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Abstract—The channel state information (CSI) has been exten-
sively studied in the literature to facilitate authentication in
wireless networks. The less focused is a systematic attack model
to evaluate CSI-based authentication. Existing studies generally
adopt either a random attack model that existing designs are
resilient to or a specific-knowledge model that assumes certain
inside knowledge for the attacker. This paper proposes a new,
realistic attack model against CSI-based authentication. In this
model, an attacker Eve tries to actively guess a user Alice’s CSI,
and precode her signals to impersonate Alice to the verifier
Bob who uses CSI to authenticate users. To make the CSI
guessing effective and low-cost, we use theoretical analysis
and CSI dataset validation to show that there is no need to
guess CSI values in all signal propagation paths. Specifically,
Eve can adopt a Dominant Path Construction (DomPathCon)
strategy that only focuses on guessing the CSI values on the first
few paths with the highest channel response amplitude (called
dominant paths). Comprehensive experimental results show
that DomPathCon is effective and achieves up to 61% attack
success rates under different wireless network settings, which
exposes new limitations of CSI-based authentication. We also
propose designs to mitigate the adverse impact of DomPathCon.

1. Introduction
Physical layer authentication has been proposed as a

potential solution for resource-constrained wireless devices,
such as Internet of Things (IoT) devices and Radio Frequency
Identity (RFID) sensors [1]–[9] to avoid computational
operations, save energy or facilitate auxiliary verification.
Instead of using cryptographic primitives, physical layer
authentication leverages Channel State Information (CSI) as
a type of unique fingerprinting for authentication or identity
verification [10]–[13]. The CSI, also known as multi-path
channel response, represents the wireless signal attenuations
over multiple propagation paths between two communicating
parties Alice and Bob [14]–[16]. As shown in Figure 1, the
CSI between Alice and Bob is unique and differs from the
CSI between an attacker Eve (at a different location 1 or 2)
and Bob. This creates the basis for CSI-based authentication
and has enabled substantial efforts of research [10]–[13].

Despite existing research to create different ways to
leverage CSI for various wireless applications, the less
focused is a systematic attack model to evaluate such an
authentication design. Existing studies generally adopt either
(i) a random attack model or (ii) a specific-knowledge attack
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Figure 1: CSI-based authentication and a random attack.

model. (i) The random attack model places Eve at a random
location (e.g., location 1 or 2 in Figure 1) and evaluates
whether Eve’s CSI looks similar to Alice’s CSI to pass
the authentication at Bob. Existing designs are shown to
be resilient against such an attack model. (ii) The specific-
knowledge model is able to launch more successful attacks,
but requires that Eve gains knowledge from Alice and Bob.
For example, if Eve knows the CSI between Alice and Bob
[4], [17], [18], she can successfully impersonate Alice to Bob.
However, it is difficult for Eve to obtain such information
in a practical wireless scenario.

As a result, the random attack model does not seem strong
and the specific-knowledge model is strong, but imposes
assumptions that may not hold in practice. In this paper, we
aim to propose a new attack model filling the gap between the
two previous models. In other words, we focus on creating
a new attack model that is stronger than the random model
and also practical to launch. The new model will not only
help understand the limitation of CSI-based authentication,
but also provide new design guidelines.

Our approach focuses on making Eve more proactive: As
shown in Figure 1, although Eve at a different location has
no knowledge of Alice’s CSI at Bob, this does not prevent
her from actively guessing Alice’s CSI. Each time, she can
guess a different value of Alice’s CSI and send a packet to
Bob with a manipulated wireless signal falsifying her CSI
observed by Bob to be her guess value. Her signal will pass
the authentication when her guess CSI is sufficiently similar
to Alice’s CSI at Bob.

Apparently, Eve should not randomly guess Alice’s CSI
and try to send a significant number of packets to Bob. The
key question in this attack strategy is what strategy Eve
should adopt in order to succeed with just a few tries.

To this end, we take a close look at how CSI is collected
and used in wireless authentication [13], [19]–[28]. CSI can



be collected (i) inside one transmit-receive antenna pair (i.e.,
the multiple propagation paths of the wireless signal in a
single-antenna system [19], [20], [23], [26], [27], [29]) or
(ii) across antenna pairs (i.e., the paths of different transmit-
receive antenna pairs in a multi-antenna system [13], [21],
[24], [30]). We propose different strategies to guess the CSI
on the two types of paths.

Inside a single antenna pair, the wireless signal propagates
through multiple paths with varying lengths from the transmit
antenna to the receive antenna. As the signal attenuates over
long distance, the channel response amplitudes of first few
paths with short distances are usually higher than the other
paths with long distances [31], [32]. Our intuition is that
although existing studies adopt statistical measures [10],
[13], [33]–[36] or machine learning [23], [24], [30], [37],
[38] to process all the path responses in CSI for verification,
building a reliable system would inevitably be biased towards
these first few paths (we call them dominant paths) as the
remaining paths generally undergo deeper attenuations and
are substantially affected by the noise. We find that the
CSI as a feature vector has quite uneven importance levels
in its elements for a CSI-based classification system. This
can be exploited by an attacker to design a more efficient
CSI guessing strategy called Dominant Path Construction
(DomPathCon) to break the authentication (i.e., just focusing
on guessing on the dominant paths). To the best of our
knowledge, the dominant path phenomenon is not identified
and investigated in existing studies on either CSI-based
authentication or CSI-related confidentiality.

Across antenna pairs, additional signal propagation paths
are created. Our observation is that multiple antennas in
small-factor wireless devices are usually placed close to each
other (e.g., 22.29mm on Apple Watch [39] and 43.38mm
on Amazon Echo Dot [40]), which can create correlated
path attenuations. The correlation has been seen in existing
studies [41]–[43] and also observed in our realistic dataset
analysis. As strong antenna correlation can be modeled by
a linear relationship [44], [45], we are motivated to use
a Linear Regression (LR) model [46] based on the guess
values of DomPathCon for one transmit-receive antenna pair
to compute the guess values of other pairs, which we call
the LR-DomPathCon version of DomPathCon.

The LR-DomPathCon strategy can be considered as
leveraging the correlation (antenna correlation in our case)
in wireless systems to create attacks, which is related to
some existing studies. Related work has adopted different
ways to exploit the correlation in wireless systems to create
attacks targeting confidentiality-based designs, including
leveraging data correlation inside a packet (e.g., known-
plaintext attacks [47]–[49]), leveraging CSI correlation over
time (e.g., attacking wireless key establishment [50]), and
leveraging CSI correlation over space (CSI inferencing
attacks [51], [52]). In our method, the LR-based design as a
part of attacking the MIMO authentication is mostly related
to exploiting the CSI correlation over space. Compared with
these studies, we do not assume the close proximity between
Eve and Alice. We only assume that the CSI values across
Alice-Bob’s antenna pairs should be correlated (as antennas

in smart/IoT devices are placed close to each other), then
validate this assumption using dataset evaluation and create
the prediction for the MIMO CSI guess value construction.

Under DomPathCon, Eve generates a set of different
guess values of Alice’s CSI at Bob, and then keeps sending
the packets to Bob with the CSI to be different guess values
until she successfully fools Bob. Our experiments using
commodity WiFi devices based on Atheros AR5822/AR9580
chipsets and TP-Link WDR4300 AP show a wide range of
the attack success rates up to 61% under various wireless
network settings and conditions, including location, band-
width, the number of users, the number of antennas, wireless
channel condition, and authentication method. Based on the
results, DomPathCon has a direct impact on the setups and
deployment of CSI-based authentication in wireless scenarios.
Our main contributions are as follows: (i) We propose a new
attack model, DomPathCon, for Eve to attack CSI-based
authentication. We find via theoretical analysis and dataset
validation that DomPathCon can focus on the dominant paths
inside a single transmit-receive antenna pair and use the LR
model to guess the CSI values across different antenna pairs
to significantly reduce the number of packets that Eve needs
to send until she succeeds. (ii) We conduct comprehensive
experiments based on commodity WiFi devices to evaluate
the attack performance of DomPathCon in realistic indoor
environments, and show that DomPathCon achieves a wide
range of successes and has become a much stronger attack
model than the random attack model commonly used in
existing studies for CSI-based authentication evaluation. (iii)
We find that although CSI-based authentication has been
considered as a non-cryptographic, low-cost alternative for
power/capability-limited IoT authentication, its resilience
against DomPathCon in fact requires larger bandwidth,
fewer users, more antennas and more cost. This reveals
the new limitation of CSI-based authentication, which must
be carefully designed to balance its cost and resilience
against DomPathCon. (iv) Finally, we propose countermea-
sure designs that properly set up CSI-based authentication
to mitigate the security threat of DomPathCon and evaluate
the designs under different conditions.

2. Background and Design Motivation
In this section, we first introduce the background of

authentication leveraging CSI. Then, we describe the attack
model and present our design motivation.

2.1. Physical Layer Authentication using CSI
The wireless signal from a transmit antenna arrives at a

receive antenna via multiple propagation paths. Each path
generally leads to different signal amplitude attenuation and
phase shift, creating a power-delay profile [10], [14], [16]
in wireless communication. Today’s MIMO wireless system,
equipped with multiple antennas, also creates additional paths
between different antenna pairs. The CSI, also known as
multiple-path channel response, consists of the amplitudes
and phase shifts on all paths [10], [14], [53], [54].

We consider a common CSI-based authentication wireless
scenario where Bob uses the CSI to determine if a packet is
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Figure 2: CSI matrix measurement.

indeed sent by Alice (or another user). As shown in Figure 2,
the CSI is represented by a matrix as

H =


h1,1 h1,2 · · · h1,MTMR

h2,1 h2,2 · · · h2,MTMR

...
...

