-based defenses
[10], [11] have been proposed to counter different spectrum
sensing attacks. However, this technological advancement has
also presented new challenges as attackers have devised ways
to exploit vulnerabilities in these systems. Recent studies [5],
[12] have proposed to launch adversarial attacks against fusion
center models from the perspective of machine learning. An
adversarial attack is a type of attack on a machine learning
model in which the attacker intentionally provides input to
the model that is designed to cause the model to make a
mistake [13] with minimum data change. It has been shown
[5] that such attacks can effectively beat traditional methods
that defend against spectrum data falsification. We call such
attacks adversarial spectrum attacks.

To protect cooperative spectrum sensing against adversarial
spectrum attacks, several methods have been proposed recently
in the literature. The work in [14] proposes an effective de-
fense based on autoencoder against adversarial attacks without
affecting the performance of the model, but it runs on static
datasets and does not account for any data variations or
dynamics commonly existing in wireless environments. The
work in [5] provides a method to mitigate harmful samples
based on limiting the influence of each individual node on
the fusion center’s decision, but incurs a high computational
cost and degrades the underlying sensing performance with
the presence of an attack.

Due to the limitations of current approaches in spectrum
sensing scenarios, our focus in this paper is on creating an
effective defense to detect the presence of adversarial machine
learning against cooperative spectrum sensing. The essential
idea of our defense is to leverage the concept of the distance
to the decision boundary (DDB) [15]. Decision boundaries
are the boundaries that separate the different classes of data.
The decision boundary in machine learning is determined
during the training phase when the model learns to distinguish
between the different classes based on the input features and
their corresponding labels. Generally, the attackers aim to
create subtle perturbations to deceive the classifier, which
makes the data closer to a decision boundary. Based on this
observation, it is possible to build a defense based on the

DDB statistics of sensing data over time. Even though the
adversarial spectrum attacker can minimize the sensing data
change to flip the fusion center’s decision, the resulting data
will incur a different DDB compared with the original data.
Thus, we can use a distance statistic metric to measure the
similarity between the original training data and the testing
data to indicate the presence of an adversarial spectrum attack
at the fusion center. There are two major components in our
proposed detection mechanism: i) computing the DDB for an
input of spectrum sensing data and ii) forming a DDB statistic
over time to measure the similarity.

Finding and computing the DDB is essential in our ap-
proach. Typically, we need to determine the exact location
of the decision boundary. However, in deep neural networks,
locating the decision boundary can be challenging [16], [17].
The DeepFool method [18] proposes a way to compute the
DDB based on a given model by iteratively perturbing input
samples and checking the classifier’s output until samples are
misclassified. Other methods like Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) [19], the Carlini and Wagner method (C&W)
[20], and the Decoupled Direction and Norm (DDN) [21] all
aim to generate adversarial examples using different approx-
imations to find the shortest distance. They usually require
a substantial number of iterations and gradient calculations,
therefore incurring a high computational cost for the fusion
center to make a timely decision toward efficiently using
spectrum resources. We propose to find the shortest distance
by doing a binary search for data points along the direction
perpendicular to a linear decision surface approximation for
spectrum sensing data until we find the data point lies on the
decision boundary. This not only mitigates the computational
complexity of the method but also makes the finding of the
DDB more straightforward for spectrum data classification.

After we get the DDBs in a sequence of spectrum sensing
data inputs, we adopt the Kolmogorov-Smirnov test [22] to
compare the DDB distribution of the data inputs with that of
the training data. We collect realistic spectrum data and use
experiments to show that the proposed detection is able to
effectively detect the presence of adversarial spectrum attacks
with typically 97% – 99% detection rates while maintaining
low false alarms no more than 1% under the cooperative
spectrum sensing scenarios with various settings. Our main
contributions to this paper are as follows.

In summary, our major contributions are as follows. 1)
We propose an attack detection framework that leverages the
metric of DDB to detect the presence of adversarial spectrum
attacks. 2) We create a new method to locate the decision
boundary and compute the DDB in spectrum sensing applica-
tions. The new method is more computationally efficient than
existing methods adopted in the machine learning community.
3) The experimental results based on realistic spectrum data
illustrate the efficiency and effectiveness of our proposed
DDB-based attack detection compared to existing approaches.

The rest of the paper is organized as follows. In Section II,
we present the system model and the threat model in the
paper. In Section III, we describe in detail the calculation of

DDB and how we leverage the DDB to detect the presence of
adversarial spectrum attacks. Next, we conduct experimental
evaluations and discuss the results in Section IV. Finally, we
review the related work in Section V and conclude this paper
in Section VI.

II. SYSTEM AND THREAT MODELS

In this section, we describe the system models, threat
models and state our research problem.

A. System Model

We consider a cooperative spectrum sensing wireless net-
work, in which there are n sensing nodes and one fusion
center. At the i-timeslot, each sensing node first senses the
energy level of the wireless channel. We denote all sensed
values by a column vector xi = [xi,1, xi,2, ..., xi,n]

⊤ ∈ Rn×1,
where xi,j (j ∈ [1, n]) is the j-th node’s sensed energy
value; and Rn×1 denotes the n-dimensional real space. Then,
all sensing nodes report xi to a sensing data classifier f at
the fusion center. The classifier f first uses two prediction
functions f1 : Rn×1 → R and f0 : Rn×1 → R to compute
the prediction scores for labels 1 and 0, denoting the channel
available and unavailable, respectively. Then, f outputs the
label with the higher prediction score as the sensing decision
yi for the i-th timeslot.

B. Threat Model

Due to the distributed nature of cooperative spectrum sens-
ing, the fusion center’s decision relies on the individual node’s
report. However, it is not always guaranteed [4] that each
node in the network will not be compromised or behave in
a selfish or malicious way. There are existing efforts in the
literature on studying various attack and defense strategies in
cooperative spectrum sensing. Such attacks are usually called
Spectrum Sensing Data Falsification (SSDF) attacks [23].
Traditionally, to detect the presence of SSDF, there are several
major design categories: (i) reputation based detection [24],
[25], (ii) machine learning based detection [26], [27], (iii)
cross-correlation based detection [28].

