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Abstract—Multi-server Federated learning (FL) has been considered as a promising solution to address the limited communication
resource problem of single-server FL. We consider a typical multi-server FL architecture, where the coverage areas of regional servers
may overlap. The key point of this architecture is that the clients located in the overlapping areas update their local models based on
the average model of all accessible regional models, which enables indirect model sharing among different regional servers. Due to the
complicated network topology, the convergence analysis is much more challenging than single-server FL. In this paper, we firstly
propose a novel MS-FedAvg algorithm for this multi-server FL architecture and analyze its convergence on non-iid datasets for general
non-convex settings. Since the number of clients located in each regional server is much less than single-server FL, the bandwidth of
each client should be large enough to successfully communicate training models with the server, which indicates that full client
participation can work in multi-server FL. Also, we provide the convergence analysis of the partial client participation scheme and
develop a new biased partial participation strategy to further accelerate convergence. Our results indicate that the convergence results
highly depend on the ratio of the number of clients in each area type to the total number of clients in all three strategies. The extensive
experiments show remarkable performance and support our theoretical results.

Index Terms—Multi-server federated learning, Edge computing, Convergence analysis.
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1 INTRODUCTION

With the explosive growth in the numbers of mobile
phones and Internet of Things (IoT) devices, a tremendous
amount of data today is being generated at the network
edge in a distributed manner. Sending this data to the cloud
for processing not only puts a huge burden on the network
but also raises serious data privacy concerns. Federated
Learning (FL) [1]–[3] recently emerged as a distributed Ma-
chine Learning (ML) architecture that keeps all the training
data on individual clients, thereby protecting client data
privacy and mitigating network congestion.

In its most common form, FL is an iterative process
where in each communication round, clients train local ML
models using their local training datasets based on the
current global ML model, and then the server aggregates the
local models uploaded by the clients to update the global
model. Because FL is trained on distributed datasets and
often involves many communication rounds of model data
exchange between the clients and the server, improving the
communication efficiency between clients and central server
[4], [5] and handling heterogeneous local dataset distribu-
tion in each client [6], [7] are two biggest challenges of FL
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and have received a large amount of research attention.
Although promising progresses have been made, exist-

ing FL architectures and algorithms dominantly focus on
the single-server system. Most FL studies consider that
clients should download and upload the learning mod-
els with central server repeatedly in each communication
round. This communication strategy may suffer a large
communication delay in large-scale FL systems where many
clients may be far away from the server [8], [9]. This large
delay between the server and the clients directly prolongs
the learning time of the existing single-server-based FL
system, especially when the server is placed on the cloud.
As increasingly many applications are delay-sensitive, e.g.,
autonomous driving and wearable health monitoring, new
FL architectures that involve multiple servers have been
proposed to reduce the communication latency between the
server and the clients.

In order to reduce the communication latency of FL,
there are two main multiple servers FL approaches: (1)
Hierarchical FL (HFL) [10]–[12] introduces a hierarchical
structure for model training where multiple edge servers
are used to collect and aggregate local model updates from
clients in their respective service areas and then send the
aggregated result to the cloud server for final aggregation.
However, since the models exchange between the edge
servers and the cloud server is still required, HFL can still
result in a long training delay when the propagation latency
between the edge servers and the cloud server is large. (2)
Clustered FL (CFL) [13]–[15] divides clients into different
clusters, and trains a separate ML model for each cluster.
However, re-clustering computation may be required in
many communication rounds, thereby significantly increas-
ing the training complexity and time. In addition, some
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Fig. 1: Description of four different FL network architectures: (a) Single-server FL; (b) Clustered FL; (c) Hierarchical FL and
(d) Multi-server overlapping FL.

existing studies ignore the physical network connectivity
constraints – a client may connect to only a subset of servers.

In [16], a new FL architecture utilizing multiple servers is
studied, which exploits the realistic deployment of 5G-and-
beyond networks where a client can be located in the over-
lapping coverage areas of multiple servers. The network
architectures of single-server FL, HFL, clustered FL and our
proposed multi-server FL are shown in Fig. 1. The key idea
is that clients download multiple models from all the edge
servers they can access and train their local models based on
the average of these models. Such an architecture has two
main advantages. First, by performing model averaging on
the client side, each server indirectly accesses the trained
local models of clients not in its coverage while incurring
a small model upload and download delay. Specifically, the
broadcasting technique will not increase the communication
burden. Second, instead of training multiple local models
based on multiple downloaded models, each client only
trains a single local model based on the average of the
downloaded models, thereby avoiding extra computation
and communication cost. Since the clients in overlapping
areas should tackle multiple training models at the same
time, the extra computation only comes from the averaging
calculation, which is small compared to the local training
process, and it can be negligible. Although [16] developed
an algorithm for this architecture and empirically validated
its effectiveness, they only proposed the strongly-convex
loss function, which is very restricted, since most learning
models are non-convex, e.g., neural network. In addition,
the convergence results cannot show the impact on overlap-
ping areas. In this paper, we improve upon this architecture,
propose a new algorithm with two-sided learning rates, and
provide theoretical convergence analysis of the more general
non-convex loss function. In summary, we highlight our
main contributions as follows:

1) We develop a novel MS-FedAvg algorithm on this
multi-server FL architecture, based on the two-sided learn-
ing rates FedAvg.

2) We study the convergence in the coverage area, where
we call region, of each server. For non-convex loss func-
tions and non-iid datasets, we provide convergence analysis
for full and unbiased partial client participation strategies,
respectively. Our results are better than the existing multi-

server FL algorithms and also reveal how the overlapping
coverage affects the convergence in each region.

3) To further improve the convergence speed of MS-
FedAvg, we develop a biased partial client participation
strategy where clients may not be selected proportionally
to the number of clients in different coverage areas. Our
analysis shows that the degree of bias results in a trade-off
between convergence rate and accuracy.

4) We conduct extensive experiments on multiple
datasets under different multi-server FL network architec-
tures and hyper-parameters. The experimental results show
that our MS-FedAvg algorithm outperforms the compared
benchmarks from accuracy and convergence perspectives.

The preliminary of FL is presented in Section 2. In
Section 3, we develop the MS-FedAvg algorithm for our
proposed multi-server FL architecture. Section 4 analyzes
the convergence rate of MS-FedAvg including full, unbiased
partial and biased partial client participation strategies. The
discussion of MS-FedAvg is presented in Section 5. In Sec-
tion 6, we present the transmission latency of different FL
architecture. Experimental results are shown in Section 7.
Section 8 overviews the related works, followed by the
conclusion in Section 9.

2 PRELIMINARY OF FL
We consider a FL network including a number of N
clients, indexed by N = {1, ..., N} and one central
server/aggregator, where each client i ∈ N has its own local
dataset with the data distribution Di. FL aims to solve the
following risk minimization problem:

min
w

{
f(w) ,

1

N

N∑
i=1

Fi(w)

}
, (1)

where Fi(w) , Eξ∼Di [Fi(w, ξ)] is the local loss function.
FedAvg [2], a seminal FL algorithm, works in an iterative
manner as follows:

1) In each communication round t, each client i down-
loads the current global model wt from the server and
sets its initial local model as the current global model, i.e.,
wt,0
i = wt.