. . .
...

hK,1 hK,2 · · · hK,MTMR

 , (1)

where MT and MR are the numbers of transmit and receive
antennas, respectively, K is the number of paths between a
signal transmit-receive antenna pair, and hi,m denotes the
channel response for the i-th (i ∈ [1,K]) path on the m-th
(m ∈ [1,MTMR]) transmit-receive antenna pair.

Note that the CSI can be represented in either the time
domain (i.e., using power delay profile) or the frequency
domain (i.e., using CSI values on all subcarriers in OFDM).
The representation can be easily converted from one domain
to the other [14], [53]. The transformation between the two
domains is linear, one-one corresponding, and information-
preserving without adding or removing any information. In
this paper, we focus on describing the attack strategies using
the CSI in the time domain (i.e., the representation of the
power delay profile) unless otherwise specified.

The CSI matrix is unique between two users and unknown
to a third party at a different location, which offers a type
of fingerprinting for authentication design. Many existing
studies [13], [19]–[28] have already created a diversity of
design portfolios to leverage CSI for low-cost authentication
to help wireless and IoT devices to save energy or avoid
computational complexity.

The basic procedure in CSI-based authentication is to
let Bob first train Alice’s CSI to build her profile at Bob (as
well as for other users in the network), then verify if the
CSI of an incoming packet fits Alice’s profile. It is common
for Bob to use hypothesis testing [13], [20], [21], [29], [33],
[35], [55]–[57] or machine learning [22]–[24], [37], [58] to
perform the CSI verification.

2.2. Attack Model
We consider an impersonation attacker Eve who aims to

fool Bob’s CSI-based authentication by making Bob believe
her packets are from a different user in the network. We
consider two goals for Eve: (i) targeted attack, in which
Eve aims to impersonate a specific user in the network (i.e.,
Alice) to Bob [13], [20]–[24], and (ii) untargeted attack, in
which Eve just wants to fool Bob as long as Bob recognizes
her packets as a different user’s [4]–[6], [59], [60].
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Figure 3: Basic attack process by Eve.

To achieve her attack goals, Eve needs to make sure the
CSI of her packets observed by Bob is sufficiently similar to
Alice’s CSI (or some other user’s). Existing studies [10], [13],
[24], [33], [56] have shown that if Eve is randomly placed
at a different location, she generally cannot have CSI similar
to Alice (or any other user) in the network, thereby having
a very low chance to launch a successful attack. But if Eve
indeed knows Alice’s CSI at Bob, she can precode her signal
[4], [17], [18] to make sure the CSI observed in her packets
is the same as Alice’s to pass Bob’s verification. However, it
is difficult for Eve to know Alice’s CSI in a realistic network.
In this paper, we adopt a realistic assumption that Eve has
no knowledge of any other user’s CSI (except her own CSI)
observed by Bob. In addition, we assume that Eve has no
knowledge of the algorithm used by Bob to verify the CSI.

Our proposed attack model is to make Eve more proactive,
and let her keep sending packets with different CSI values
observed by Bob until a value eventually passes Bob’s
verification. Specifically, as shown in Figure 3, Eve generates
a set of guess values of CSI; each time, she precodes and
sends a packet to Bob to make him observe the CSI to be one
of her guess values. Eve succeeds when the guess value is
similar to Alice’s CSI and Bob acknowledges the reception.
Then, Eve can precode all her follow-on packets with the
successful guess value.

As shown in Figure 3, Eve has to keep sending guess
packets to Bob. In practice, she may not be able to send
packets as many as she wants. An essential question is that
given a budget N (i.e., the maximum number of CSI-guessing
packets Eve can send), how Eve should generate such N
guess values. The attack will pose serious security threat
against CSI-based authentication if Eve can succeed with a
small N (e.g. N = 10 or even smaller).

If Eve just randomly generates N CSI values and sends
them to Bob to try her luck, she will have a low success
chance. We need to design a smarter strategy to generate the
N values for Eve. To this end, we first take a look at how
CSI is collected in wireless communication [13], [19]–[28].
Fundamentally, the CSI matrix H in (1) of a wireless signal
observed at a receiver consists of two parts.

(1) Inside a transmit-receive antenna pair, the signal
propagates through multiple paths with different lengths.
The elements inside a column vector in (1), such as h1,1,
h2,1, · · · , and hK,1, represent the CSI of all such paths.

(2) Across transmit-receive antenna pairs, the signal also
propagates multiple paths as additional antennas create more
paths, which lead to different columns in the CSI matrix (1).

In the next two sections, we will focus on creating guess
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Figure 4: CSIs of Alice-Bob and Eve-Bob in the CRAWDAD
Utah/CIR dataset [10].

strategies for Eve to generate the CSI values inside and
across transmit-receive antenna pairs, respectively, and show
that our strategies with a small budget N have substantial
attack success rates against CSI-based authentication.

3. Guessing inside Single Antenna Pair
In this section, we address the challenges of guessing

CSI values inside a single transmit-receive antenna pair. We
first present our design intuition with dataset analysis, then
provide our designed attack.

3.1. Observation and Design Intuition
To provide a better strategy for Eve to guess Alice’s (for

the targeted attack) or any other user’s CSI (for the untargeted
attack), we first look at the property of CSI samples in the
CRAWDAD Utah/CIR dataset [10] under a single antenna
system. The dataset includes over 9,300 real CSI samples in
an indoor environment. We randomly select two nodes to be
Alice and Eve, and one node to be Bob. Figure 4 shows the
normalized amplitudes of Alice’s and Eve’s CSIs observed
by Bob. It can be observed from Figure 4 is that although
transmitters have distinct CSI amplitude values on different
paths, the range of value variations generally decreases as the
path number increases since a larger path number indicates
a longer path that the signal travels through in wireless
communication. This means that when the channel response
is used as a key feature to verify transmitters by comparing
statistical measures [10], [33]–[36] or using machine learning
classifications [24], [30], [38], the verification should be
biased towards the first few paths with larger ranges of
value variations (which we call dominant paths) because
these paths 1) provide more value diversity to differentiate
features in a CSI verification mechanism; and 2) are more
resilient to the noise on the wireless channel.

As a result, our intuition is that with a limited budget N ,
Eve only needs to guess the CSI values on these dominant
paths instead of all paths because the CSI values on the
remaining paths should be less weighted at Bob’s verification.
For example, Figure 4 shows that there are 16 paths in Alice’s
CSI. If Eve plans to generate two guesses of the amplitude
value on each path, the total of possibilities is 216. But if
Eve focuses only on the first three paths, the total is 23,
which is feasible for the attack procedure in Figure 3. When
Eve generates guess values on these paths similar to Alice’s
values, Eve is still likely to succeed in impersonating Alice.

Note that each path in CSI is a complex number whose
amplitude and phase represent the power attenuation and
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Figure 5: CSI phase/amplitude values of Alice-Bob in the
CRAWDAD Utah/CIR dataset [10].

phase shift, respectively. The phase value is either not
used (e.g., many studies [61]–[63] use the amplitudes only)
or nearly zero-weighted in a properly trained classifier
due to random factors such as the random initial phase
of a radio frequency carrier and frequency drifting at a
transmitter/receiver [64], [65]. For example, we show in
Figure 5a the phases of consecutive 5 CSI values between
the same transmit-receive pair in the CRAWDAD Utah/CIR
dataset. It can be observed that the phases are of different
values distributed over (−π, π] on each path. By contrast,
the amplitudes of these CSI values in Figure 5b are quite
similar. Accordingly, we only need to focus on guessing the
amplitude values in the attack strategy design.

3.2. Dominant Path Construction
Next, we propose the Dominant Path Construction (Dom-

PathCon) strategy for Eve to guess the CSI values on the
dominant paths. We first describe the DomPathCon strategy
and then discuss how to choose parameters in DomPathCon.

3.2.1. Attack Strategy Design. Since we consider a single
transmit-receive antenna pair, the CSI matrix in (1) becomes
a column vector. Let hE = [hE

1 , h
E
2 , · · · , hE

K ]T denote Eve’s
CSI vector observed by Bob, where hE

i is Eve’s channel
response on the i-th path (i ∈ [1, · · · ,K]). Eve considers
the first K ′ < K paths as dominant paths and focuses
on guessing values on these K ′ paths with the following
DomPathCon procedure.

1) The guessing is based on Eve’s CSI; namely, Eve
aims to obtain different CSI guess vectors by making some
changes to her own CSI vector hE . The reason is that in
a wireless network, nearby nodes can experience similar
channel fading effects [10], [12]: (i) when Eve is close to
Alice, Eve’s CSI may also be close to Alice’s CSI; (ii) when
Eve is far away from Alice and experiences independent
fading, no other information is assumed in our attack model
to help Eve go beyond random guessing (then using Eve’s
CSI is just a random guess). Jointly considering (i) and (ii),
we see that there is still an advantage of starting from Eve’s
CSI to guess.

2) To generate guesses based on Eve’s CSI, DomPathCon
defines a value step ∆ and a set of value changes D =
{±∆,±2∆, · · · ,±n∆} on the r-th dominant path, where
r ∈ [1, · · · ,K ′] and parameter n controls the maximum
change. Then, DomPathCon computes the CSI guess ĥr on
the r-th dominant path as ĥr = hE

r + δr∠hE
r where δr ∈ D
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and ∠hE
r is the phase of hE

r . For the non-dominant paths,
DomPathCon just uses Eve’s CSI values as the guess values.
Figure 6 shows an example of n = 2 and K ′ = 2. It is seen
from the figure that DomPathCon only changes the channel
responses on the first two paths by four values ∆, −∆, 2∆,
and −2∆. Thus, the total number of guesses is 42 = 16.