Fig. 1. Cooperative sensing scenario with malicious nodes controlled by an
attacker.

Recently, due to the advancement of adversarial machine
learning, a new type of attack [5] has been proposed against
cooperative spectrum sensing. For example, when an attacker
can control m < n nodes in the network [5] (without loss of

generality, assuming nodes 1-m are compromised), as shown
in Fig. 1, the attacker can consider the decision function f
of the fusion center as a black box model with sensing data
xi as the input and decision yi as the output. In this way,
the attacker can observe a series of inputs and outputs in the
network and build its own machine learning model to predict
the decision of the fusion center. Then, the attacker can create
adversarial examples at the m nodes that it controls [29] as
falsified sensing reports to fool the fusion center to make an
incorrect decision.

Mathematically, the attacker can create a new falsified data
vector x′

i = xi + δi by building the surrogate model Si at
timeslot i and find the perturbation vector δi that satisfies:

Objective: argmin
δi∈Rn

∥δi∥2 (1)

s.t. Si(x
′
i) ̸= Si(xi) (2)

It has been shown in [5], [30] that such attacks can greatly
degrade the performance of cooperative spectrum sensing
even under traditional defense methods. We call such attacks
leveraging adversarial machine learning to create falsified
sensing data as adversarial spectrum attacks.

C. Problem Statement
The adversarial spectrum attack is an emerging security

threat against cooperative spectrum sensing. Yet, there is no
systematic study to detect such an attack in a cooperative
sensing network. Some existing methods are limited in certain
application scenarios and cannot be directly applied. For
example, the autoencoder-based defense method [14] does
not take into account any data variations or dynamics in
wireless environments, and the randomized smoothing [31]
may decrease a model’s prediction accuracy. The efforts have
also been made in [5] to mitigate the impact of adversarial
spectrum attacks by limiting the influence of individual nodes
on the fusion center’s global decision. However, this leads to
a non-negligible penalty on the sensing performance.

As a result, we consider the problem of adversarial spectrum
attacks in this paper. We aim to propose a new detection
method to accurately detect the presence of adversarial spec-
trum attacks in a cooperative spectrum sensing network.

III. DETECTION LEVERAGING DDB
In this section, we first define the decision boundary and the

DDB and briefly introduce existing methods to find the DDB.
Then, we propose our method to find the DDB for cooperative
spectrum sensing applications.

A. Decision Boundary and DDB
1) Definitions: Some current studies [15], [32] have pointed

out that subtle changes in the data will lead to significant
changes in the distance between data and the decision bound-
ary of a decision model.

The decision boundary and the DDB are defined based on
the prediction functions {fy}y∈{0,1} in the classifier at the
fusion center. The classification decision is given by

ŷ(x) = argmax
y

fy(x). (3)

The decision boundary D ⊂ Rn×1 for y ∈ {0, 1} is defined
as

D := {x|f0(x) = f1(x)}. (4)

Then, for a given data vector x, we use the ℓ2-norm to
define its distance to the decision boundary

d(x) = min
δ∈Rn

∥δ∥2 s.t. f0(x+ δ) = f1(x+ δ). (5)

2) Finding Decision Boundary and DDB: Recently, there
have been increasing efforts in the machine learning commu-
nity to propose methods to investigate the decision boundary
of a neural network model [15], [17], [33] generate particularly
small adversarial perturbations for the data that keep it at the
decision boundary approximation and considered adversarial
examples as a type of DDB. Commonly used methods to find
the DDB include DeepFool [18], Limited memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) [19], Carlini and Wagner
(C&W) [20] methods.
DeepFool: The work of [15] takes the approximation in [34]
based on DeepFool to find the distance of a point to the
decision boundary. To compute the distance d(x) in (4), the
closed-form of perturbation δ{k} at the kth iteration can be
written as

δ{k}(x) =
|f0(x{k})− f1(x{k})|

∥∇f0(x{k})−∇f1(x{k})∥
2

2

D∇(x{k}) (6)

where D∇(x{k}) = |∇f0(x{k})−∇f1(x{k})| and x{k+1} =
x{k} + δ{k}(x). When the iteration stops at the decision
boundary after K iterations, and the perturbation is given

by δ(x) =
K−1∑
k=0

δ{k}(x), and we can get the DDB d(x) =

∥δ(x)∥2.
LBFGS: A box-constrained optimizer is used in [19] to
minimize the perturbation and approximate (5) as

min
δ∈Rn

C∥δ∥2 + lossf (x+ δ, ytarget) (7)

s.t.−M ≤ x+ δ ≤M, (8)

where lossf (x + δ, ytarget) is the loss function, ytarget is
the targeted label of the adversarial example, −M and M
constrain the range of the adversarial example. A line search
is applied to update the constant C to optimize the function.
C&W: [20] proposed to change variables by using the tanh
function instead of using a box-constrained optimizer via
alternating (5) with the following equation:

min
δ∈Rn

∥δ∥2 + CF (x+ δ) (9)

s.t.−M ≤ x+ δ ≤M, (10)

where function F (x+δ) is based on the best objective function
and is defined as

F (x+ δ) = max(max{f(x+ δ)y1
} − f(x+ δ)y0

, κ) (11)
s.t. y0, y1 ∈ {0, 1}, y0 ̸= y1 (12)

with κ used to control the confidence in the occurrence of
misclassification. Because of the box constraints in (10), C&W

introduced a new variable ρ and used tanh function [35] to
rewrite the perturbation δ as

δ =
1

2
(tanh(ρ) + 1)− x (13)

It then applied the change-of-variables and optimize over ρ
for (9).

B. Proposed Method to Compute DDB for Spectrum Sensing

1) Motivation: DeepFool, LBFGS, and C&W all adopt
an iterative procedure to estimate the distance between a
given data point and the decision boundary but have high
computational complexity. In order to make DDB-based attack
detection more effective, we propose a simpler and faster
method to calculate the DDB. Our observation is that in
spectrum sensing, when the signal energy level increases, the
wireless channel is more likely considered occupied; similarly,
when the energy level decreases, the channel is more likely to
be available. Thus, adding or deducting the value of the energy
level should always flip the decision of the fusion center. By
increasing or decreasing the values in xi at the i-th timeslot
along a certain direction u, we can find the shortest distance
from the data point to the decision boundary of whether the
channel is available or not. Fig. 2 gives illustrative examples
to compare an iterative method with our idea of finding the
DDB.