2) Each client runs E steps of Stochastic Gradient De-
scent (SGD) as follows:

wt,e+1
i = wt,e

i − ηl∇Fi(w
t,e
i ),∀e = 0, . . . , E − 1, (2)
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Fig. 2: Description of MS-FedAvg: wt
i is local training model

on clients, and wt
1,w

t
2,w

t
3 are regional learning models on

servers.

where η is the learning rate of local training. Client
i’s updated model after these E steps can be written as
wt+1
i = wt,E

i .
3) Each client uploads the updated model wt+1

i to
the server, which computes a simple aggregation wt+1 =
1
N

∑N
i=1 w

t+1
i .

Due to the computation and bandwidth limitation, full
client participation is often not practical. Hence, the more
realistic FL strategy is that the server can select a subset
of K clients, indexed by Kt ⊆ N , to participate in FL in
communication round t, and the global model is computed
according to wt+1 = 1

K

∑
i∈Kt w

t+1
i . This is known as

partial client participation strategy [6], [7], [17].

3 MULTI-SERVER FEDAVG (MS-FEDAVG)
A single-server FL system may incur a large delay if clients
are distributed in the network, some of which may be far
away from the server. Developing a multi-server FL network
architecture is a potential way to address this problem, e.g.,
Hierarchical FL (HFL) [10]–[12] and Clustered FL (CFL)
[13]–[15]. While HFL requires the models on edge server
should be aggregated on the global server every several
communication rounds, it also incurs the extra transmission
delay. CFL needs to re-cluster the clients every communica-
tion round based on a specific rule, e.g., model similarity or
location, it is difficult to avoid the clients are far away from
the edge server which should be clustered.

Since all the existing multi-server FL network architec-
tures cannot directly leverage solve the large delay problem,
we consider a multi-server FL architecture as in [16], where
multiple regional servers are distributed in close proximity
to the clients. Let M = {1, ...,M} be the set of regional
servers and each regional server m covers a subset of client
Nm ⊆ N with |Nm| = Nm. For convenience, we call Nm
region m. It is worth noting that a client may locate in
multiple regions, because the coverage areas of the servers
may overlap.

In MS-FedAvg, each regional server trains a regional
model using clients in its region, and a client updates its
local model based on all regional models that it can access,
where the architecture with three regional servers is shown
in Figure 2. Different from HFL, the regional models are not
aggregated until the final round to generate a global model.
LetMi ⊆ M be the set of regional servers that client i can

Algorithm 1 MS-FedAvg algorithm.

1: Input: Initialize model w0
m to each server m.

2: Output: Final global model w.
3: Set w0

i = w0 for all clients i = 1, 2, . . . , N ;
4: for t = 0, T − 1 do
5: for Server m = 1, . . . ,M do
6: for i = 1, . . . , Nm in parallel do
7: if Client i is in non-overlapping area then
8: wt

i,0 = wt
m;

9: else
10: wt,0

i = 1
Mi

∑
m∈Mi

wt
m;

11: end if
12: Computes E local training epochs from Eq. (2)

and uploads wt
i,E to the connecting server(s);

13: Regional model: wt+1
m =

ηg
Nm

∑
i∈N tm wt

i,E ;
14: end for
15: end for
16: end for
17: Global model: w = 1

M

∑
m∈MwT

m.

communicate where Mi = |Mi|, andMt
i ⊆M be the set of

servers that client i is sampled in communication round t.
At the beginning of a communication round t, any client

i downloads the current regional models wt
m,∀m ∈ Mi

from all the Mi servers, and averages the downloaded
regional models to be the initial local model in the cur-
rent round, i.e., wt,0

i = 1
Mi

∑
m∈Mi

wt
m. Then, each client

updates its local model using SGD for E local training
epochs to obtain the local model wt+1

i by (2), and uploads
it to the servers in Mt

i. Each server m then updates the
regional model according to wt+1

m =
ηg
Nm

∑
i∈N tm wt+1

i ,
where ηg is the regional learning rate. After a sufficient
number of T communication rounds, the global model is
finally obtained by averaging over the converged regional
models, i.e., w = 1

M

∑
m∈MwT

m.
The pseudo-code of MS-FedAvg is given in Algorithm 1.

Compared to the single-server FL [1], [2], [6], [17], a unique
feature of MS-FedAvg is that clients in overlapping areas
receive and average multiple regional models to be the
initial model for local training in each communication round
(Line 10). Together with the model averaging at the servers,
this two-sided model averaging process allows the servers
to indirectly access the local models of clients outside their
regions instead of combining local model updates from the
clients in overlapping areas (Line 13), which bridges the
regional model sharing, thereby fully utilizing all clients’
data in the network. Specifically, optimizing the placement
of the limited number of regional servers in the current
mobile computing system to maximize the total coverage is
considered rather important. For example, some popular ES
placement algorithms [18], [19] have shown that one over-
lapping area at most includes four regional servers. There-
fore, we consider that the additional transmission latency
of the overlapping areas clients mentioned in the paper can
be very small and negligible. Although the clients located
in the overlapping area, we can leverage the broadcast
technique that cannot incur high burden of communication.

Since we consider that the regional server is similar
to the edge server, where the coverage is very restricted
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[20], the number of clients in the region of each regional
server are much fewer than single-server FL. Therefore, the
communication burden is less than single-server FL due to
the shorter distance and more stable connection, and hence
full client participation should work well in our proposed
multi-server FL architecture. In this paper, we only consider
the location of clients is fixed for proving the convergence
results of MS-FedAvg. The static scenario can be considered
as the hospital data [21] or environmental monitoring sen-
sors [22], where the clients cannot move and only connect
to the corresponding regional server(s). As such, our MS-
FedAvg can improve this scenario efficiently. If the clients
move randomly, each regional model can be assumed as
an individual FL model approaching by FedAvg, which
might degrade the training performance. In Section 7, we
propose the experimental results of the movement scenario
under our multi-server FL architecture. More specifically,
[23], [24] developed the FL-based license plate recogni-
tion and human activity recognition algorithm. Firstly, the
recognition results can be quickly obtained due to the less
transmission latency. On the other hand, when clients come
into overlapping areas, multiple monitors can acquire more
information and recognize them more accurately.

Because the regional models are averaged only in the
final communication round, a significant amount of commu-
nication and computation cost among the regional servers
can be saved. However, the model averaging at the client
side also introduces an obvious difference compared to
single-server FedAvg: the initial models of the clients, even
for those in the same region, for local training in each com-
munication round can be different depending on the their
specific locations. Since we consider that the regional server
is edge server and the coverage area is very restricted, the
number of clients in the region of each regional server are
much fewer than single-server FL. Therefore, the commu-
nication burden is less than single-server FL, and hence full
client participation should work well in our proposed multi-
server FL. In order to clarify the reducing of transmission
latency compared to other FL architectures, we will show
the detailed quantification in Section 6.