3) Eve then follows the attack procedure in Figure 3 to
precode her signals based on different CSI guess, and then
keeps sending the signals to Bob to attack the authentication.
Existing precoding techniques (e.g., [17], [18]) are directly
adopted to craft intended the CSI for a packet.

3.2.2. Parameter Selection and Optimization. According
to the DomPathCon procedure, it generates a total of (2n)K

′

guesses. We can see the number of dominant paths K ′ is
quite critical if we want to ensure that the total is no more
than the budget N . This means Eve may only choose K ′ to
be a very small value (e.g., 1-3) to be practical. Once Eve
selects the value of K ′, she obtains the value of n given the
budget N by using (2n)K

′
= N .

Another important value in DomPathCon is the value
step ∆. Its value should not be too small otherwise the
guess CSI is still quite similar to Eve’s CSI. As CSI-
based authentication generally involves computing a distance
measure compared with a threshold θ in its decision [13],
[20], [21], [33], ∆ should have a comparable value to θ. In
practice, Bob may not disclose his choice of θ to other users.
In this case, Eve can collect other users’ CSI, build her own
CSI-based authentication and choose the proper value θ̂ to
distinguish others’ CSI with low false alarm. This θ̂ may
serve as a predicted value of θ as Eve is in the same network
environment with Bob. Then, ∆ can be assigned to have a
comparable value to θ̂.

In DomPathCon, the value step ∆ is the same for the
guesses on all dominant paths. However, the channel response
amplitude generally decreases as the path number increases
(a large path number indicates the signal travels with a longer
distance) in wireless communication [31], [32]. This means
that the equal value step on all paths may create a CSI
guess that is less likely to happen in practice. For example,
in Figure 6, decreasing the first path amplitude by 2∆ and
increasing the second path amplitude by 2∆ will create a CSI
guess with the second path amplitude substantially higher
than the first one. This may happen in practice, but is less
likely. Hence, a potential way to improve the guess success
probability is to scale the value step by a scaling factor for
each dominant path: Eve chooses ∆r = br∆ for the r-th
dominant path, where br is called the scaling factor, defined
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Figure 7: Eve’s success rates of different value step ∆ = ηθ̂.

as the ratio between the average CSI amplitude on the r-th
path and the average CSI amplitude on the first path in all
CSI received by Eve.

3.3. Dataset Evaluations
We use a CRAWDAD Utah/CIR dataset [10] based simu-

lations to conduct the preliminary evaluation of DomPathCon.
3.3.1. Setups. The dataset is a CSI dataset for single
antenna systems and contains 44 locations for 44 users,
leading to 13,244 location arrangements for Alice, Bob and
Eve. We enumerate all these arrangements to measure the
effectiveness of Eve’s DomPathCon against Bob’s CSI-based
authentication for both targeted attack (to impersonate Alice)
and untargeted attack (to impersonate any other user at a
different location).

For the CSI verification method, for user u, Bob collects
all his/her CSI values during training and computes the
average CSI vector as h̄u. For an incoming packet with CSI
h, he finds the shortest distance in all distances of h to each
user’s average CSI vector (i.e., d(h) = minu∈U ∥h− h̄u∥)
and the corresponding user u∗ = argminu∈U ∥h − h̄u∥,
where U is the set of all users. He then compares this distance
with the threshold θ, and associates the packet with user u∗

if d(h) ≤ θ.
Since Eve has no knowledge of Bob’s CSI verification

algorithm and decision threshold θ in our attack model,
Eve has to compute her own threshold θ̂ as discussed in
Section 3.2.2. In the simulations, we let Eve conduct the
Generalized Likelihood Ratio Test (GLRT) [35] to decide θ̂
under a false alarm rate less than 0.05, and then choose her
value step ∆ to have a comparable value to θ̂, in particular,
∆ = ηθ̂ with η’s value varying around 1–2.
3.3.2. Evaluation Metrics. We use the attack success rate
to be the metric to evaluate DomPathCon. For the targeted
attack, the attack success rate is the probability that Eve
successfully impersonates Alice to Bob using no more than
N impersonation packets. For the untargeted attack, the
attack success rate is defined as the probability that Eve
successfully impersonates anyone in the network to Bob
using no more than N impersonation packets.
3.3.3. Results. In the dataset, each CSI contains over 15
paths. First, we choose K ′ = 2 and n = 2 (budget N = 16)
for DomPathCon and show the attack success rates under
different values of η in Figure 7. We also compare the
impact of scaling the value step on each dominant path (i.e.,
reducing the value step by a scaling factor br for the r-th
path as discussed in Section 3.2.2) with the non-scaling case.
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Figure 8: Eve’s success in Utah/CIR dataset [10].

From Figure 7b, we can see that DomPathCon achieves
substantial attack success rates. The untargeted attack has a
rate about 10-20% higher than the targeted attack. There is
an optimal value of η to maximize the attack success rate,
which differs in the scaling and non-scaling cases: η is near
2 for under scaling and is around 1 under non-scaling. Both
at the optimal values, scaling achieves better attack success
than non-scaling (i.e., 69.08% vs 65.57%). Thus, scaling
shows a slight advantage and will be used by default in all
following evaluations of DomPathCon.

Figure 8 shows the impact of the number of selected
paths K ′ in DomPathCon for targeted and untargeted attacks,
where we set n = 1 or 2 and η = 1.9. From Figure 8, we
observe that even when K ′ = 1 and n = 2 (so the budget N
is just 4), Eve has a 43.92% success rate with the untargeted
attack. Eve’s success rate increases with K ′ increasing (e.g.,
60.78% with K ′ = 2), but if the number of K ′ is too large,
the success rate does not have significant improvement (e.g.,
74.41% and 74.57% with K ′ = 6 and 7). Although the
success rate reduces for the targeted attack in Figure 8, she
still achieves 27.79% success by only guessing the first path.
Even if Eve chooses n = 1, her attack performance does
not have large degradation compared to the n = 2 case
(e.g., 43.03% vs 58.15% with K ′ = 2), which indicates that
DomPathCon is effective even with a small budget against
CSI-based authentication.

Our dataset evaluation results demonstrate that by simply
focusing the guessing on the first few dominant paths, Dom-
PathCon is able to cause a substantial security degradation
to CSI-based authentication. In Appendix A, we provide the-
oretical analysis to understand the fundamental relationship
between the attack success probability and the number of
guessed dominant paths K ′ and show how guessing the first
few paths is effective against CSI authentication.

4. Guessing across Antenna Pairs
We have shown that DomPathCon is an effective strategy

to degrade CSI-based authentication within a single transmit-
receive antenna pair. In this section, we describe the strategy
to perform the guessing across different antenna pairs. We
first present our design intuition with dataset validation.
Then, we present and evaluate the attack strategy of LR-
DomPathCon to guess CSI across antenna pairs.

4.1. Design Intuition
Today’s wireless devices use the MIMO technology to

improve the communication performance [66], [67]. Dom-
PathCon is designed to guess the CSI on dominant paths
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Figure 9: CSI examples of two transmit antennas to two
receive antennas in MIMO CIR dataset [69].

in a single-antenna pair with a total number of guesses
(2n)K

′
. For a MIMO system with MT transmit antennas

and MR receive antennas, Eve can perform DomPathCon on
each antenna pair independently, which we call Independent-
DomPathCon. It leads to totally (2n)K

′MTMR guesses and
can easily consume a small budget N . As a result, we need
to design a strategy better than Independent-DomPathCon to
reduce the guessing complexity for CSI in MIMO systems.

As we mentioned previously, multiple antennas create
more signal propagation paths than a single antenna pair and
result in different columns in the CSI matrix (1). As many
wireless devices are designed in a more and more compact
form, antennas are usually placed close to each other (e.g.,
22.29mm on Apple Watch [39] and 43.38mm on Amazon
Echo Dot [40]). The closer the antennas, the more correlated
their signal attenuations. Such correlations have been seen in
the literature [41]–[43]. Moreover, strong signal correlation
can be modeled using a linear relationship [44], [45], [68].
As a result, if correlations exist among many transmit-receive
antenna pairs, Eve can build a Linear Regression (LR) model
to model the channel responses among these pairs. In this
way, Eve only needs to perform the DomPathCon strategy
on one antenna pair and use the LR model to predict the
guesses for other antenna pairs, leading to totally (2n)K

′

guesses for the MIMO system independent of the number
of antennas. We call this strategy LR-DomPathCon.

4.2. Dataset Validation of Antenna Correlations
The underlying idea of LR-DomPathCon is to leverage

the correlation of channel responses in different antenna pairs.
We use the 20MHz bandwidth MIMO CIR dataset [69] to
measure the correlation in CSI samples between 2 transmit
antennas and 2 receive antennas in an indoor environment.
In the dataset, the distance between two transmit antennas
is 50.8cm and the distance between two receive antennas
is 30.5cm. Figure 9 shows an example of the normalized
CSI amplitudes from two transmit antennas to two receive
antennas. We can see that inside one antenna pair, the
amplitude gradually decreases as the path number increases;
while the phase is random in (−π, π], which is similar to
the single-antenna example in Figure 5. We also observe in
Figure 9a that the different transmit-receive antenna pairs
indeed have similar amplitude values on each path, which
indicates the existence of the correlation.