Fig. 2. Our idea to find the direction vs an iterative method to find the DDB.

Then, our goal becomes designing a computationally effi-
cient method to find the direction along which we can estimate
the DDB for spectrum sensing classification. To this end, we
first notice that using machine learning for cooperative spec-
trum sensing is commonly motivated by the fact that sensing
data can be unreliably collected and vary over time. Thus,
machine learning becomes an efficient way to characterize
such data without explicitly assuming particular sensing data
models [5]. However, the advantage of assuming sensing data
distributions is that an optimal solution in terms of maximizing
a performance metric can be developed. When a machine
learning classifier is sufficiently trained by the sensing data,
it should achieve a performance close to the optimal solution.
Hence, our idea is to use the theoretically optimal solution
as a guide for estimating the direction that we should use to
compute the DDB for a machine learning classifier.

2) Finding the Direction to Compute DDB: We adopt
the theoretical framework of the likelihood ratio test (LRT)
based on the Neyman-Pearson lemma [8] to establish the
decision boundary between sensing output labels 1 (channel
available) and 0 (not available). Once the decision boundary
is established, we use the direction from xi perpendicular to
the theoretical boundary to estimate the shortest distance to
the actual boundary in the classifier.

We assume that the fusion center has a full view of all
signals from sensing nodes. Denote by vi(t) ∈ Cn×1 the
vector of the t-th received signal samples (t ∈ {1, , 2, · · · , T})
at all nodes at the i-th timeslot, where Cn×1 denotes the n-
dimentional complex space. We can write vi(t) = si(t)+ηi(t),
where si(t) is the deterministic complex signal sent by a
primary user and ηi(t) is the Gaussian noise; and

vi(t) =

{
si(t) + ηi(t), channel unavailable
ηi(t), channel available. (14)

3) Analysis and Design: The signal power sensed by node j
at timeslot i can be denoted as xij = 1

T

∑T
t=1 |vij(t)|

2,
where vij(t) is the j-th element in vi(t). In cooperative
spectrum sensing, the fusion center collects the signal power
value instead of the signal samples from each node and
makes a decision based on the fusion rule. Based on (14),
the distributions of the signal power when the channel is
available (hypothesis H1) and unavailable (hypothesis H0)
are both Gamma distributions with same shape parameter T ,
but different scale parameters β0

ij and β1
ij .

H0 : xj ∼ Γ(T, β0
ij), (15)

H1 : xj ∼ Γ(T, β1
ij). (16)

After mathematical manipulations, the probability density
functions of (15) and (16) can be expressed as

p(xj |H0) =
xT−1
j e

−
xj

β0
ij

(β0
ij)

T
Γ(T)

, (17)

p(xj |H1) =
xT−1
j e

−
xj

β1
ij

(β1
ij)

T
Γ(T)

. (18)

Then, according to LRT, we can write

Λ =
p(xi|H1)

p(xi|H0)
=

n∏
j=1

p(xij |H1)

n∏
j=1

p(xij |H0)

H1

≷
H0

γ, (19)

where γ is a given threshold for detection. After mathematical
manipulations, (19) can be expressed as

n∑
j=1

(
1

β0
ij

− 1

β1
ij

)
xij

H1

≷
H0

ln(γ)− T

n∑
j=1

ln

(
β0
ij

β1
ij

)
(20)

It can be seen that the decision boundary of the hypotheses
H0 and H1 is linear, and can be expressed as D = {x :
w⊤x+ b = 0}, where w = [(1

β0
1
− 1

β1
1
), (1

β0
2
− 1

β1
2
), ..., (1

β0
n
−

Algorithm 1: Pseudocode of DDB Algorithm
Data: Sensing data xi, initial step length ϵ, direction

u, stop threshold ξ;
Result: DDB δi;

1 if y(xi) = 0 then
2 while y(xi + ϵu) = 0 do
3 ϵ = 2ϵ;
4 end
5 xl ← xi, xr ← xi + ϵu;
6 else if y(xi) = 1 then
7 while y(xi − ϵu) = 1 do
8 ϵ = 2ϵ;
9 end

10 xl ← xi − ϵu, xr ← xi;
11 else
12 return “False”;
13 end
14 repeat
15 x′ ← xl+xr

2 ;
16 if y(xi) = 0 then
17 xl ← x′;
18 else if y(xi) = 1 then
19 xr ← x′;
20 else
21 return “False”;
22 end
23 until |xl − xr| ≤ ξ;
24 return δi = |x′ − x|;

1
β1
n
)], where β0

j = β0
ij and β1

j = β1
ij for all timeslots. Thus, for

a given sensing vector xi, the vector w denotes the direction
of its shortest path to the decision boundary D, and its DDB
can be given by

d(xi) = min
δ∈Rn×1

∥δ∥2 =
|f(xi)|
∥w∥2

(21)

s.t. f0(xi + δ) = f1(xi + δ) (22)

where f is the prediction function of the fusion center, f0 and
f1 are the prediction scores for classes 0 and 1 of classifier f ,
respectively.

A binary search strategy can be used to efficiently solve
(21). More specifically, to find the distance from the sensing
vector xi to the decision boundary D, we create a new vector
along the search direction u = − w

∥w∥2
as xi + ϵu, where ϵ is

large enough such that the new vector flips the fusion center’s
decision. Then, the binary search is used to find the boundary
point from xi to xi+ϵu along the direction u. The distance is
then calculated as the Euclidean distance between xi and the
boundary point. The pseudocode of this algorithm is shown in
Algorithm 1.

C. Detection Method

After computing the DDB, we can collect the DDB for
each training sample during the training process and obtain

the distribution of the DDB from training. This distribution
will serve as the ground truth DDB distribution. Our intuition
for attack detection is that the attacks based on adversarial
machine learning always aim to minimize the data perturbation
to just go across the decision boundary of a classifier. Thus,
if we measure the DDB distribution of testing data under
the adversarial spectrum attacks, it should be quite different
from the training distribution. This becomes the basis for
attack detection by comparing the training and testing DDB
distributions.