In this paper, we also consider the partial client par-
ticipation strategy, which is a more realistic strategy for
single-server FL [2], [6], [7], [17]. More specifically, at the
beginning of a communication round t, each server m
randomly samples a subset of clients Ktm ⊆ Nm in its
region to participate in the current round’s training, with
Km = |Ktm|. Because a client may be in multiple regions, it
may be sampled by multiple servers, which brings more
challenges for convergence analysis compared to single-
server FL. We also provide the convergence analysis of
partial client participation strategy of MS-FedAvg.

4 CONVERGENCE ANALYSIS OF MS-FEDAVG

In this section, we focus on a representative region Nm
and study the convergence of its regional model. Let
fm(w) = 1

Nm

∑
i∈Nm Fi(w) be the objectives of region m.

As discussed in the last section, the main difficulty of the
convergence analysis lies in the heterogeneous initial mod-
els of clients in the region in each communication round.
The convergence analysis encompasses non-iid datasets for

general non-convex loss settings under both full and partial
client participation strategies. Besides the existing random
participation, i.e., unbiased client participation [3], [6], [17],
[25], [26], we also propose a new biased client participation
strategy for our propose MS-FedAvg algorithm. To propose
convergence results of MS-FedAvg, we first state some use-
ful assumptions in this paper as follows:

Assumption 1. (Lipschitz Gradient) ∀i ∈ Nm, Fi is L-smooth,
i.e., for all v and w,

Fi(v) ≤ Fi(w) + (v −w)T∇Fi(w) +
L

2
‖v −w‖22.

Assumption 2. (Unbiased Local Gradient Estimator) Let ξi be a
random local data sample on client i. ∀i ∈ Nm and ∀w, the local
gradient estimator is unbiased, i.e., E[∇Fi(w, ξi)] = ∇Fi(w),
where the expectation is taken over all the local datasets samples.

Assumption 3. (Bounded Local Variance) ∀i ∈ Nm and ∀w,
the variance of local gradient estimator of any regional server m
can be upper-bounded by a constant σm, i.e.,

E‖∇Fi(w, ξi)−∇Fi(w)‖2 ≤ σ2
m.

Assumptions 1-3 are fairly standard in existing FL works
[6], [27], [28]. For the following assumption, we need to
introduce the notion of the type of a client. Even for clients in
the same region, they differ in terms of the subset of servers
they may access since they may be in different overlapping
coverage areas. Thus, we say that two clients have the same
type if they can access the same set of servers. Formally, we
define the client type θ ⊆ 2M to be the subset of servers
that it can access. Let Ktm,θ be the set of clients of type θ that
is sampled in region m in round t, and let Kt

m,θ = |Ktm,θ|.
Clearly, for all clients in region m, m must be an element
of their types. Moreover, if two regions m and m′ do not
overlap, then there must be no client whose type contains
both m and m′.

Assumption 4. (Bounded Regional Variance) For any client i of
type θ in region m and for any round t, the gradient difference of
its local loss function at wt+1

i and the regional loss function at
wt+1
m is upper-bounded, i.e.,

‖∇Fi(wt+1
i )−∇fm(wt+1

m )‖2 ≤ α2
m,θ.

Assumption 4 states that clients of different types have
different impacts on the gradient of the regional loss func-
tion at the end of each round. This impact is a joint result
of the non-iid local datasets and different initial model
at the beginning of the training round due to different
coverage areas, i.e., types, which is different from the single-
server FL [7], [29]. It is worth noting that in this paper
we do not assume to bound gradient descent [6], [16], i.e.,
‖∇f(w)‖2 ≤ G2, where it is a loose assumption.

Before analyzing the convergence results of MS-FedAvg
algorithm, we first propose the key lemma for both full and
partial client participation strategies, which aims to propose
the upper-bound of client drift for every regional model.

Lemma 1. For any ηl < 1√
30LE

, we have the following results:

1

Nm,θ

∑
i∈Nm,θ

E‖wt,e
i −wt

m‖2

≤ 5Eη2l

(
σ2
m +

6ENm,θ
N

α2
m,θ

)
+ 30E2η2l ‖∇f(wt

m)‖2.

Proof. The proof is shown in Appendix A. �
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4.1 Convergence Analysis for Full Client Participation
For the full client participation strategy of MS-FedAvg, we
have the following convergence result:

Theorem 1. Let assumptions 1-4 hold and L, σ2
m, α

2
m,θ be

defined therein. With full client participation strategy, if we choose
the learning rate ηl ≤ min{ 1√

30LE
, 1
LEηg

}. The convergence
result is given as follows:

min
t∈[T ]

E‖∇f(wt)‖2 ≤ f0 − f∗

cMETηgηl
+ Ψ,

where c is a constant, f0 , fm(w0), f∗ , f(w∗),

Ψ =
1

c

∑
m∈M

[
Lηgηl

2MNm
σ2
m

+
∑
θ⊆2M

5Nm,θEL
2η2l

2MNm

(
σ2
m +

6ENm,θ
MNm

α2
m,θ

)]
.

Proof. The proof is shown in Appendix B. �
Remark 1. For the full client participation strategy of

MS-FedAvg algorithm, the convergence rate has two parts:
a vanishing term f0−f∗

cMETηgηl
with increasing T and a constant

term Ψ. The first part of Ψ, i.e., Lηgηl
2MNm

σ2
m, comes from

the local stochastic gradient variance of each client, which
shrinks when Nm increases. The cumulative variance of E
local training contributes to the second term of Ψ, which has
two variances and is largely affected by variance of different
regional models α2

m,θ .
Remark 2. The difference between MS-FedAvg and sin-

gle server FedAvg [7], [29] comes from the term α2
m,θ . Since

the initial learning models wt
i are the same for all clients,

α2
m,θ is only related to the non-iid distribution of local

datasets, i.e., α2
m,θ = α2

m, and the weight is all the same 1
Nm

.
In MS-FedAvg, we observe that the contribution of α2

m,θ

depends on the number of clients in each area type θ, i.e.,
6EN2

m,θ

N2
m

α2
m,θ . Intuitively, local model from clients of the area

type with the most clients can dominate the regional model
wt
m. Inspired by [7], to make Ψ small, we can set the local

learning rate ηl inversely proportional to the number of local
training epochs E, i.e., ηl = O( 1

E ).
To make the Theorem 1 more readable, we will simplify

the result to the following convergence rate by properly
choosing the learning rates ηg and ηl:

Corollary 1. Suppose ηg and ηl satisfy the condition in The-
orem 1. Let ηg =

√
ENm and ηl = 1√

TEL
. For sufficiently

large T , the convergence rate of MS-FedAvg under full client
participation strategy satisfies:

min
t∈[T ]

E||∇f(wt)||2 =

O

(
1

M

∑
m∈M

(
1√

NmET
+
σ2
m

ET
+
∑
θ⊆2M

N2
m,θα

2
m,θ

N2
m

1

T

))
.