Then, we measure the correlation in antenna pairs. We
use the CSI data from 10 2 × 2 MIMO systems in the
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dataset [69]. In each 2 × 2 system, there are 4 transmit-
receive antenna pairs, which we index them from 1 to 4.
Then, we measure the Pearson correlation coefficient of
the channel response amplitudes between every two pairs
(i.e., pairs 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, 3
and 4) for each 2× 2 system. We draw Pearson correlation
coefficients between every two pairs as a temperature map
in Figure 10. It can be observed that between two antenna
pairs, the channel response amplitudes on the first few paths
are highly correlated. For example, the coefficients of the
first two paths on pairs 1-2 are larger than 0.8.

4.3. LR-DomPathCon
4.3.1. Strategy Design. According to our dataset correlation
analysis (e.g., as observed in Figure 10), the most dominant
paths are also the most correlated. This perfectly falls into the
focus of DomPathCon on the first few dominant paths and
further helps DomPathCon to reduce the guessing complexity
by taking advantage of the high correlation. Consequently,
Eve can adopt LR-DomPathCon instead of Independent-
DomPathCon to (i) use DomPathCon to obtain a CSI guess
on one transmit-receive antenna pair, and then (ii) use an LR
model to predict other CSI guesses on other antenna pairs.
We propose the LR-DomPathCon procedure as follows:

1) Eve passively collects the CSI values from Bob, and
computes the correlation coefficient for each antenna pair.
She then chooses the antenna pair with the highest average
correlation coefficient with other pairs as the reference
antenna pair, in which she will perform DomPathCon. Then,
she uses the CSI values to train an LR model to predict a
CSI value of each path in an antenna pair from the reference
pair; i.e., ĥE

r,j = wr,jhr,j∗ , where the j∗-th antenna pair
denotes the reference antenna pair, j ∈ [1, · · · ,MTMR] and
j ̸= j∗, and wr,j is the linear weight for the k-th path in the
j-th antenna pair in the LR model.

2) After training the LR model and obtaining all weights
wr,j , given budget N , Eve uses DomPathCon to generate
N CSI guesses for the reference antenna pair and then uses
the LR model to generate the CSI guesses for other pairs.

3) Similar to the single antenna case, Eve keeps sending
the precoded signals with different CSI guesses to Bob to
attack the authentication.

4.3.2. Preliminary Evaluations. We continue to use the
MIMO CIR dataset for preliminary evaluation. The dataset
includes 10 users, and each user has two transmit and
two receive antennas with more than 40 CSI samples. We
set K ′ = n = 2 and η = 1.8 with varying budget
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Figure 11: Comparisons between Independent-DomPathCon
and LR-DomPathCon based on MIMO CIR dataset [69].

N = 10, 20, 50 and 100. There are 45 combinations of
Bob and Eve locations, and we compute the attack success
rate averaged over all location combinations.

Figure 11 compares the attack success rates of
Independent-DomPathCon and LR-DomPathCon. It is ob-
served from the figure that given a fixed budget, Independent-
DomPathCon always performs substantially worse than LR-
DomPathCon that takes advantage of antenna correlation
to predict CSI guess. For example, under budget N = 10,
Independent-DomPathCon only obtains 7.86% success for the
targeted attack and 18.15% success for the untargeted attack.
By contrast, LR-DomPathCon achieves 19.73% success for
the targeted attack and 30.62% success for the targeted
attack. The preliminary results in Figure 11 show that LR-
DomPathCon is effective to degrade the security of CSI-based
authentication in MIMO systems.

5. Experimental Evaluations
In this section, we present the experimental evaluations.

We first introduce the system setups, then discuss the attack
effectiveness of DomPathCon against existing CSI-based
authentication systems.

5.1. Experimental Setup
Experimental Settings: We collect realistic CSI on com-
modity WiFi routers based on Atheros AR5822/AR9580
chipsets and TP-Link WDR 4300 AP. The CSIs are collected
under two different bandwidth settings: 20MHz and 40MHz.
The WiFi routers are modified with Atheros CSI Tool [14],
which enables fast channel switching for obtaining CSI on
enlarged bandwidth WiFi signals. Specifically, we collect
the CSI matrix Hf ∈ RK,MTMR in the frequency domain
from the tool, whose rows and columns denote the transmit-
receive antenna pairs and subcarriers, respectively. In our
experiments, MT and MR are both chosen from [1, 3] (i.e.,
up to 3×3 MIMO) and there are K=52 or 108 subcarriers
for the 20MHz or 40MHz bandwidth. Then, for each column
vector (i.e., the CSI vector across subcarriers for an antenna
pair) Hf

m = [Hf
1,m, . . . ,Hf

K,m], we use the frequency-to-
time domain transformation [14], [53] to obtain its time-
domain CSI (i.e., the power delay profile) vector Ht

m =
[Ht

1,m, . . . ,Ht
L,m], where Ht

l,m =
∑K−1

k=0 Hf
k,mej

2πlk
K for

l ∈ [1, L] with L denoting the maximum number of time-
domain paths and set to be 12 (20 MHz) or 24 (40 MHz).
The resultant time-domain CSI vector Ht

l,m for each antenna
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Figure 12: Environment for experiments.

pair is then used in DomPathCon for constructing guess CSIs
against CSI-based authentication.

We conduct experiments in a realistic indoor environment
in Figure 12 to show the attack impact of DomPathCon
(and LR-DomPathCon against MIMO) on existing CSI-
based authentications. Our experimental environment has
40 transmitters/users, the receiver/verifier Bob and the at-
tacker Eve (Eve is at location 0 by default). Each user is
placed at a different location for performance evaluation.
We place Alice at each location, then measure the attack
success rate averaged over all locations. We collect more
than 100,000 CSIs from each transmitter-receiver pair and
transmitter-attacker pair, and we use 100 CSIs to construct
the groundtruth on each pair. Note that different transmitter-
receiver pair represents different channel conditions: short-
distance line of sight (S-LoS), long-distance line of sight
(L-LoS), short-distance Non-LoS (S-NLoS), or long-distance
Non-LoS (L-NLoS).

The default parameters in our communication sys-
tems are set as: 2×2 MIMO and 40MHz bandwidth. For
DomPathCon/LR-DomPathCon, we set K ′ = n = 2,
η = 1.8, N = 50 by default. During the experiments, we
will vary these parameters and show the attack performance.
CSI-Based Authentication: In our experiments, Eve will
use DomPathCon to attack the following five existing au-
thentication designs using CSI.

Statistics based authentication: (i) AVE [10] and (ii)
GLRT [13], [20], [21], [33]: Bob firstly collects the CSIs
from legitimate users and calculates the corresponding aver-
aged CSIs. For AVE, Eve uses Euclidean distance between
the averaged and incoming CSIs to verify a user. For GLRT,
Bob builds the likelihood ratio by (6) based on training CSI
data to verify the user’s CSI distribution.

Machine learning based authentication: (iii) SVM [24],
(iv) CNN [23], [58], and (v) DRL [4], [70]: Bob leverages the
collected CSIs from legitimate users to train a Support Vector
Machine (SVM), Convolutional Neural Network (CNN), or
Deep Reinforcement Learning (DRL) model, where the CSI
is the input and the user index is the corresponding label.
Bob uses the learning model to verify incoming CSIs for
user authentication.

Figure 13 depicts the performance of each au-
thentication method via the detection rate PD (i.e.,
PD = # of Bob successfully verifies the legitimate user’s CSIs

# of total CSIs ) as a func-
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Figure 15: Correlation coefficients of phases and amplitudes
by varying sampling interval.

tion of the targeted false alarm rate PFA (i.e., PFA =
# of Bob rejects the legitimate user’s CSIs

# of total CSIs ) in the presence of no attack.
In general, it is observed that the value of PD increases when
Bob sets a larger PFA for each authentication method, since a
smaller PFA value will reject more CSIs even from Alice. For
example, PD = 77.52%-97.31% for AVE, when PFA = 0.01-
0.1. In our experiments, we set the default value of PFA to be
0.05 such that all the methods have a good balance between
the detection ratio and the false alarm, which is also widely
observed in existing studies [10], [13], [24], [58].

5.2. Evaluation Results
(1) Detection performance when CSI phases are used:

In Section 3, we showed that CSI phases exhibit randomness
even for consecutive CSI values in the CSI dataset [10] and
may not be a good feature for CSI-based authentication.
Here, we use our collected CSI data to further demonstrate
the impact of using the phases in CSI-based authentication.
Figure 15a shows the correlation coefficients of the phases
and amplitudes of two CSI samples over a fixed sample
interval on the first five paths (e.g., when the sampling
interval is 1, the correlation coefficient is computed based
on every pair of consecutive CSI samples). It is observed
that the correlation coefficient of the CSI phases decreases
with increasing the sample interval. For example, when the
interval increases from 1 to 1000, the correlation coefficient
drops from around 0.5 (weakly correlated) to nearly zero
(uncorrelated). It indicates that CSI phases are not suitable
for classification. We also show the correlation coefficients of
CSI amplitudes in Figure 15b and observe strong correlation
(with coefficients close to 1) even over 1000 samples.