As a result, we use the consistency of the distributions
between the training and testing DDB sets to detect whether
there exists an adversarial spectrum attack against the fusion
center. We choose the Kolmogorov-Smirnov (K-S) test [22],
which is commonly used as a nonparametric test to analyze
whether two sets of data are different especially when the
sample sizes in the two sets are relatively small.

Given a training DDB set with size a1 and a testing DDB
set with size a2, we calculate their respectively Cumula-
tive Distribution Functions (CDFs) Ftrain,a1

(δ) and Ftest,a2
(δ).

The maximum distance dKS of the K-S statistic is dKS =
max

δ
|Ftrain,a1(δ)−Ftest,a2(δ)|. Consider the null and alternative

hypotheses

H0 : xtrain and xtest are from same distribution (23)
H1 : xtrain and xtest are from different distributions(24)

where H0 indicates that there is no attack and H1 means that
an attack with manipulating spectrum data. According to the
K-S test, we can write the decision rule as

Pvalue

H1

⋚
H0

α, (25)

where
Pvalue = 2e−2d2

KS
a1a2

a1+a2 , (26)

and the decision threshold α is called the significance level.

D. Can Attack Bypass DDB-based Detection?

Our attack detection is to first compute the DDBs of spec-
trum sensing data vectors, then compare the DDB distributions
to indicate the presence of an attack. The motivation behind the
detection is that adversarial sensing data vectors manipulated
by an attacker should always have very small distances to the
decision boundary, but benign sending data vectors do not. Is it
possible for an attacker to create adversarial spectrum sensing
data while maintaining the same DDB distribution to evade
our DDB-based detection method? In the following, we show
that the attacker cannot create such attacks because of a lack
of information.

In our threat model in Section II, the attacker can only
access and control m out of n (m < n) nodes in the network.
That means for sensing data vector xi ∈ Rn×1 at timeslot
i, only [xi,1, xi,2, ..., xi,m]⊤ ∈ Rm×1 can be changed by
the attacker and [xi,m+1, xi,m+2, ..., xi,m+(n−m−1), xi,n]

⊤ ∈
Rn−m×1 is always the same regardless attack or not. If the
attacker wants to defeat the DDB-based defense, the attacker

should generate malicious data that will be classified into a
different label instead of the original label, and at the same
time, the DDB of the malicious data should have the same
distribution as the ground truth.

Suppose that the attacker generates an adversarial sensing
data vector with a target DDB of dt from the vector to the
decision boundary. According to (21), the objective function
can written as

dt =
|w⊤x′

i + b|
∥w∥2

(27)

where x′
i is the adversarial spectrum data sensing vector, and

(27) can be further expressed as
m∑
j=1

wjx
′
ij = ±dt∥w∥2 −

n∑
j=m+1

wjxij − b (28)

To find such an adversarial vector x′
i, the attacker must

know all the parameters in (28), and get the values of
[xi,m+1, xi,m+2, ..., xi,n]. However, without the information of
remaining n − m nodes, the attacker cannot get the n − m
values in vector xi and w. As a result, it is generally
infeasible for the attacker to create an adversarial vector with
a specifically targeted DDB.

IV. EXPERIMENTAL EVALUATIONS

In this section, we present our experimental evaluations.
We first introduce the experimental setup and spectrum data
set collection, then discuss the evaluation results.

A. Evaluation Setups

1) Spectrum Sensing Scenario: We set up a cooperative
sensing network consisting of the data fusion center and
n = 20 sensing nodes, in which m < 10 nodes are
compromised and try to launch adversarial attacks against
the fusion center. We use realistic spectrum sensing data for
the evaluation. In particular, the data includes realistic white
space TV signal strengths collected by reliable RTL-SDR
TV dongles. The signal strengths on the TV channels were
collected simultaneously at 20 different locations (interior and
exterior of a building or different floors in the building) at
a university campus. The sensing process at each location
measured the average signal power over a 30-second time
period as the sensing result for each time slot, as required
by the Federal Communications Commission [36].

2) Spectrum Data Fusion Center: We implement a multi-
layer perceptron (MLP) classifier at the fusion center to
classify the spectrum sensing data into benign or malicious.
We use 20,000 spectrum sensing data vectors as training
data to train the classifier, which can achieve a high sensing
accuracy of 99.94% without attack. Then, in our experiment,
we use additional 80,000 sensing data vectors to simulate
the attacking scenario in which m malicious nodes aim to
manipulate their corresponding entries in the sensing data
vector to fool the fusion center. We note that when there is no
attack, the classifier at the fusion center can always correctly
classify each of the 80,000 sensing data vectors.

3) Attack Detection and Evaluation Metrics: We deploy the
DDB-based detector at the fusion center to detect the malicious
behavior of the m malicious nodes. We aim to evaluate how
our proposed DDB calculation method compares with the
DDB estimates by using DeepFool, LBFGS, and C&W in the
literature. Once we obtain the DDBs from different calculation
methods, we always use the K-S test to compare the DDB
distributions. We use the detection rate and false alarm rate
as the evaluation metrics for the detection performance. The
detection rate is the probability that the detector indicates an
attack in the presence of an attack. The false alarm rate is the
probability that the detector indicates an attack, but there is
no actual attack in the system.

4) Default Settings: During our evaluations, we adopt the
following default settings and evaluate the scenario in the
presence of the attack. The first step length of Binary Search
is ϵ = 5 and the threshold to stop searching is ξ = 0.01.
The number of malicious nodes is m = 7 and the attacker
uses the Fast Gradient Sign Method (FGSM) [37] to generate
adversarial spectrum data vectors. In the K-S test, the group
size a2 for attack detection is 25; and the threshold α of Pvalue
is set to 0.01, meaning that the distributions of ground truth
data and test data are different at least with the 99% confidence
level in the detection.