4.2 Convergence Analysis for Unbiased Partial Client
Participation
Due to the limited resource for current FL wireless net-
works, partial participation strategy (only part of clients join
into the current communication round) has been considered
more practical than full participation in existing FL stud-
ies [6], [17], [28]. Also, partial participation can accelerate

the training by neglecting stragglers. We also consider the
same two sampling schemes [6], [7], [28] for MS-FedAvg
algorithm, i.e., with/without replacement clients sampling
schemes, where Ktm is randomly sampled. Due to the ran-
dom property, we call it unbiased client participation of our
proposed multi-server FL in this paper. More specifically,
it is worth noting that the unbiased client participation
strategy for MS-FedAvg implies that E[Km,θ]

Km
=

Nm,θ
Nm

. Then,
we have the following convergence results:

Theorem 2. Let assumptions 1-4 hold and L, σ2
m, α

2
m,θ be

defined therein. Let β2
m,θ = σ2

m+
6ENm,θα

2
m,θ

Nm
. With the scheme I

for the unbiased client participation strategy, if the learning rate is
chosen as ηl < min

{
1√

30EL
,
∑
θ⊆2M

Nm,θ(Km,θ−1)
ELηgKmNm

}
and the

condition 30E2L2η2l +
Lηgηl

∑
θ⊆2M Nm,θ

KmNm
(90E3L2η2l + 3E) <

1 holds, the global model wT generated by MS-FedAvg in Algo-
rithm 1 satisfies:

min
t∈[T ]

E||∇f(wt)||2 ≤ f0 − f∗

cMηgηlET
+ Ψ1 + Ψ2 + Ψ3,

where c is a constant, f0 , f(w0) and f∗ , f(w∗),

Ψ1 =
∑
m∈M

ELηgηl
2cMKm

σ2
m,Ψ2 =

∑
θ⊆2M

3ELηgηlNm,θ
2cMKmNm

α2
m,θ

Ψ3 =
∑
m∈M

∑
θ⊆2M

(
5Nm,θEL

2η2l
2cMNm

+
15Nm,θE

2L3ηgη
3
l

cMKmNm

)
β2
m,θ.

For the Scheme II, if the learning rate is chosen as ηl <
min

{
1√

30EL
,
∑
θ⊆2M

K2
mNm,θ(Nm,θ−1)

ELηgN2
mKm,θ(Km,θ−1)

}
and the condi-

tion 30E2L2η2l +
∑
θ⊆2M

Lηgηl(Km,θ−1)
2Km(Nm,θ−1) (90E3L2η2l +3E) < 1

holds, then we obtain that

Ψ1 =
∑
m∈M

Lηgηl
2cMKm

σ2
m

Ψ2 =
∑
m∈M

∑
θ⊆2M

2EL2ηgηlNm,θ(Nm,θ −Km,θ)

cMKmNm(Nm,θ − 1)
α2
m,θ

Ψ3 =
∑
m∈M

∑
θ⊆2M

(
5EL3η2lNm,θ

2cMNm

+
15E2L3ηgη

3
lNm,θ(Nm,θ −Km,θ)

2cMNmKm(Nm,θ − 1)

)
β2
m,θ.

Proof. The proof is shown in Appendix C. �
Similar to full participation, we restate the above result

by properly choosing ηg and ηl:

Corollary 2. Suppose ηg and ηl satisfy the condition in Theo-
rem 2. Let ηg =

√
EKm and ηl = 1√

TEL
. Then, for sufficiently

large T , the convergence rate of MS-FedAvg under unbiased
partial client participation strategy satisfies:

min
t∈[T ]

E||∇fm(wt)||2 = O

(
1

M

∑
m∈M

(
1√

KmET
+
σ2
m

ET

+
∑
θ⊆2M

N2
m,θα

2
m,θ

N2
m

√
E√

KmT
+
∑
θ⊆2M

N2
m,θα

2
m,θ

N2
m

1

T

))
.

Remark 3. The structure of the convergence rate of MS-
FedAvg algorithm under unbiased partial client participa-
tion strategy is similar to full client participation, except
an additional variance term Ψ2. This indicates that the
unbiased partial client participation strategy does not have
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significant change in convergence except for an amplified
variance due to fewer clients being sampled. Intuitively,
it yields a good approximation of all the clients’ datasets
distribution in expectation.

Remark 4. From Corollary 2, we can see that the conver-
gence rate of the unbiased partial participation strategy is
not related to the number of clients in each area type Km,θ ,

but it highly depends on the ratio
N2
m,θ

N2
m

. However, due to the
complicated network topology of multi-server FL, clients
in some area types may present extreme performance, e.g.,
large α2

m,θ to incur large training degradation. Hence, to
further accelerate the convergence rate of MS-FedAvg, we
will develop a new sampling strategy that samples different
numbers of clients in different area types.

4.3 Convergence Analysis of Biased Partial Client Par-
ticipation
In this subsection, we aim to develop a new biased partial
client participation to achieve speedup of the MS-FedAvg
algorithm. Let Ktm,biased ⊆ Nm be the sampled clients set
based on this strategy with Km = |Ktm,biased|. The main
idea of this strategy is that the number of sampled clients
E[Km,θ] in different area type θ is fixed, where the ratio
E[Km,θ]
Km

may not be equal to Nm,θ
Nm

. E[Km,θ]
Km

reflects the degree
of bias. Intuitively, we can reduce the sampling number
E[Km,θ] for some area types with large α2

m,θ in order
to reduce their convergence contribution. Note that this
strategy also includes the same two schemes with/without
replacement as the unbiased participation strategy. The con-
vergence results are shown as follows:

Theorem 3. Let assumptions 1-4 hold and L, σ2
m, α

2
m,θ be de-

fined therein, and c is a constant. Let β2
m,θ = σ2

m+
6EKm,θ
Km

. With
scheme I for the biased client participation strategy, if the learning
rate is chosen as η < min

{
1√

30ET
,
∑
θ⊆2M

Km,θ(Km,θ−1)
ELηgK2

m

}
and the condition 30E2L2η2l +

∑
θ⊆2M

LηgηlK
2
m,θ

K2
mNm,θ

(90E3L2η2l +

3E) < 1 holds, the global model wT generated by MS-FedAvg in
Algorithm 1 satisfies:

min
t∈[T ]

E||∇f(wt)||2 ≤ f0 − f∗

cMηgηlET
+ Ψ1 + Ψ2 + Ψ3,

where c is a constant, f0 , f(w0) and f∗ , f(w∗),

Ψ1 =
∑
m∈M

Lηgηl
2cMKm

σ2
m

Ψ2 =
∑
m∈M

∑
θ⊆2M

3ELηgηlK
3
m,θ

2cMK3
mNm,θ

α2
m,θ

Ψ3 =
∑
m∈M

∑
θ⊆2M

(
5EL2η2lKm,θ

2cMKm
+

15E2L3ηgη
3
lK

2
m,θ

2cMK2
mNm,θ

)
β2
m,θ.