We further compare the detection performance of CSI-
based authentication by using CSI amplitudes only (A-only)
with the performance by using both amplitudes and phases
(A+P). Figure 16a shows the detection rates achieved by two



TABLE 1: Attack success rate (%) by varying the guessing budget N under 20MHz bandwidth.
1×1 Antenna Pair 2×2 Antenna Pairs 3×3 Antenna Pairs

N Attack AVE GLRT SVM CNN DRL AVE GLRT SVM CNN DRL AVE GLRT SVM CNN DRL

5 Tar. 13.16 11.92 11.98 11.60 11.36 3.56 3.32 3.39 3.26 3.15 1.44 1.41 1.35 1.29 1.27
Untar. 22.45 21.04 21.29 19.71 18.95 8.96 8.11 8.02 7.83 7.83 3.49 2.90 2.76 2.51 2.25

10 Tar. 18.74 16.69 16.77 15.86 15.52 6.89 6.41 6.55 6.27 6.13 3.19 2.81 2.70 2.62 2.58
Untar. 31.53 28.64 28.72 27.29 26.83 23.67 20.89 20.43 19.26 18.78 14.48 12.67 12.50 11.85 11.39

20 Tar. 28.02 26.41 26.25 25.18 24.77 15.22 13.69 13.57 12.50 12.08 9.53 7.89 7.66 7.24 7.03
Untar. 49.07 47.99 47.35 46.48 45.69 38.71 35.97 35.46 33.65 33.14 22.10 19.63 19.18 18.05 17.60

50 Tar. 37.39 34.68 34.73 33.20 32.63 23.81 22.37 22.26 20.89 20.45 10.04 9.51 8.92 8.34 8.20
Untar. 61.31 58.66 58.24 57.45 56.73 45.19 42.84 42.02 40.53 39.82 33.27 30.23 29.76 27.33 26.69

TABLE 2: Attack success rate (%) by varying the guessing budget N under 40MHz bandwidth.
1×1 Antenna Pair 2×2 Antenna Pairs 3×3 Antenna Pairs

N Attack AVE GLRT SVM CNN DRL AVE GLRT SVM CNN DRL AVE GLRT SVM CNN DRL

5 Tar. 12.25 11.34 11.47 10.45 9.92 3.09 2.73 2.82 2.41 2.26 1.69 1.42 1.63 1.50 1.39
Untar. 20.49 20.10 20.23 19.36 18.87 11.80 10.67 10.26 9.78 9.26 7.67 6.81 7.02 6.44 6.03

10 Tar. 17.66 16.25 16.04 13.87 13.15 5.38 4.60 4.37 3.86 3.71 2.20 1.85 1.81 1.79 1.62
Untar. 27.71 26.39 25.92 25.13 24.84 20.17 17.30 16.98 15.43 14.82 12.33 10.64 10.32 8.96 8.51

20 Tar. 25.60 23.24 22.73 20.61 20.03 14.27 12.68 12.94 10.85 10.12 5.86 4.10 3.93 3.84 3.02
Untar. 46.86 46.12 46.44 44.35 43.50 36.68 33.99 33.64 31.96 30.87 19.95 17.45 17.06 15.93 15.14

50 Tar. 35.26 32.92 33.46 31.49 30.72 21.30 20.12 20.58 18.79 18.10 8.64 7.23 6.22 5.81 5.15
Untar. 58.91 56.16 57.39 55.20 54.37 50.12 46.89 46.06 44.74 43.92 31.98 27.82 27.05 25.11 24.30
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Figure 16: Detection and untargeted attack performance by
varying sampling rate.

authentication methods: GLRT (statistics based) and CNN
(machine learning based) with different training sizes. We can
see that when the CSI training size is small, all methods have
low detection performance (e.g., 76.41% for GLRT A-only
with 10 CSI training). In addition, a small training size incurs
severe degradation for A+P authentications (e.g., 30.49% for
CNN A+P with 10 CSIs) as the random CSI phases can be
considered noises instead of features for accurate authentica-
tion. When we increase the training size, the detection rate
increases gradually for each method. Eventually, the A-only
and A+P cases exhibit approximately the same detection
performance. This is because an authentication method with
sufficient training data will give the random phase in CSI
nearly zero weight in its classification. As a result, we do
not use the CSI phase as a feature for authentication in all
follow-on experiments unless otherwise specified.

Figure 16b shows the untargeted attack success rate
of DomPathCon in the A-only and A+P cases. The figure
shows that when the training size is small, all authentication
methods are not reliably trained and DomPathCon has a wide
range of attack success rates. When we increase the training
size, DomPathCon achieves relatively stable success rates,
which are approximately the same for A-only and A+P.

(2) Guessing budget N and bandwidth: The guessing
budget N is a critical parameter related to the attack
effectiveness. If Eve is quite effective with a very small
value of N (i.e., Eve only tries very few packets to fool
the authentication) in a scenario, CSI authentication can be
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considered not secure for the scenario. In addition, because
larger bandwidth can generate more paths in the time domain,
it can make the authentication more secure. As a result, we
thoroughly examine the impact of budget N and bandwidth
on the attack effectiveness under different antenna scenarios.

Tables 1-2 show the attack success rates with different
values of guessing budget N under the 20MHz and 40MHz
bandwidth settings, respectively. They illustrate that the
attack success rate always increases when we allow a larger
guessing budget. For example, when N goes from 5 to 50,
the targeted and untargeted attack success rates of GLRT
increase from 4.46% to 25.89% and from 11.43% to 52.37%,
respectively. For the same guessing budget N , the attack
success rate under 20MHz is always higher than that under
40MHz. Even if Eve only uses 10 guesses, she also can
achieve a good attack success rate (e.g., 27.71% for the
untargeted attack against AVE in the 1×1 antenna system).
Therefore, we consider a more challenging scenario (i.e.,
40MHz) in the experiment. Furthermore, we can observe
from the tables that if we increase the number of antennas
(from 1×1 to 3×3) and bandwidth (from 20MHz to 40MHz),
CSI-based authentication becomes indeed more resilient to
DomPathCon especially when N is small.

(3) Channel conditions: We evaluate the impact of a
user’s channel condition on the targeted attack. Figure 17
illustrates the attack success rates for Alice at the different
locations. We can see higher attack success rates against
Alice at some locations than other locations (e.g., Alice
at location 1 suffers an attack success rate of 39.8% on



AVE). This may be because both Alice and Eve have the
S-LoS channel conditions to Bob, indicating that their CSIs
are similar with more evident dominant paths. In addition,
when the channel conditions of Alice and Bob are both L-
NLoS, the attack performance is the worst (less than 5%).
Furthermore, the experimental results show that DomPathCon
can be more effective under the LoS channel conditions.
For example, when Alice is at location 6 (S-NLoS), the
attack success rate is only 19.38% against DRL. However,
at location 29 (L-LoS), DomPathCon achieves 26.94%. The
results in Figure 17 may also motivate Eve to physically
move around in a network if her attack is not very successful.

(4) Number of users: Figure 18 illustrates the untargeted
attack success rate as a function of the number of legitimate
users in the network (from 1 to 40). It is obvious that
the attack success rate increases with more users in the
network. For example, the attack success rate against CNN-
based authentication goes from 19.66% to 44.74%. More
interestingly, when we just add very few users into the
network, the attack success rate increases drastically (e.g.,
20.55% to 38.98% against SVM, when the number of users
goes from 1 to 5). If we continue to add more users, the
attack success rate does not evidently increase and seems to
gradually converge (e.g., when the number of users are 10-40,
the attack success rate increases from 43.37% to 46.10%).
The results from Figure 18 show that DomPathCon can still
pose a security threat even when there are just a limited
number of users using CSI-based authentication.

Due to the page limit, we provide additional evaluation
results under different conditions in Appendix B.

5.3. Evaluations in Mobile Scenarios

Until now, we have only focused on detection and attack
performance in a static network. In this subsection, we inves-
tigate CSI-based authentication and the attack performance
under user mobility. Specifically, we fix Bob’s location as
shown in Figure 12 and consider two scenarios: (i) random
movement scenario (i.e., all other users and the attacker Eve
walk randomly) and (ii) intentionally mobile Eve scenario
(i.e., Eve intentionally walking closer to a target). The
walking speed is around 1-1.5 meters per second.

(1) Random movement scenario: In this scenario, CSI
changes over time due to mobility. We have to re-profile CSI
values periodically for user authentication. To this end, we
define the re-profiling window, which denotes the number
of the latest CSI samples received and used to re-train the
CSI classifier by Bob.

Figure 19 shows the performance of CSI-based authenti-
cation (in terms of (a) detection rate and (b) false alarm) with
different re-profiling window sizes. First, we can see that
the performance highly depends on the re-profiling window
size. Either a small (e.g., 10) or a large window size (e.g.,
1000) leads to performance degradation. In Figure 19, the
window size at around 100 achieves the highest detection
rate as well as the lowest false alarm for each authentication
method. Interestingly, the AVE method, simply computing
the Euclidean distance, generally outperforms other more
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Figure 19: Detection and false alarm rates by varying the
re-profiling window size in the random movement scenario.

sophisticated methods under the mobile scenario, and has
the best detection rate of 58.24% and false alarm of 41.76%.

Figure 20 shows the targeted attack success rates of
DomPathCon in the random movement scenario. It is ob-
served that the success rates are all below 20% under
different re-profiling window sizes. These low rates are not
surprising as DomPathCon cannot reliably target Alice with
the time-varying CSI due to mobility. Despite the low attack
performance, the results in Figure 19 demonstrate that CSI-
based authentication cannot provide reliable results in mobile
scenarios even without the presence of an adversary.

(2) Intentionally mobile Eve scenario: When two users
are physically close, their CSIs are more likely to look similar,
this may motivate Eve to move closer to her target Alice to
launch DomPathCon. In our experiments, we let Eve move
closer gradually to Alice using four different moving paths
and measure the attack success rate averaged over four paths.