B. Evaluation Results

1) Impact of Test Group Size on Attack Detection: Gen-
erally, the more test data involved in the detection, the more
accurate the attack detection should be. However, involving
more data prolongs the attack detection time. Thus, we first
evaluate the impact of the test group size a2 on the attack
detection performance. We choose 5, 10, 20, 25, 50, 80, 100,
200, and 400 as the group size to detect the presence of the
adversarial spectrum attack.

Fig. 3 shows the detection rates of different methods as
the group size increases from 5 to 400. First, we can see
that improving the group size clearly increases the detection
performance. Our proposed DDB method achieves approxi-
mately the same performance as existing methods including
DeepFool, C&W, and LBFGS. The attack detection rate ap-
proaches 100% when the size of the group used for attack
detection exceeds 20, indicating the relatively fast detection
performance of 20 timeslot observation for each method. Fig. 4
shows the false alarm rates under the same conditions. We can
see that all methods have low false alarm rates under 0.01.

Overall, the results from Figs. 3 and 4 show that the DDB-
based attack detection achieves good detection rates with low
false alarm rates. In addition, our proposed DDB calculation
method leads to the approximately same performance as
DeepFool, C&W, and LBFGS.

2) Impact of Attack Frequency: Generally, attackers may
not keep launching attacks overall timeslots. We are interested
in how the frequency of the attacks affects the results of our
detection method. We define the metric of attack occurrence
ratio (i.e., the probability that a timeslot will be attacked) to
measure the attack intensity. Fig. 5 shows the detection rates

ln
(5

)

ln
(1

0)

ln
(1

5)

ln
(2

0)

ln
(2

5)

ln
(8

0)

ln
(1

00)

ln
(2

00)

ln
(4

00)

Test group size (on log scale)

0.2

0.4

0.6

0.8

1.0

D
e
tc

ti
o
n
 r

a
te

Our Method

DeepFool

C&W

LBFGS

Fig. 3. Detection rates under the different test
group sizes.

ln
(5

)

ln
(1

0)

ln
(1

5)

ln
(2

0)

ln
(2

5)

ln
(8

0)

ln
(1

00)

ln
(2

00)

ln
(4

00)

Test group size (on log scale)

0.00

0.01

0.02

0.03

0.04

0.05

F
a
ls

e
 a

la
rm

 r
a
te

Our Method

DeepFool

C&W

LBFGS

Fig. 4. False alarms under the different sizes of
test data.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Attack Occrrence Ratio

0.0

0.2

0.4

0.6

0.8

1.0

D
e
tc

ti
o
n
 r

a
te

Our Method

DeepFool

C&W

LBFGS

Fig. 5. Detection rates under different attack
occurrence ratios.

TABLE I
DETECTION RATES UNDER DIFFERENT ATTACK OCCURRENCE RATIOS.

Methodology Group Size Attack Occurrence Ratio
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Our Method
200 0.0150 0.3800 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 0.0163 0.0950 0.4850 0.8763 0.9888 1.0000 1.0000 1.0000 1.0000 1.0000
50 0.0075 0.0244 0.1338 0.4094 0.7438 0.9056 0.9831 0.9981 1.0000 1.0000
25 0.0038 0.0119 0.0466 0.1303 0.2716 0.4722 0.6669 0.8272 0.9272 0.9741
10 0.0044 0.0076 0.0143 0.0334 0.0574 0.1051 0.1743 0.2626 0.3706 0.4833

DeepFool
200 0.0375 0.4050 0.9650 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 0.0175 0.1063 0.5163 0.8988 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000
50 0.0156 0.0406 0.1719 0.4231 0.7363 0.9206 0.9856 0.9981 1.0000 1.0000
25 0.0109 0.0234 0.0553 0.1284 0.2681 0.4516 0.6472 0.8184 0.9272 0.9803
10 0.0066 0.0113 0.0191 0.0381 0.0608 0.1043 0.1593 0.2398 0.3253 0.4320

C&W
200 0.0600 0.3450 0.7875 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 0.0250 0.1225 0.3875 0.7313 0.9338 0.9950 1.0000 1.0000 1.0000 1.0000
50 0.0150 0.0531 0.1438 0.3119 0.5856 0.8038 0.9519 0.9931 0.9994 1.0000
25 0.0069 0.0238 0.0478 0.1019 0.1981 0.3481 0.5525 0.7534 0.9163 0.9863
10 0.0055 0.0058 0.0085 0.0161 0.0266 0.0479 0.0780 0.1338 0.2075 0.3304

LBFGS
200 0.0375 0.2750 0.8750 0.9950 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 0.0225 0.0763 0.3775 0.7725 0.9738 0.9975 1.0000 1.0000 1.0000 1.0000
50 0.0200 0.0269 0.0925 0.2888 0.5725 0.7981 0.9375 0.9850 1.0000 1.0000
25 0.0122 0.0188 0.0394 0.0988 0.1991 0.3528 0.5341 0.6994 0.8406 0.9281
10 0.0071 0.0091 0.0171 0.0293 0.0465 0.0741 0.1141 0.1689 0.2468 0.3289

of the DDB-based methods with the attack occurrence ratios
going from 0.1 to 1.

It can be seen from Fig. 5 that the detection rates of all
four methods improve as the attack occurrence ratio becomes
larger. The detection rate of each method is low when the
attack occurrence ratio is low. In such a scenario, the fusion
center’s decision will not be substantially affected because
the attack happens rarely. When the attack occurrence ratio
increases to 1, the detection performance gradually approaches
100% for each method. All four methods achieve similar de-
tection performance while our method holds slight advantages
over DeepFool, C&W, and LBFGS.

We also measure the detection rates under different test
group sizes in Table I. We can see from the table that a larger
group size gives a better detection rate (but delays a detection
decision). The detection rate in our method is 96% when the
attack occurrence ratio is 30% with a group size of 200. But
when the group size is 10, the detection rate is only 1.43%.
This is due to the fact that the larger number of test data
can more accurately reflect the distribution of data in the test
group. As a result, we need to increase the test group size in
order to detect a low-frequency attack.

3) Impact of Number of Malicious Nodes: We evaluate the
impact of the number of malicious nodes m on the attack
detection performance. In particular, we set m = 3, 5, 7, 10
and measure the attack detection rates in Fig. 6.