For Scheme II, if the learning rates is chosen as ηl <

min

{
1√

30KL
,
∑
θ⊆2M

K2
m,θ(Nm,θ−1)

ELηgNm,θKm(Km,θ−1)

}
and the condi-

tion 30E2L2η2l +
∑
θ⊆2M

LηgηlKm,θ(Nm,θ−Km,θ)
KmNm,θ(Nm,θ−1) (90E3L2η2l +

3E) < 1 holds, and then we obtain that

Ψ1 =
∑
m∈M

Lηgηl
2cMKm

σ2
m

Ψ2 =
∑
m∈M

∑
θ⊆2M

3LηgηlKm,θ(Nm,θ −Km,θ)

2cK2
mNm,θ(Nm,θ − 1)

α2
m,θ

Ψ3 = EL2η2l
∑
m∈M

∑
θ⊆2M

(
5Km,θEL

2η2l
2cMKm

+
15E2L3ηgη

3
lKm,θ(Nm,θ −Km,θ)

2cMKmNm,θ(Nm,θ − 1)

)
β2
m,θ.

Proof. The proof is shown in Appendix D. �

Corollary 3. Suppose ηg and ηl satisfy the condition in Theo-
rem 2. Let ηg =

√
EKm and ηl = 1√

TEL
. Then, for sufficiently

large T , the convergence rate of MS-FedAvg under biased partial
client participation strategy satisfies:

min
t∈[T ]

E||∇fm(wt)||2 = O

(
1

M

∑
m∈M

(
1√

KmET
+
σ2
m

ET

+
∑
θ⊆2M

K2
m,θα

2
m,θ

K2
m

√
E√

KmT
+
∑
θ⊆2M

K2
m,θα

2
m,θ

K2
m

1

T

))
.

Remark 5. From Corollary 3, we can see that the biased
client participation strategy has the same structure as the
unbiased strategy. The difference is that variances of α2

m,θ

include the term
K2
m,θ

K2
m

not
N2
m,θ

N2
m

. Obviously, it is not difficult
to design Km,θ for each area type to accelerate convergence,
for example, we can sample more clients in some areas
with lower α2

m,θ value (suppose that α2
m,θ is constant) in

order to decrease the variance terms Ψ2 and Ψ3. More
specifically, since the variance α2

m,θ should be related to
Km,θ , i.e., increasing Km,θ should decrease α2

m,θ , if the
sampling strategy is such a way, it achieves a significant
speedup for convergence in training.

5 DISCUSSION OF MS-FEDAVG

Based on the above results, we briefly discuss the theoretical
analysis of MS-FedAvg and its implications.

Convergence Rate: When T is sufficiently large com-
pared to E, we can simplify the convergence rates
O( 1√

NmET
+ 1

T ) in Corollary 1 and O(
√
E√

KmT
+ 1

T ) in
Corollaries 2-3, which matches the rate in the general non-
convex setting of single-server FL algorithms [7], [17], [29]
without the consideration of transmission difference. Al-
though some works proposed new algorithms for multi-
server FL architectures [13]–[15], [31], few of them presented
the detailed convergence analysis. In Table 1, we summarize
the convergence rate of some existing FL studies. Compared
to the convergence rate, it is easy to see that our proposed
MS-FedAvg algorithm achieves linear speedup for general
non-convex settings. More specifically, our assumption is
the most strict among these studies, and BMP assumption
should be unrealistic.

Accuracy: Although theorem 3 shows that sampling
clients from fewer area types can improve the convergence
performance, if we miss the clients in some area types, the
accuracy performance may be degraded due to overfitting.
Therefore, the design condition is that E[Km,θ] > 0, ∀θ.
Due to the complicated network topology of multi-server
FL architecture, it is difficult to obtain the theoretical result
ofKm,θ . We will present the empirical results to support our
accuracy discussion of the biased partial client participation
strategy in the Section 7.

Number of Local epochs E and Client Km: Our results
show that the number of local training epochs can be set as
E ≤ T

Km
to accelerate convergence. We also show that the
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TABLE 1: Convergence rate of existing benchmarks.

Algorithm Network architecture Convexity1 Assumptions2 Partial client Convergence rate
FedAvg [6] Single server SC BGD X O(E

T
)

FedAvg [7] Single server NC BGV X O( 1√
NET

+ 1
T
)

MC-PSGD [30] Cluster SC BGD; BMP × O( 1√
NmT

)

IFCA [31] Cluster SC BGD X O( 1√
NmT

+ E
T
)

HFL [12] Hierarchical NC BGV; BLV × O( 1√
NmT

+ 1
T
)

FedMes [16] Multi-server with overlapping areas SC BGD × O(KE
2

N
)

MS-FedAvg Multi-server with overlapping areas NC BGV X O( 1√
NmET

+ 1
T
)

1 Shorthand notation for convexity: SC: Strongly Convex and NC: Non-Convex.
2 Shorthand notation for assumptions in the paper: BGD is bounded gradient descent ‖∇f(w)‖2 ≤ G2; BGV is bounded

global variance ‖∇fi(w)−∇f(w)‖ ≤ σ2; BMP is bounded model parameter ‖w‖2 ≤ B2; BLV is bounded local variance
‖∇fi(w)−∇fj(w)‖2 ≤ ε2.

local training epochs help the convergence by properly set-
ting hyper-parameters, which supports the previous results
[2], [3], [7]. The results in Theorems 1-3 imply that the con-
vergence rate can be improved substantially by increasing
the number of clients in each communication round.

Comparisons to FedMes [16]: Although the training
procedure of MS-FedAvg is similar to FedMes in [16], the
unique difference between these two algorithms is that
our proposed MS-FedAvg can leverage the value of ηg ,
which has been demonstrated that finding an optimal ηg
can accelerate the training performance [7], [29]. In Table 1,
we can see that [16] only proposes the convex loss function
of FedMes (e.g., logistic regression [6]). Although [16] pre-
sented the experimental results based on CNN model and
achieve improvement, it does not propose the theoretical
analysis to support the result. Since most of existing ma-
chine learning algorithms are non-convex (e.g., CNN and
LSTM [7], [17], [29]), the theoretical results in [16] is much
more restricted. In this paper, the theoretical analysis and
experiments are both on the general non-convex settings. In
addition, the convergence analysis in [16] leverages the BGD
assumption, which has been considered a loose assumption
in existing FL studies [7]. As such, our convergence analysis
is tighter than FedMes. Lastly, we propose two kinds of
partial client participation strategies (each strategy has two
sampling schemes), and analyze the training performance
based on the ratio of the number of clients in different area
types, which did not mention in [16].

Limitations: The regional models in MS-FedAvg are not
aggregated before the T th round. Hence, the final round
aggregation does not have significant impact on the con-
vergence. The implicit aggregation is due to the fact that
the clients in overlapping areas share information across all
regional models. Considering all factors in MS-FedAvg, in-
cluding architecture, client distribution and heterogeneous
local dataset makes the contribution of the implicit aggre-
gation to be captured difficultly so that the full analysis
mathematically intractable. Thus, we bound the factors that
depend on the convergence results between different servers
via Assumption 4, and analyze the convergence in each
region. As such, the problem becomes tractable and at the
same time does not substantially impact the final results.
In the future, we will set the multi-server FL as a bipartite
graph, and propose the consensus analysis (i.e., the conver-
gence gap between regional models and global model).