Figure 21 shows the attack success rate as a function
of the distance from Eve to Alice. It can be observed that
DomPathCon has similar attack success rates against all
the five authentications methods. Moreover, we observe that
decreasing the distance can gradually increase the attack
success rate. For example, when the distance between Eve
and Alice changes from 9m to 4m, the targeted attack success
rate against SVM-based authentication increases from 23.59%
to 35.81%. When Eve is physically close enough to Alice
(e.g., 0.5m), the attack success rate reaches around 55%
for both targeted and untargeted attacks. The results in
Figure 21 further demonstrate that DomPathCon is more
effective against CSI-based authentication if an attacker is
able to move physically close to a target.

6. Mitigating the Impact of DomPathCon
In this section, we discuss lessons learned and propose

our defense strategy to mitigate the impact of DomPathCon.

6.1. Limitations of CSI-based Authentication
Based on the theoretical analysis, dataset validation and

experimental evaluations, DomPathCon can incur a serious
security issue in CSI-based authentication. As CSI-based
authentication has been mainly advocated for low-cost, secure
wireless communications (e.g., IoT [4]–[6], [9] and RFID
[7], [8]), we find that enhancing its resilience against the
DomPathCon attack actually imposes requirements in con-
tradiction with the goals for low-cost, small-factor devices.
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with random movement.

0.5 2 4 6 8 10

Distance (m)

20

30

40

50

60

A
tt

ac
k

 S
u

cc
es

s 
R

at
e 

(%
)

Untargeted

Targeted

AVE

GLRT

SVM

CNN

DRL

Figure 21: The intentionally
mobile Eve scenario.

Specifically, (i) increasing the communication bandwidth
can improve the attack resilience (e.g., in Tables 1-2);
however, IoT/RFID devices/sensors usually operates at a
lower bandwidth; (ii) adding more antennas to a device
enhances the resilience (e.g., in Figure 31), but brings more
cost and size concerns to these devices/sensors; (iii) reducing
the number of users that use CSI authentication also improves
the resilience (e.g., in Figure 18), but IoT is usually aimed
to support many users.

As a result, it should not take it as granted that CSI-
based authentication is always a good candidate for wireless
security in IoT, RFID or sensor network scenarios. CSI-based
authentication has its limitations when facing DomPathCon.
We must carefully evaluate its performance under DomPath-
Con to balance the achieved security in terms of reducing the
attack success rate and the cost associated with demands for
more bandwidth, more antennas, more processing capability,
and less supported users.

6.2. Mitigation Designs
Although DomPathCon reveals the limitations of CSI-

based authentication, we still aim to create designs to mitigate
the impact of DomPathCon. Our experiments show that Bob
should not verify any mobile user using CSI because mobility
causes unreliable authentication results. Bob only needs to
consider authenticating static users. However, Eve, as the
attacker, is not limited to being static and can try to move
around to cause more damages (as shown in Figure 21).
Hence, we adopt a two-step approach: first, we provide
countermeasures against static Eve; second, based upon the
static Eve solution, we further consider the mobile Eve case.

6.2.1. Mitigation designs against static Eve. To mitigate the
impact of static Eve who is a malicious user in the network,
our basic idea is that Bob can be proactive and launch
DomPathCon against himself to select which users should
adopt CSI-based authentication to meet a given security
requirement, in particular,

1) Bob collects CSIs from the set of all users U via
traditional cryptography based authentication in the network
before switching to CSI-based authentication.

2) Given the user set U , he adopts an existing method
to build a CSI classifier to authenticate users.

3) Bob assumes that there is an attacker with a guess
budget N . In practice, it is difficult for Bob to know the value
of N . Therefore, Bob sets his own version of N denoted
by NBob as his allowed budget for any potential attacker,

and launches DomPathCon against his own CSI classifier
to calculate the untargeted success rate PUntar(NBob, Û). If
PUntar(NBob, Û) is greater than Bob’s tolerant attack success
rate P (which should be sufficiently small to meet Bob’s
security goal), Bob must shrink the size of U (i.e., supporting
less users for CSI-based authentication) to obtain a subset
of users Û ⊆ U such that PUntar(N, Û) ≤ P , i.e.,

max |Û |, (2a)

s.t. PUntar(NBob, Û) ≤ P, (2b)

Under the formulation of (2), Bob can find the maximum
number of users in the network that adopt the CSI-based
authentication given the guess budget NBob and the tolerant
level P . When Bob cannot verify a user’s CSI NBob consec-
utive times, Bob disables CSI-based authentication for the
user, i.e., removing the user from the user selection set Û .
After the removal, there will be fewer users using CSI-based
authentication. Bob can try to add another user previously
not in Û into Û as long as (2b) is still met. This process
is called user switching. The user selection and switching
design enables CSI-based authentication to operate under the
security tolerant level P when facing DomPathCon. Note
that if Eve has her value of N greater than Bob’s NBob and
keeps sending packets going beyond NBob, Bob will switch
off the CSI-based authentication after the number of failed
authentications exceeds his own setup NBob, making Eve’s
further attempts ineffective.
Optimized and balanced solutions: To solve (2) in an
optimized way for user selection, Bob first chooses and
assumes each user as a potential attacker to launch Dom-
PathCon against himself, and finds the user with the highest
untargeted attack success probability. If the probability is
larger than the tolerant level P , Bob removes this user for
CSI-based authentication. Then, for the rest of the users,
Bob uses their CSIs to re-train his classifier and repeats
the same removing process until (2b) is met. We call it the
optimized approach. Because it has to retrain the classifier
after removing each user, the optimized approach requires
|U|−max |Û | re-trainings according to (2), which entails
high computational overhead, especially for sophisticated
authentication methods (e.g., CNN and DRL).

To reduce the computational overhead of the optimized
approach, we design another approach, called label muting,
in which Bob always uses the initially-built CSI classifier.
Specifically, Bob first builds the CSI classifier based on all
users’ CSI data. Then, Bob starts to launch DomPathCon
against himself and remove users to meet the requirement
(2b). When Bob removes a user, he does not change the
original classifier but mutes the label of the user (i.e., the set
of all possible outputs of the CSI classifier will no longer
include the user). This can be achieved by intentionally
skipping the comparison to the user’s label in an algorithm
(e.g., not estimating the probability for the user’s label at the
soft-max layer in CNN). Algorithm 1 in Appendix C details
the procedure of label muting. Label muting only requires
one round of training CSIs for all users, which is always
needed for building the initial CSI classifier. After a user
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Figure 23: Untargeted success
rate of mobile Eve.

is removed or replaced by a new one (if adding a new one
still meets (2b)), the optimized approach needs to retrain the
CSI classifier while label muting will simply mute the user’s
label and activate the new user’s label in the classifier.
Evaluations: Figure 22 shows the numbers of supported
users solved by the optimized and label muting approaches
with the tolerant level P = 10% and the allowed budget
NBob = 10 or 50 (vs Eve’s actual N = 50) in the same
CSI-based authentication scenario in Figure 18 (40 users
with 2×2 MIMO using different CSI classification methods).
We can see from Figure 22 that given P =10%, CSI-based
authentication can support a limited number of users out of
all 40 users under DomPathCon. Label muting can support
almost the same number of users as the optimized approach,
which makes it a balanced approach between the performance
and computational overhead. In addition, using sophisticated
methods can help accommodate slightly more users (e.g., 20
(DRL) vs 15 (AVE)).

Figure 22 further shows that a larger budget NBob means
a higher attack success rate, and thereby fewer users can
be supported for CSI-based authentication. As a result, Bob
cannot allow Eve to have a large guess budget NBob in
practice. In other words, when Bob cannot verify a user’s
CSI NBob consecutive times and NBob must be small (e.g.,
10), Bob should disable CSI-based authentication for the
user.

6.2.2. Mitigating intentionally mobile Eve. The optimized
and the label muting approaches are able to help Bob select a
subset of users to participate in CSI-based authentication to
combat static Eve. It is also possible that Eve, with the
knowledge of her target Alice’s location, aims to move
physically closer to Alice and then launch DomPathCon.
Indeed, our results in Figure 21 show that Eve’s intentional
movement can be even more damaging.

In this scenario, Bob needs to be aware that although all
users are currently static and their CSIs have been trained,
there may exist one malicious Eve that will later move
physically closer to another user and launch DomPathCon.
This is a challenging scenario that has not been fully explored
in existing studies, as most of them [13], [20], [21], [23],
[24], [29], [35], [37], [55] assume that Eve is static and
placed at a different (random) location.

In the following, we create such an attacker, mobile
Eve, who always moves physically closer (around 0.5–2m)
to her target Alice and then launches DomPathCon in the
same scenario used in Figure 22 (where a subset of users
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is selected). We measure mobile Eve’s success rates in
Figure 23: mobile Eve is able to have success rates greater
than the tolerant level P =10% set in both optimized and
label-muting mitigations, in particular, when NBob = 50. This
is because both mitigations select users based on their past
CSI training and cannot predict the CSI when users move.
Moreover, mobile Eve is assumed to know Alice’s location
and always move closer to Alice to benefit DomPathCon.
Consequently, mobile Eve can exceed the tolerant level P
set in the mitigations.

Based on the results in Figure 23, if we cannot increase
the hardware capabilities in the network (e.g., increasing
bandwidth or antennas), reducing the allowed budget from
the originally set NBob to an even smaller value N ′ becomes
a feasible way to reduce mobile Eve’s success rate (e.g.,
the attack success rate decreases from 54.52% to 10.37%
when NBob changes from 50 down to 10 against DRL-based
authentication in Figure 23). However, further reducing the
allowed budget for Bob means that he will become less
patient with authentication failures and more likely to switch
a user out due to random variations of CSI. We call this case
erroneous switching. For example, setting N ′ = 1 means
that Bob replaces a user as long as he cannot verify the CSI
of just one packet from the user.