From Fig. 6, we observe that as m increases, its influence
on the DDB becomes greater, leading to a more obvious DDB
distribution difference and a larger detection rate. For example,
we can see when m = 3, the detection rate of our method is
80%; and when m = 10, the detection rate becomes 98%. In
addition, we also note that even DeepFool, C&W, and LBFGS
have worse performance than our method when m is small and
gradually catches up with the detection rate when m increases.
For attackers, a large number of malicious nodes make it easier
for attackers to change the value of x to generate adversarial
example x′, a significant change in x also means that the DDB
changes are more significant and thus easier to detect.

4) Comparison of Time Complexity: The evaluation results
show that our DDB method generally has the sample attack
detection performance, in terms of detection rate and false
alarm, with DeepFool, LBFGS, and C&W. We compare their
run-time efficiency for the comparison of complexity. As all
the methods are iteration-based, we use two metrics (i) the
number of iterations required and (ii) the average time needed

3 5 7 10

The number of malicious nodes

0.0

0.2

0.4

0.6

0.8

1.0

D
e
tc

ti
o
n
 r

a
te

Our Method

DeepFool

C&W

LBFGS

Fig. 6. Detection rates under the different numbers
of malicious nodes.

Our Method DeepFool

Detection method

0

10

20

30

40

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Fig. 7. Comparison of the number of iterations
between our method and DeepFool.

5 10 15 20 25 30 35 40

Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f
c
o
m

p
le

ti
o
n
s

Our Method

DeepFool

C&W

LBFGS

Fig. 8. Percentages of calculations that have been
completed in different given numbers of iterations.

TABLE II
TIME COMPARISONS AMONG DIFFERENT METHODS.

Methodology Time Consumption/Iteration

Our Method 2.41 ms
DeepFool 5.26 ms
C&W 6.71 ms
LBFGS 5.85 ms

for each iteration for the complexity evaluation. We imple-
mented DeepFool, C&W, and LBFGS based on CleverHans
V3.1.0 [38].

Fig. 7 boxplots the numbers of iterations of our method
compared with DeepFool. We only compare these two meth-
ods as they complete with much fewer average iterations than
LBFGS and C&W methods with hundreds or even thousands
of iterations. From the figure, we can observe that DeepFool
has an average number of iterations less than that of our
method (8.75 vs 10.98). However, we can see from Fig. 7 that
DeepFool, due to its interactive nature, has a large variance in
the number of iterations. The cumulative distribution function
of the number of iterations required for each method is shown
in Fig. 8. It is seen from the figure that at the number of
iterations of 5, DeepFool performs best with 54% calculations
completed; while our method, C&W, and LBFGS do not have
any completed calculations. When the number of iterations
becomes 15, our method completes more than 99% of the
calculations, leading to a better computational complexity than
the other three methods (DeepFool: 71%, C&W: 8%, and
LBFGS: 2%).

Table II shows the average time needed for each method
to complete one iteration. We can see that our method has
the shortest time consumption with 2.41 microseconds per
iteration. Overall, to find the DDB for one sensing data vector,
our method can save, on average, 54%, 64%, and 59% of
the time for one iteration for DeepFool, C&W, and LBFGS,
respectively.

5) Detection Performance under Attack Generation Meth-
ods: Next, we compare the performance of our defense strate-
gies in different attack approaches that the attacker may use
for adversarial sensing result generation. These methods are:
Fast gradient sign method (FGSM) [37], Projected Gradient
Descent (PGD) [32], DeepFool [18], Elastic-Net method (EN)

[39] and L-BFGS [19] in Deep Neural Network, which is
implemented based on CleverHans V2.1.0 [38]. The detection
rate and false alarm of defending against these different attacks
are shown in Fig. 9. DDB-statistic based detection method
shows good performance for most attack methods. Even if
the results show that our method performs differently under
different attack methods, it achieves at least 80% detection
rate and is overall better than the other three methods.

In theory, no matter which adversarial sample generation
method is used, the trend of the data points will be close
to the direction of the decision boundary. Our DDB-statistic
based detection method can effectively detect attacks when
facing different approaches adopted by the attacker, but the
performance is still not ideal under some attack methods (e.g.,
EN). A potential reason can be that the EN method has a very
low attack success rate of 8.67% when creating adversarial
example x′, which means that x′ changes less compared to
x, which makes it difficult to detect with the DDB method.
The attack success rates of using FGSM, PGD, DeepFool, and
LBFGS methods are 42.37%, 26.84%, 57.12%, and 31.53%,
respectively.

6) Impact of Locations of Malicious Nodes: Although we
test different numbers of malicious nodes in our experiment,
we still need to consider whether a given number of malicious
nodes from different locations will affect the effectiveness of
the defense. We choose 4 different nodes among the total of
20 nodes to form 5 groups of differently located malicious
nodes. The detection rates are shown in Fig. 10. It can be seen
from Fig. 10 that malicious nodes in different locations will
have different impacts on the attack detection performance.
We find that malicious nodes have distinct attack success rates
at different locations. The higher the attacker’s success rate,
the higher the attack detection rate. For example, If we place
malicious nodes at Location Group 1, they have the highest
attack success rate (thereby causing the most damage to the
network) and the DDB-based attack detection rate is also the
highest in this case.

In all methods shown in Fig. 10, our method leads to the
highest detection rate in most of the location groups, showing
that it is overall more efficient than other distance methods.

7) Impact of Different Detection Thresholds: We also eval-
uate the impact of setting the threshold α of Pvalue in the
K-S test on the attack detection performance. We choose 5

FGSM PGD DeepFool EN lbfgs

Attack method

0.0

0.2

0.4

0.6

0.8

1.0

D
e
tc

ti
o
n
 r

a
te

Our Method

DeepFool

C&W

LBFGS

Fig. 9. The detection rates under different attack
methods.

G1 G2 G3 G4 G5

Groups

0.0

0.2

0.4

0.6

0.8

1.0

D
e
tc

ti
o
n
 r

a
te

Our Method

DeepFool

C&W

LBFGS

Fig. 10. The detection rates under the different
locations of malicious nodes.