6 TRANSMISSION LATENCY ANALYSIS
1) MS-FedAvg: In the multi-server FL network, to calculate
the running time τMulti(t) in every communication round t,
we will present the expressions to compute the three main
components local computing time τCi (t), uploading time
τUi,m(t) and downloading time τDi,m(t). Note that because
our proposed algorithms mainly focus on the efficiency of
transmission, and the local computing time τCi (t) is neg-
ligible compared to transmission latency [1], [32], we omit
this part in our experiments. In summary, the transmission
latency τMulti(t) in each round t is the sum of the largest
uploading time and downloading time, i.e.,

τMulti(t) = max
i,m

τUi,m(t) + max
i,m

τDi,m(t). (3)

Uploading time of client i in communication round t is
defined as follows:

τUi,m(t) =
qi

brUi,m(t)
, (4)

where qi is the data size of client i for uploading and rUi,m(t)
in bits/s/Hz denotes the uploading rate of client i to the
corresponding regional server m in communication round
t, which is defined as follows:

rUi,m(t) = log2

(
1 +

pUi,m|gUi,m(t)|2

µ2

)
, (5)

where pUi,m is the uplink transmit power of and gUi,m(t) is the
uplink channel gain of client i to the corresponding regional
server m in communication round t, and µ2 is the channel
noise. Note that b in Hz is the bandwidth of one channel,
i.e., b = B/N , where B is the total bandwidth budget and
N is the number of clients. If we use partial participation
strategy b = B/N . Since our compared benchmarks include
multiple different FL network architectures, bandwidth b is
divided into three categories: (1) bcr = Bcr/N is the client to
regional server bandwidth; (2) brc = Brc/N is the regional
server to cloud server bandwidth and (3) bcc = Bcc/N is the
client to cloud server bandwidth. In the real world mobile
network, bcr ≤ brc = bcc [8].

The definition of downloading time of client i to the
corresponding regional server m is τDi,m(t) is similar to
the uploading time τUi,m(t), which is defined as τDi,m(t) =
qi,m

brDi,m(t)
, where rDi,m(t) = log2(1 +

pDi,m|g
D
i,m(t)|2

µ2 ), pDi,m is the

downlink transmit power, gDi,m(t) is the downlink channel
gain of client i to the corresponding regional server m in
communication t. Suppose that the total communication
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round to achieve the targeted testing accuracy is TMulti, the
total transmission time is τTotal

Multi =
∑TMulti
t=1 τ(t). Specifically,

the transmission latency calculation of FedMes [16] is the
same as MS-FedAvg.

2) Single-server FL: In the single-server FL net-
work architecture, all clients communicate to the central
server for download/uploading the model updates upload-
ing/downloading. The transmission latency τSingle(t) of the
single-server FL for one communication round depends on
the slowest client i, which is calculated by

τSingle(t) = max
i
τUi + max

i
τDi . (6)

Note that the transmit power pDi and pUi and the channel
gain gDi and gUi should decay with increasing the distance
[33], [34]. Clearly, the distance between clients and regional
server(s) should be much less than the distance between
clients and central server. Even though many existing single-
server FL studies have proposed the developed algorithm
to improve the convergence rate [6], [17], [35], single-server
FL also requires much more total transmission time due to
the large value of τSingle(t). The total transmission time of
single-server FL is τTotal

Single =
∑TSingle

t=1 τ(t).
3) HFL: The HFL architecture includes both the regional

servers and the central server [10]–[12], which has two
aggregation schemes (i.e., edge aggregation and global ag-
gregation). In each region aggregation round, each regional
server aggregates the local model updates uploading from
the clients in its service area, where the transmission latency
of region aggregation is

τRegion(t) = max
i,m

τUi,m(t) + max
i,m

τDi,m(t). (7)

In the global aggregation round, the central server aggre-
gates the model updates on each regional server in which
the transmission latency is

τGlobal(t) = max
m

τUm(t) + max
m

τDi,m(t). (8)

Note that the global aggregation round is performed
periodically at every tGlobal edge aggregation round (i.e.,
tGlobal ≥ 1). Suppose that if HFL requires TRegion and TGlobal
to achieve the targeted accuracy, the total transmission time
of HFL is τTotal

HFL =
∑TRegion

t=1 τRegion(t) +
∑TGlobal
t′=1 τGlobal(t

′).
Clearly, we can observe that HFL has extra aggregation
rounds (i.e., global aggregation round) compared to single-
server FL and multi-server FL architectures from which
τGlobal > τRegion due to the large distance between regional
servers and central server. More specifically, in Table 1, the
convergence rate of HFL (i.e., 1√

NmT
+ 1

T ), which implies
that HFL requires more communication round to achieve
targeted accuracy and incurs large total transmission time.

4) CFL: We assume that the CFL architecture includes
M regional servers, where the number of M is equal to
the number of clusters. Although the calculation of one
communication round transmission latency of CFL τCFL
is the same as the multi-server FL in (3), the distance
of clients to regional server is usually larger than multi-
server FL since the clustering policy aims to cluster the
clients that perform similar dataset distribution [31], [36].
In addition, the capability of regional server is much lower
than central server, and hence the slowest client will high
impact on the transmission latency (i.e., τCFL � τMulti).
Specifically, CFL should re-cluster the clients after every

𝑈 = 15𝑈 = 15

𝑈 = 15

𝑉 = 10 𝑉 = 10

𝑉
=
1
0

𝑊 = 10

Fig. 3: Symmetric multi-server FL architecture.

several communication rounds, which incurs extra commu-
nication latency. The CFL may incur high divergence of
each cluster, which may degrade the convergence perfor-
mance, and it should use more communication rounds to
achieve the targeted accuracy. In summary, if the number
of total communication round is TCFL and the number of
re-clustering is TCluster, the total transmission time of CFL is
τCFL

Total =
∑TCFL
t=1 τCFL(t) +

∑TCluster
t′=1 τCluster(t

′).

7 EXPERIMENTS

7.1 Experimental Setup
Datasets and models. We evaluate our proposed algorithms
on three datasets: EMNIST [37], CIFAR-10 and CIFAR-100
[38]. In each dataset, we simulate the data heterogeneity by
sampling the label ratios from a Dirichlet distribution with
parameter 0.4 [40], and keep the training data on each client
balanced. For EMNIST dataset, we use CNN model with
two hidden-layers and two FeedForward Network (FFN)
layers, and the two learning rates are set as ηg = 1.1 and
ηl = 0.05 by grid search. For CIFAR-10 and CIFAR-100, we
use MobileNet-v2 [39] to be the learning model, and the
learning rates are set as ηg = 1.5 and ηl = 0.1. Table 2
summarizes datasets, models, batch sizes and the number
of clients. All the hyper-parameters are set based on grid
search on each dataset. Note that all the algorithms are set
E = 5 and Km = 10 by default.

Compared benchmarks. In this paper, we compare our
proposed algorithms to 5 existing FL benchmarks and can
be concluded into 3 categories, i.e., single-server FL, HFL
and clustered FL.

(1) FedAvg: FedAvg algorithm [2] is the most important
baseline in FL research field. Note that the setting of FedAvg
is same as [7].

(2) Fedprox: Fedprox [25] develops a l2-norm regular-
ized algorithm to address the local model updates in the
heterogeneous FL. In our experiment, we follow the settings
in [25] with λ = 0.01, which controls the dissimilarity of
local objectives.