Thus, we set different values of N ′ and measure the
resulting attack success rates of mobile Eve in Figure 24
(we adopt the same settings used in Figure 23, where we
use label muting to select users with N=10 and P =10%).
We can see from Figure 24 that in order to meet the tolerant
level P =10% against mobile Eve, we need to set N ′=6
(so mobile Eve’s success rate becomes around 9% < 10%).
Figure 25 shows the probability of erroneous switching (i.e.,
the probability of N ′ consecutive legitimate packets failing
the CSI-based authentication) for different values of N ′. We
note that the probability gradually decreases with increasing
N ′. When N ′ = 6, the probability of erroneous switching
is around 0.8%. A smaller N ′ helps further reduce the
attack success rate but increases the probability of erroneous
switching.

Overall, Eve can be either static or mobile in practice.
To provide an effective mitigation, Bob first needs to select
a subset of users based on (2) given target budget NBob and
tolerant level P for the static scenario. Then, he has to further
reduce the target budget to a new value N ′ < NBob to make
sure that mobile Eve’s attack success rate is lower than P
while maintaining a low erroneous switching probability.



TABLE 3: (|Û |, N ′) to achieve the target erroneous switching
probability (1%) and the tolerant level (5% or 10%) with
N = 10 for AVE- and CNN-based authentication.

Tolerant 2× 2, 20MHz 2× 2, 40MHz 3× 3, 20MHz 3× 3, 40MHz
AVE 5% (5, 4) (6, 4) (8, 4) (10, 5)

AVE 10% (13, 5) (15, 6) (17, 7) (20, 9)
CNN 5% (7, 4) (9, 5) (11, 5) (12, 6)

CNN 10% (17, 6) (19, 6) (22, 7) (24, 10)

In Table 3, we measure the values of pair (|Û |, N ′) to
achieve the target erroneous switching probability of 1% and
the attack tolerant level of 5% or 10% with N = 10 for
AVE- and CNN-based classification methods under different
wireless system setups. It is easy to see that more hardware
capability can support more users and allow for a large value
of N ′ (e.g., Bob can support 24 out of a total of 40 users
with N ′ = 10 for CSI-based authentication under the 40MHz
3 × 3 MIMO system). Table 3 shows that when facing a
mobile Eve model, if Bob targets a low attack tolerant level
(e.g., 5%), he has to enable a very limited number of users
for CSI-based authentication (e.g., 7 out of 40 users for CNN-
based authentication) and at the same time be impatient with
authentication failures (e.g., 4 failures warrants the switching
off). Enhancing the hardware capability (e.g., increasing
bandwidth or antennas) can accommodate more users and
authentication failures, but also incurs more cost, which can
negatively impact IoT device design.

6.2.3. Discussions. DomPathCon is a new attack model
targeting CSI-based authentication, which has not yet been
studied in the literature. Through investigating DomPathCon,
we show that CSI-based authentication, primarily created for
IoT applications, should not be considered always secure and
has to be carefully revisited. The DomPathCon model does
not consider other physical layer information (e.g. radio
frequency fingerprints [71], [72]) that may be combined
with CSI to improve the security. As a result, using a
combination of physical-layer information may improve the
security against the DomPathCon model. In addition, our
MIMO attack leverages the fact that many IoT devices have
compact antenna designs with strong antenna correlations. If
a device can sufficiently separate antennas (e.g., in a vehicle
network scenario where a base station communicates with a
car with multiple antennas), LR-DomPathCon may not be
efficient for CSI prediction across antennas.

7. Related Work
Location or identity/user authentication: Prior studies
have designed location or identity verification methods
[10]–[13], [20], [21], [24], [29], [37], [73] based on the
CSI properties from different users at different locations.
Some studies also extended the CSI-based authentication
to more complicated scenarios, such as relay networking
[74]–[76] and continuous wireless authentication [23], [77],
[78]. As we discussed previously, these studies adopted a
random attack model, which cannot substantially degrade
any CSI-based authentication design. Our work shows that
the proposed DomPathCon is a stronger attack model than
the random one to evaluate the security of CSI-based
designs and exposes their limitations in realistic wireless

network scenarios. Furthermore, several attack strategies
[4], [17], [18] have also been proposed against CSI-based
authentication. However, the effectiveness of these attackers
requires the precondition that the attacker Eve has already
known the CSI between the two communicators Alice and
Bob, which is usually not practical for Eve to obtain unless
some additional assumption is imposed (e.g., assuming that
Eve is quite physically close to Alice or Bob such that
she can know or predict the CSI). Compared with these
attacks, DomPathCon is a very practical attack to launch
in a wireless network. It adopts a search strategy only
focusing on the dominant paths to guess the CSI. Our results
have shown that DomPathCon can substantially degrade the
performance of CSI-based authentication methods and expose
their limitations in different practical wireless scenarios.
Behavior or activity based authentication: Leveraging
WiFi signals to capture unique human behaviors inherited
from their daily activities has been widely investigated for
authentication [79]–[82]. Some studies attempted to authen-
ticate users by exploring users’ behavioral characteristics
such as key-press durations [79] and angle preferences
when operating a mouse [80]. Later, some papers [81], [82]
proposed to authenticate users through sensing human gaits
due to the unique variations in the CSI at the WiFi receiver.
Follow-up studies have also investigated authentication based
on fine-grained users’ gestures (e.g., finger gestures [83],
[84]). These designs that rely on a series of CSI data for
accurate behavior or user recognition will also be adversely
affected by the proposed DomPathCon attack strategy.
Other Physical-layer Authentication Methods: In addi-
tion to CSI-based methods, fingerprinting or authentication
designs have been proposed to leverage other physical
layer properties, including carrier frequency offsets (CFOs)
[85]–[87], hardware impairments [88], [89], in-phase and
quadrature-phase imbalances [90], and clock skews [91].
Many designs still face practical issues that affect the
accuracy of the authentication. For example, it was observed
in [87] that low-cost ZigBee devices have severe CFO
variations even within 15 minutes and varying over time
probably due to temperature changes. This research direction
is complementary to our research focusing on CSI.

8. Conclusion
The CSI-based authentication has been extensively stud-

ied in the literature to facilitate authentication in wireless
networks. In this paper, we proposed a new, realistic attack
model against CSI-based authentication, in which an attacker
Eve tries to actively guess a user Alice’s CSI and precode
her signals to impersonate Alice to the verifier Bob who
uses CSI to authenticate users. We have shown that there
is no need to guess CSI values for all signal propagation
paths and a DomPathCon strategy can be adopted to focus
on guessing the CSI values on dominant paths. Experiment
evaluations based on commodity WiFi devices have shown
that DomPathCon is a stronger adversarial model against
CSI-based authentication and exposes its limitation. Finally,
we provided designs to mitigate the impact of DomPathCon
on CSI-based authentication.
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Appendix A.
Theoretical Analysis

A large number of methods [13], [20], [21], [23], [24],
[29], [33], [35], [37], [38], [55]–[57] have been proposed to
train and verify CSI. It is not feasible to perform analysis
for each method. As the primary design objective in existing
methods is always to improve the detection rate while
reducing the false alarm rate. In our theoretical modeling,
we assume that Bob knows the distribution of Alice’s CSI
vectors h̄A = hA +wI, where wI is a complex Gaussian
noise vector from the wireless channel w ∼ CN (0, σ2

I I).
Then, Bob uses the optimal hypothesis test [13], [20], [21],
[33] to verify whether CSI h of the incoming signal is
transmitted by Alice or Eve. Under the hypothesis H0, the
transmitter is Alice and Bob accepts this packet when a test
statistic d(h) is less than a given threshold θ. Under the

hypothesis H1, the transmitter is Eve and Bob refuses this
packet if d(h) > θ. Mathematically,

H0 : h = hA +wII (3)
H1 : h = hE +wII, (4)

where wII ∼ CN (0, σ2
III) and hE is the equivalent CSI

between Eve and Bob. The optimal test in CSI-based
authentication is GLRT [13], [20], [21], [57]. Following
the GLRT strategy in [13], [20], we write the logarithm of
the likelihood ratio of the incoming CSI h as

d(h) =
max f(h|H1)

f(h|H0)
. (5)

The GLRT is to compare the likelihood ratio with a given
threshold θ > 0 (i.e., when d(h) ≤ θ, accept H0; otherwise,
accept H1). By taking the logarithm of d(h) and after a
normalization [13], [20], we can obtain the following test
statistic of d(h) as:

d(h) =
2

σ2

∑K

i=1
|hi − h̄A

i |2, (6)

where σ2 = σ2
I +σ2

II. Under the hypothesis H0, d(h) results
in a central chi-square random variable with 2K degrees of
freedom, which is defined as:

dH0
=

2

σ2

∑K

i=1
|wi

I − wi
II|2 ∼ χ2

2K , (7)

where w2
I and w2

II are the i-th path’s noise of wI and wII.
Under the hypothesis H1, d(h) is a noncentral chi-square
random variable with 2K degrees of freedom:

dH1
=

2

σ2

∑K

i=1
|hE

i + wi
II − (hA

i + wi
I )|2 ∼ χ2

2K,β , (8)

where β is the noncentrality parameter. Since the mean values
of wi

I and wi
II are both zero, β can be calculated by:

β =
2

σ2

∑K

i=1
|hE

i − hA
i |2. (9)

In the hypothesis testing: a false alarm (FA) happens when
dH0

> θ (i.e., when Bob refuses a packet coming from
Alice), and a missed detection (MD) occurs when dH1

< θ
(i.e., when Bob accepts a packet coming from Eve). For
given a threshold θ, the probabilities of FA PFA and MD
PMD are:

PFA = P [dH0
> θ] = 1− Fχ2

2K
(θ), (10)

PMD = P [dH1 < θ] = Fχ2
2K

(β, θ), (11)

where Fχ2(θ) is the Cumulative Distribution Function (CDF)
of a central chi-square random variable with 2K degrees of
freedom, and Fχ2

2K
(β, θ) is the non-central chi-square CDF

with noncentrality parameter β. For a target PFA, the given
threshold is set from (10) as:

θ = F−1
χ2
2K

(1− PFA). (12)

In this case, the MD probability PMD is calculated as:

PMD = Fχ2
2K

(β, F−1
χ2 (1− PFA))

= 1−QK(
√

β,
√
α),

(13)



Number of Paths Used

A
tt

a
c
k

 S
u

c
c
e
ss

 R
a
te

 (
%

)

False Alarm Rate 0.01

False Alarm Rate 0.05

False Alarm Rate 0.1

Figure 26: Theoretical success
rate of false alarm rate PFA.