0.00 0.02 0.04 0.06 0.08

False alarm

0.850

0.875

0.900

0.925

0.950

0.975

1.000

D
e
te

c
ti

o
n
 r

a
te

0.10.05
0.01

0.005
0.001

0.10.05

0.01

0.005

0.001

0.1
0.050.01

0.005

0.001

0.1

0.05

0.01
0.005

0.001

Our Method

DeepFool

C&W

LBFGS

Fig. 11. The detection rates under the different
thresholds in the K-S test.

values of α in the experiment and show the results, pairing
both the detection rate and false alarm, in Fig. 11. It is noted
from the figure that when α = 0.01 (meaning that ground
truth data and sensing data are different at least with the 99%
confidence level), the detection rate and false alarm of our
method are around 99.316% and 0.691%, respectively. And
when α = 0.001, our method and DeepFool have the lowest
false alarm which is 0.0213%. Overall, we can see that our
method has similar performance to other methods while being
more computationally efficient.

V. RELATED WORK

In this section, we summarize existing studies that are
related to the work in this paper.
Attacks and defenses in cooperative spectrum sensing:
Cooperative spectrum sensing is widely used in wireless com-
munication systems, particularly in cognitive radio networks.
Attacks against cooperative spectrum sensing can compromise
the accuracy and integrity of spectrum sensing results and
disrupt network operations. Some common types of attacks
on cooperative spectrum sensing include: spectrum sensing
data falsification (SSDF) [40], collusion attacks [41], and
jamming attacks [42]. In this paper, our defense method
mainly targets SSDF, in which malicious nodes deliberately
provide false or misleading sensing data to manipulate the
decision-making process [24], [40]. To counter SSDF attacking
strategies, a lot of defense methods have been proposed in
the literature. However, conventional studies [43] assumed
certain prior knowledge of attacks. It has been shown in recent
attack strategies [5], [14], [44] that leveraging adversarial
machine learning can beat the conventional defense and poses
a new challenge to secure cooperative spectrum sensing. Our
study targets the recent adversarial machine learning based
attacks and adopts the concept of DDB to efficiently detect
the presence of the adversarial spectrum learning attack.
Combating adversarial examples: It is important to note that
while methods have been proposed in the machine learning
community to combat adversarial attacks in data classification
applications, they may not necessarily work or be efficient in
the spectrum sensing scenario. Generally, a machine learning
model can be made more robust against small attack perturba-
tions by training the model on a dataset that includes perturbed
versions of the original data [37], [45], or by incorporating a
regularization term in the model’s loss function that penalizes

large perturbations in the input data [46]. These methods are
generally used to combat adversarial images by empirically
setting a threshold of perturbations to the original data such
that the perturbations do not affect the ground truth under
human judgment. However, in cooperative spectrum sensing,
there is no human judgment on any sensing data and there
is no ground truth regarding what the sensing result should
be if training data is modified with intentional perturbations.
It becomes difficult to directly apply similar ideas to make
the spectrum sensing data classification model robust against
adversarial attacks. The DDB-statistic based detection method
has shown its efficiency in detecting adversarial spectrum
learning attacks.
Computing the DDB: The DeepFool method [18] proposed a
way to compute the DDB based on a given model by iteratively
perturbing input samples and checking the classifier’s output
until samples are misclassified. Other methods like LBFGS
[19], and C&W [20] aimed to generate adversarial examples
using different approximations to find the shortest distance.
LBFGS and C&W methods are based on approximations to the
shortest distance, and replacing the constraint with a penalty.
These methods usually require multiple iterations and gradient
calculations, which are time-consuming. In this work, we
comprehensively compare our DDB calculation method with
these methods to show the advantage of our method for the
cooperative spectrum sensing scenario.

VI. CONCLUSION

In this paper, we presented a novel defense method for
detecting malicious sensing values in cooperative spectrum
sensing. Our approach leverages the distribution of the distance
from a sensing value to the decision boundary of a classifi-
cation algorithm, providing an effective means of detecting
adversarial attacks. The experimental results demonstrate the
advantages in terms of the efficiency and effectiveness of our
proposed method over existing approaches for calculating the
distance to the decision boundary. By effectively detecting
adversarial attacks, our method can improve the overall per-
formance of spectrum sensing systems.

Acknowledgement: The work at University of South Florida
was supported in part by NSF Grants 2029875 and 2044516.
The work at University of Miami was supported in part by
NSF Grant 2029858.

REFERENCES

[1] P. J. Kolodzy, “Dynamic spectrum policies: promises and challenges,”
CommLaw Conspectus, 2004.

[2] R. I. Chiang, G. B. Rowe, and K. W. Sowerby, “A quantitative analysis
of spectral occupancy measurements for cognitive radio,” in 2007 IEEE
65th Vehicular Technology Conference-VTC2007-Spring, 2007.

[3] E. C. Peh, Y.-C. Liang, Y. L. Guan, and Y. Zeng, “Cooperative spectrum
sensing in cognitive radio networks with weighted decision fusion
schemes,” IEEE Transactions on Wireless Communications, 2010.

[4] S. Atapattu, C. Tellambura, and H. Jiang, “Energy detection based
cooperative spectrum sensing in cognitive radio networks,” IEEE Trans-
actions on wireless communications, 2011.

[5] Z. Luo, S. Zhao, Z. Lu, J. Xu, and Y. Sagduyu, “When attackers meet
AI: Learning-empowered attacks in cooperative spectrum sensing,” IEEE
Transactions on Mobile Computing, 2020.

[6] H. Li, Y. Gu, J. Chen, and Q. Pei, “Speed adjustment attack on
cooperative sensing in cognitive vehicular networks,” IEEE Access,
2019.

[7] J. Yi, C. Poellabauer, X. S. Hu, T. Chantem, and L. Zhang, “Dynamic
channel reservations for wireless multihop communications,” ACM SIG-
MOBILE Mobile Computing and Communications Review, 2010.

[8] C. Liu, J. Wang, X. Liu, and Y.-C. Liang, “Deep CM-CNN for
spectrum sensing in cognitive radio,” IEEE Journal on Selected Areas
in Communications, 2019.