(3) HFL: HFL [12], [41] is a edge-cloud based FL architec-
ture. In our experiment, we use one layer edge servers, and
after 5 times client to edge server communication rounds,
edge servers upload the model to the cloud server to com-
pute aggregation.

(4) MC-PSGD: MC-PSGD [30] is a CFL architecture,
which processes the local training by clustering the clients
into several blocks to reduce the client drift. We assume that
re-clustering the blocks in each communication round, and
the re-clustering time τCluster is 1/20 of one round.
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TABLE 2: Datasets and models.

Dataset Task Clients Total samples Batch size Model
EMNIST [37] Handwritten character recognition 85 81,425 16 2-layer CNN+2-layer FFN
CIFAR-10 [38] Image classification 85 60,000 32 MobileNet-v2 [39]

CIFAR-100 [38] Image classification 85 60,000 32 MobileNet-v2 [39]
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(b) CIFAR-10 dataset.
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(c) CIFAR-100 dataset.

Fig. 4: Testing accuracy for full client participation on multi-server FL, HFL, and CFL architectures.
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Fig. 5: Testing accuracy for partial client participation on MS-FedAvg.

(5) IFCA: IFCA [31] is a clustered FL, which is clustered
every 5 times communication round and based on calcu-
lating the cosine similarity, where τCluster is 1/20 of one
communication round.

(6) FedMes: FedMes [16] is a multi-server FL, which sets
the ηg = 1.

Multi-server network architecture. We set our multi-
server FL network architecture with M = 3 regional servers
and 85 clients. Here, we consider a symmetric geometry
multiple servers network with U = 15, V = 10 and W = 10
(U is the number of clients in the non-overlapping area for
every server, V is the number of clients in the overlapping
area between any two servers, W is the number of clients
in the overlapping area among all three servers) such that
each regional server covers 45 clients, which is shown in
Fig. 3. Another multi-server FL network is that all 85 clients
are within in the overlapping area among all three servers
and hence W = 85, U = 0 and V = 0. For the partial par-
ticipation strategy, each regional server randomly samples
10 clients in each communication round. The asymmetric
network architecture will be presented later.

Network parameters setup. The network setting is sum-
marized as follows unless otherwise specified. We consider
the regional server with a disc of 2km and cloud server with
5km. The channel gain of both the uplink and downlink are
composed of both small-scale fading and large-scale fading.

The small-scale fading is set as Rayleigh distribution with
uniform variance and the large scale fading from client to
regional server, client to cloud server and regional server
to cloud server are all generated using the path-loss model
PL = 128.1 + 37.6 log10(d(km)), where d is the distance in
km. The noise power µ2 is−107 dBm. Total bandwidth bud-
get Brc = 850MHz, Bcr = 475MHz and Bcc = 150MHz.
Both the uplink and downlink transmit power is 23dBm, i.e.,
pUi = pDi = 23dBm, ∀i ∈ N . These parameters are followed
by the existing edge computing studies [20], [34], [42].

7.2 Comparison to Other Multi-Server FL benchmarks
In this subsection, we mainly focus on comparing the perfor-
mance with the multi-server FL benchmarks, and including
three settings: full clients participation, partial clients partic-
ipation and moving clients scenarios. Note that the setting
W = 85 means that all 85 clients locate into the overlapping
area with 3 regional servers, which is considered as the
upper bound of MS-FedAvg, since all the three regional
models reduce the divergence of the initial model.

(1) Performance of full clients participation strategies:
In Figure 4, we aim to show the performance of full clients
participation strategy compared to the three different multi-
server FL benchmarks. It is easy to see that our proposed
MS-FedAvg algorithm converges faster and achieves the
best accuracy performance than other benchmarks in all the
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TABLE 3: Final testing accuracy, round and wall-clock(sec) with compared benchmarks: 80% for EMNIST dataset, 75% for
CIFAR-100 dataset, and 45% for CIFAR-100 dataset.

Dataset EMNIST CIFAR-10 CIFAR-100
Algorithm Accuracy Round Wall-clock Accuracy Round Wall-clock Accuracy Round Wall-clock

FedAvg 85.06% 8 5.37 80.75% 88 1495.21 50.25% 95 2119.45
FedProx 84.97% 10 6.72 80.06% 106 1803.06 49.61% 110 2643.30

HFL 84.87% 31 16.12 77.52% 191 2555.58 46.19% 351 7563.98
MC-PSGD 83.03% 68 36.04 73.86% NA NA NA NA NA

IFCA 83.85% 65 34.13 76.61% 291 4367.93 NA NA NA
FedMes 84.91% 16 7.64 79.08% 100 962.17 49.82% 130 2056.71
W = N 85.04% 11 5.97 80.98% 85 785.90 50.62% 90 1632.62

MS-FedAvg 85.02% 13 7.15 79.84% 91 903.17 50.14% 119 1959.72

three datasets except for the setting with W = 85, which
supports our theoretical results in Theorem 1. For example,
in CIFAR-10 dataset, MS-FedAvg can achieve 79.69% testing
accuracy, which is 1.51%, 3.78% and 5.59% higher than HFL,
IFCA and MC-PSGD. In particular, MC-PSGD converges
fast but it achieves lowest accuracy, since the clustered
model is easy to overfit to its own cluster. However, the
global model performance is worst among all benchmarks,
i.e., 74.10%. More specially, the disadvantage of HFL is due
to that fact that for every 5 regional aggregation steps,
it is required a global aggregation, which may degrade
all the regional learning performance. Although FedMes
outperforms other three benchmarks, it does not achieve
better convergence rate and accuracy than our proposed
MS-FedAvg. The results may be due to the fact that the value
of ηg is not optimal.

(2) Performance of partial clients participation strate-
gies: For the partial clients participation strategy, we uni-
formly sample K = 10 clients in each region and communi-
cation round, and the performance of different values of K
will be shown later. For convenience, the meaning of legend
is the number of sampled clients in each area types. U is the
isolated area type, V is the clients located in the overlapping
area with two regional servers and W is the three regional
servers’ ovelapping area. For example, U = 10 is sampling
10 clients in area type U . Based on this network architecture,
we have the following interesting observations.

Firstly, we can see that the unbiased partial participation
of all the three datasets in Fig. 5 is similar to the performance
of full client participation in Fig. 4 but higher variance,
which is due to the uniformly sampling, and successfully
matches our analysis in Section 5. If we select these 10
clients with the number of U = 4, V = 4 and W = 2, it
performs better than unbiased participation strategy, e.g.,
1.43% higher testing accuracy than unbiased MS-FedAvg
in CIFAR-100 dataset. More specifically, if we only sample
clients in one specific area, the performance has much degra-
dation, e.g., 45.01% with W = 10, and 43.92% with U = 10.
The reason may be due to the fact that that the regional
model overfits these local clients and cannot generalize to
all clients in the entire FL network. Therefore, if we use
biased participation strategy, it is necessary to sample clients
among all area types. The learning performance of Biased
MS-FedAvg strongly depends on the network topology, and
hence it is not easy to provide the optimized sampling
strategy. However, it is feasible to find a sampling strategy
which performs better than unbiased strategy.