Number of Paths Used

A
tt

a
c
k

 S
u

c
c
e
ss

 R
a
te

 (
%

)

N=10

N=20

N=50

N=100

N=500

Figure 27: Theoretical success
rate of guessing budget N .

where QK(
√
β,

√
α) is Marcum Q-function, and α =

F−1
χ2
2K

(1−PFA). The Marcum Q-function is strictly increasing
in K and β for all β ≥ 0 and α,K > 0 [92]. Based on [93],
[94], the Marcum Q-function QK(

√
β,

√
α) can be bounded

from above as:

QK(
√

β,
√
α) ≤e(−

1
2 (

√
β−

√
α)2)

×

√
2K − 1

2
+

(β/α)1−K

2(1− β/α)

≤e(−
1
2 (

√
β−

√
α)2)

√
(2K + 1)/2,

(14)

where the last inequality holds because K ≥ 1 and the
minimum value of β is 0 (i.e., hE = hA). Because K and
α are both constants, under the modeling, if Eve aims to
increase the MD probability PMD, the most important point
is to reduce the parameter β in (14), which depends on
the difference between hE and hA (i.e., β(hE ,hA)). Since
DomPathCon only tries to guess the amplitude, we re-define
the parameter β by CSI amplitudes and provide a lower
bound β̂ by the triangle inequality as:

β ≥ β̂ =
2

σ2

∑K

i=1
||h|Ei − |h|Ai |2. (15)

Therefore, QK(
√
β,

√
α) ≤ QK(

√
β̂,

√
α). Because Dom-

PathCon focuses on the first K ′ paths, we can write
β̂ = β(K ′) as a function of K ′ under the assumption that
Eve can accurately guess the CSI values of the first K ′ paths
in Alice’s CSI. As such, the lower bound of PMD is:

PMD ≥ 1− e

(
− 1

2 (
√

β̂(K′)−
√
α)2

)√
(2K + 1)/2. (16)

Due to the constant values of K and α, (16) can be simplified
to PMD = 1− eO(K′). It indicates that when the number of
K ′ increases, the MD probability exhibits at least sub-linear
increasing with a faster rate when K ′ is small. Hence, this
theoretically implies the effectiveness of DomPathCon by
only focusing on the first K ′ paths with K ′ being small.

According to the simplified path decay model [53], the
amplitudes of Alice’s and Eve’s CSI can be modeled as
|h|Ai = |h|A1 γA(i) and |h|Ei = |h|E1 γE(i), where γA(i) and
γE(i) are decay functions of Alice and Eve. In order to
further validate our theoretical result, we conduct a numerical
simulation, in which hA

1 = 50dB, hE
1 = 48dB, the SNRs

of Alice and Eve are both 20dB. We set the decay function
γA(i) = 2.1−(i−1) and γE(i) = 2.05−(i−1). Figure 26
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shows the theoretical result in (16) as a function of the
number of paths used in DomPathCon K ′ based on the
numerical simulation. We can see that Eve can achieve
sufficiently high success rates for small K ′ values. For
example, when Bob’s verification is set to have PFA = 0.05
and Eve only modifies three dominant paths, her success
rate is 50.86%. Figure 27 shows the attack rate increases if
Eve has more guesses budget N . The results indicate that
even when the value of N is small (i.e., N = 10), Eve can
still use the first path to successfully pass the authentication
with 27.42% success. More specifically, if Eve increases the
number of paths to guess, the success rate firstly increases
and then decreases. For example, when N = 100, the attack
success rate is 50.38% with K ′ = 3 but 47.16% with K ′ = 6.
This is because under a fixed budget, we have to reduce the
number of guesses on each path if we consider more paths.
As a result, Figure 27 also reveals that we should focus the
guessing on the first few paths given a budget limit.

Appendix B.
Additional Experimental Results

(1) Visualization and analysis of our collected CSIs:
We randomly select two CSIs (Alice-Bob and Eve-Bob)
and show the CSI amplitude on each path in Figure 14. It
can be observed that the first 2-3 paths on each antenna
pair have much higher amplitudes than other paths, and
accordingly they can be considered dominant paths. This
matches our previous observations in CIR datasets [10], [69].
In addition, Figure 28 presents the correlation coefficients
across different antenna pairs. We can see that between two
antenna pairs, correlation coefficients of the first two paths
are larger than 0.84, which indicates the high correlation
of dominant paths across different antennas and offers the
proposed LR-DomPathCon a good opportunity of attack
success against MIMO.

In addition, we use the importance score in a classic tree-
based feature selection method [95] for machine learning to
quantify the importance of CSI on a dominant path, shown in
Figure 29. We can see from the figure that the first two paths
across all antenna pairs have much higher importance factors
(0.04-0.1) than the rest (less than 0.03). Therefore, only
reconstructing the CSI via dominant paths to impersonate
Alice is an effective attack.

(2) Impact of PFA: Figure 30 shows the attack success
rate under the commonly used PFA = 0.01, 0.05 and 0.1
in [13], [20], [21], [29]. It is noted that even if Bob uses
PFA = 0.01, DomPathCon can still achieve a high attack
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Figure 31: Impact of the number of antennas.

rate (i.e., higher than 9.75% for the targeted attack and
19.42% for the untargeted attack). In addition, the untargeted
attack success rate against each of the five authentications
is higher than 76.50% with PFA = 0.1, which incurs a
much more serious security issue. A smaller PFA reduces the
attack success rate, but degrades the usability of CSI-based
authentication because a lower false alarm design leads to a
lower detection rate, meaning that Alice’s own CSI will be
more likely rejected by Bob (as observed in Figure 13).

(3) The number of antennas: We evaluate the impacts
of different numbers of antennas on the effectiveness of
DomPathCon. Figure 31 shows that as the number of
antennas increases from 1×1 to 3×3, the attack success rate
decreases for both targeted (e.g., 33.46%-6.22% for SVM)
and untargeted attacks (e.g., 54.37%-24.30% for DRL). The
reason is that when we increase the number of antennas,
the possible guess space of Eve will increase exponentially.
Although increasing the number of antennas makes CSI
authentication more resilient against the attack, most of
existing IoT devices may only equip one or two antennas
[39], [40]. More attack resilience from adding more antennas
unfortunately results in more device complexity and cost.

(4) Guess steps n: How to choose the guess step n on
each dominant path is also important for DomPathCon. In
Figure 32, we can see that the optimal value of n is equal to
2 on all the five authentications. For example, the targeted
and untargeted success rates of AVE are 21.30% and 50.12%,
respectively. We also observe that the attack success rate
does not differ greatly under n = 2 and n = 3, and has
minor degradation when n = 4. The results show that we
can choose an appropriately small value of n to achieve a
notable attack success rate.

(5) Eve’s locations: Note that in the previous experi-
ments, we fixed Eve’s location at 0, which has an S-LoS
channel to Bob. In the following, we aim to show the impact
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Figure 32: Impact of the number of guess steps n.
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Figure 33: Impact of Eve’s location.

of the attacker-receiver channel condition by varying Eve’s
location at 9, 29, and 40, which represent the L-NLoS, N-LoS,
and L-NLoS channels, respectively. In Figure 33, we can see
that Eve performs the best at location 0 than other locations.
This is due to the fact that more users are physically near
location 0, and hence Eve’s CSIs are similar to those users
(e.g., user 1 or 2). The other reason is that when Eve is near
Bob, the noise of Eve-Bob’s wireless channel is comparably
low, which does not have significant influence on the guessed
CSIs. By contrast, Eve at location 40 has the worst attack
success rate (e.g., 15.57% against CNN in the untargeted
attack), since less legitimate users’ CSIs are similar to Eve’s,
making Eve guess the CSI with more difficulty. In addition,
if Eve is at location 29, she can achieve a higher attack
success rate than being at location 9. For example, Eve can
achieve 36.18% and 39.43% against GLRT at locations 9
and 29, respectively.

Appendix C.
The Label Muting Algorithm
Algorithm 1 The label muting approach to solve (2).

1: Û = U and PUntar(Û) = 1;
2: Train the classifier W and collected CSI data Du for

each user u ∈ Û ;
3: while PUntar(Û) > P do
4: for u ∈ Û do
5: DomPathCon generates CSI guesses from Du;
6: Count the number of attack successes Cu on W ;
7: Pu = Cu/|Du|;
8: end for
9: PUntar(Û) =

∑
u∈Û Cu/(

∑
u∈Û |Du|);

10: Mute the label of the user label with the highest Pu

value in W ;
11: end while