[9] J. Xie, C. Liu, Y.-C. Liang, and J. Fang, “Activity pattern aware spectrum
sensing: A CNN-based deep learning approach,” IEEE Communications
Letters, 2019.

[10] H. Wang and Y.-D. Yao, “Primary user boundary detection in cognitive
radio networks: Estimated secondary user locations and impact of
malicious secondary users,” IEEE Transactions on Vehicular Technology,
2018.

[11] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Pattern based anoma-
lous user detection in cognitive radio networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[12] M. Liu, H. Zhang, Z. Liu, and N. Zhao, “Attacking spectrum sensing
with adversarial deep learning in cognitive radio-enabled internet of
things,” IEEE Transactions on Reliability, 2022.

[13] Y. Vorobeychik and M. Kantarcioglu, “Adversarial machine learning,”
Synthesis Lectures on Artificial Intelligence and Machine Learning,
2018.

[14] S. Zheng, L. Ye, X. Wang, J. Chen, H. Zhou, C. Lou, Z. Zhao, and
X. Yang, “Primary user adversarial attacks on deep learning-based
spectrum sensing and the defense method,” China Communications,
2021.

[15] D. Mickisch, F. Assion, F. Greßner, W. Günther, and M. Motta, “Under-
standing the decision boundary of deep neural networks: An empirical
study,” arXiv preprint arXiv:2002.01810, 2020.

[16] H. Karimi, T. Derr, and J. Tang, “Characterizing the decision boundary
of deep neural networks,” arXiv preprint arXiv:1912.11460, 2019.

[17] W. He, B. Li, and D. Song, “Decision boundary analysis of adversarial
examples,” in International Conference on Learning Representations,
2018.

[18] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016.

[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[20] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp), 2017.

[21] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and
E. Granger, “Decoupling direction and norm for efficient gradient-based
l2 adversarial attacks and defenses,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[22] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, 1951.

[23] A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A survey on
security threats and detection techniques in cognitive radio networks,”
IEEE Communications Surveys & Tutorials, 2012.

[24] R. Chen, J.-M. Park, and K. Bian, “Robust distributed spectrum sens-
ing in cognitive radio networks,” in IEEE INFOCOM 2008-The 27th
Conference on Computer Communications, 2008.

[25] N. Nguyen-Thanh and I. Koo, “A robust secure cooperative spectrum
sensing scheme based on evidence theory and robust statistics in
cognitive radio,” IEICE transactions on communications, 2009.

[26] Y. Zhang, A. Li, J. Li, D. Han, T. Li, R. Zhang, and Y. Zhang,
“Speckriging: GNN-based secure cooperative spectrum sensing,” IEEE
Transactions on Wireless Communications, 2022.

[27] Z. Li, Z. Xiao, B. Wang, B. Y. Zhao, and H. Zheng, “Scaling deep
learning models for spectrum anomaly detection,” in Proceedings of the
Twentieth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2019.

[28] S. Xu, Y. Shang, and H. Wang, “Double thresholds based cooperative
spectrum sensing against untrusted secondary users in cognitive radio
networks,” in VTC Spring 2009-IEEE 69th Vehicular Technology Con-
ference, 2009.

[29] H. Chen, M. Zhou, L. Xie, and J. Li, “Cooperative spectrum sensing with
M-ary quantized data in cognitive radio networks under SSDF attacks,”
IEEE Transactions on Wireless Communications, 2017.

[30] Z. Luo, S. Zhao, R. Duan, Z. Lu, Y. E. Sagduyu, and J. Xu, “Low-
cost influence-limiting defense against adversarial machine learning
attacks in cooperative spectrum sensing,” in Proceedings of the 3rd ACM
Workshop on Wireless Security and Machine Learning, pp. 55–60.

[31] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Channel-aware adversarial attacks against deep learning-based wireless
signal classifiers,” IEEE Transactions on Wireless Communications,
2021.

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[33] K. Nar, O. Ocal, S. S. Sastry, and K. Ramchandran, “Cross-entropy
loss and low-rank features have responsibility for adversarial examples,”
arXiv preprint arXiv:1901.08360, 2019.

[34] G. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, “Large
margin deep networks for classification,” Advances in neural information
processing systems, 2018.

[35] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint
arXiv:1511.06422, 2015.

[36] R. H. Coase, “The federal communications commission,” The Journal
of Law and Economics, 1959.

[37] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[38] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, A. Roy et al., “Technical report
on the cleverhans v2. 1.0 adversarial examples library,” arXiv preprint
arXiv:1610.00768, 2016.

[39] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “Ead: elastic-
net attacks to deep neural networks via adversarial examples,” in
Proceedings of the AAAI conference on artificial intelligence, 2018.

[40] H. Tang, F. R. Yu, M. Huang, and Z. Li, “Distributed consensus-based
security mechanisms in cognitive radio mobile ad hoc networks,” IET
communications, 2012.

[41] Q. Yan, M. Li, T. Jiang, W. Lou, and Y. T. Hou, “Vulnerability and
protection for distributed consensus-based spectrum sensing in cognitive
radio networks,” in 2012 Proceedings IEEE INFOCOM, 2012.

[42] H. A. B. Salameh, S. Almajali, M. Ayyash, and H. Elgala, “Spectrum
assignment in cognitive radio networks for internet-of-things delay-
sensitive applications under jamming attacks,” IEEE Internet of Things
Journal, 2018.

[43] J. Ren, Y. Zhang, Q. Ye, K. Yang, K. Zhang, and X. S. Shen, “Exploiting
secure and energy-efficient collaborative spectrum sensing for cognitive
radio sensor networks,” IEEE transactions on wireless communications,
2016.

[44] D. Adesina, C.-C. Hsieh, Y. E. Sagduyu, and L. Qian, “Adversarial
machine learning in wireless communications using RF data: A review,”
IEEE Communications Surveys & Tutorials, 2022.

[45] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” arXiv preprint arXiv:2001.03994, 2020.

[46] C. Finlay and A. M. Oberman, “Scaleable input gradient regularization
for adversarial robustness,” arXiv preprint arXiv:1905.11468, 2019.