(3) Performance of the clients movement scenarios:

Here, we aim to show the comparison of static and move-
ment scenarios of multi-server FL settings. Because clus-
tered FL needs to re-cluster every several communication
rounds, the movement scenario can be ignored in this set-
ting. Therefore, we only compare our proposed MS-FedAvg
algorithm to HFL. Since we cannot justify the deterministic
moving direction of each client, we assume that it ran-
domly moving in each communication round. Because of
the restricted service area of regional server, we consider
the movement scenario such as the moving sensors or IoT
devices [43], [44], which performs low movement speed
(e.g., 3 miles per hour [44]). Compared to the transmission
latency, the moving distance is very short and we can
assume that each client connect the same corresponding
regional server(s) within one communication round. In or-
der to evaluate the training performance between static
and movement scenarios, we set three network settings:
(1) the probabilities of the client locating in each area are
P(locate in U) = 52.94%, P(locate in V ) = 35.30% and
P(locate in W ) = 11.76%; (2) P(locate in U) = 35.30%,
P(locate in V ) = 52.94% and P(locate in W ) = 11.76%; and
(3) P(locate in U) = 52.94%, P(locate in V ) = 11.76% and
P(locate in W ) = 35.30%. The communication round is to
achieve 80% on EMNIST dataset, 75% on CIFAR-10 dataset
and 45% on CIFAR-100 dataset.

Clearly, we can see that the convergence rate of move-
ment scenarios is much slower than static scenarios among
all the multi-server FL settings, e.g., in CIFAR-10 dataset,
movement is 77.08% and static is 79.84% of MS-FedAvg.
And it only uses 91 communication rounds to achieve
75% testing accuracy, which is much better than movement
scenario with 207 rounds. The reason is that since the clients
may participate in different regional models training, it
incur higher model variance between each communication
round. As a result, it makes the global model to be con-
verged difficultly. It is similar to train the same several
regional models on each regional server. Therefore, it is not
necessary to consider the movement scenario in this paper.
In addition, it is clear to see that our proposed MS-FedAvg
also outperforms other benchmarks in the movement sce-
narios. If we assume more clients locate in the overlapping
areas (e.g., setting 3), the training performance of both MS-
FedAvg and HFL improve. For example, in setting 3, the
movement scenario of MS-FedAvg has 48.75% testing accu-
racy and uses 279 to achieve 45% accuracy on CIFAR-100
dataset. This may be because the data distribution clients
performs less diversity and near to the W = N scenario.
More specifically, MS-FedAvg outperforms HFL in all set-
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tings (e.g., on CIFAR-10 dataset of setting 2, the movement
scenario of MS-FedAvg achieves 78.01% and HFL is 76.18%).

7.3 Training Performance and Transmission Latency

In this subsection, since it is not easy to verify the local
computing time of each client, and the existing papers have
shown that [2], [32] the transmission latency dominate the
running time FL, and hence we only compare the transmis-
sion latency to training performance of all FL benchmarks
and simply ignore the local computing time of every client.
The wall-clock means that the total transmission time to
achieve the targeted testing accuracy.

Table 3 shows the final testing accuracy, communica-
tion round and wall-clock to achieve the targeted testing
accuracy. We compare our MS-FedAvg algorithm to single-
server FL, HFL and CFL. It is easy to observe that the final
testing accuracy of W = N and FedAvg perform similar
among all the three datasets, e.g.,. 78.98% and 78.96% in
CIFAR-10 dataset. This is from that they do not have the
model divergence to degrade the learning performance. The
W = N setting can be considered as the FedAvg on multi-
server FL network architecture, while W = N is much more
efficient from the transmission latency perspectives. For the
EMNIST dataset, the reason that FedAvg algorithm has the
best performance is due to the fact that EMNIST dataset is
simple, and easy to achieve targeted testing accuracy. For
the more complicated datasets, it is clearly to see that MS-
FedAvg outperforms single-server FL benchmarks. Note
that FedMes outperforms other three benchmarks, but it is
worse than MS-FedAvg.

Although both the two single-server FL benchmarks
perform good accuracy performance, they will waste much
more training time, due to the large averaged distance
between clients and server. Although the HFL and CFL al-
gorithms spend less transmission latency for one communi-
cation round, it waste much more wall-clock time to achieve
the targeted accuracy due to the low convergence rate, e.g.,
for CIFAR-10 dataset, HFL uses 191 round and 2555.58 sec,
and IFCA uses 291 rounds and 4367.93 sec. Therefore, the
existing multi-server FL benchmarks cannot guarantee to be
efficient enough from the transmission perspective.

Our proposed MS-FedAvg outperforms other multi-
server FL benchmarks on testing accuracy perspectives.
More specifically, MS-FedAvg has the best wall clock-time
among all the benchmarks except the W = N setting, since
it does not need to download and upload models to the
central servers, it significantly reduce the distance and save
much more transmission latency. For example, in CIFAR-
10 dataset, it saves 1.65×, 1.99×, 2.83× and 4.84× time
than FedAvg, FedProx, HFL and IFCA. More specifically,
due to the limited generalization of MC-PSGD, it cannot
achieve the targeted accuracy. Therefore, our proposed MS-
FedAvg algorithm can be considered as an efficient solution
to address the bottleneck problem of FL settings.

7.4 Impact on Different Parameters
(1) Impact onKm andE: Based on our analysis in Sections 4
and 5, the learning performance of MS-FedAvg algorithm
depends on several hyper-parameters, e.g., the number of
sampling clients under each regional servers Km and the
setting of number of local epochs E. Figs. 8a-8c present the
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Fig. 8: Impact on the number of sampling clients Km and the number of local epochs E.

TABLE 4: Impact on different bandwidth settings.

Dataset EMNIST CIFAR-10 CIFAR-100
Bandwidth Accuracy Wall-clock Accuracy Wall-clock Accuracy Wall-clock

brc = 10MHz, bcr = 5MHz 85.02% 7.15 79.84% 903.17 50.14% 1959.72
brc ∼ U [8, 12]MHz, bcr ∼ U [4, 6]MHz 85.05% 10.49 79.59% 1003.26 49.98% 2227.01
brc ∼ U [5, 15]MHz, bcr ∼ U [2, 8]MHz 84.97% 15.01 79.86% 1420.39 50.05% 2936.91

final testing accuracy of EMNIST, CIFAR-10 and CIFAR-100
datasets under different values of Km and E. Especially, we
set 2U = 2V = W as ”Biased”, which means the fraction of
the number of sampling clients in different area types.

The results in Figs. 8a-8c indicate that that the perfor-
mance substantially improves when we increase the number
of sampled clients number Km, and the biased participation
strategy consistently outperforms unbiased participation,
e.g., in CIFAR-10 dataset, biased client participation strategy
increases from 76.20% to 82.93%, when Km = 10 and 35,
and unbiased increases from 75.56% to 82.93%. In addition,
the degree of improvement of Km increases lower. This
empirical result matches our analysis in Section 4, and
performs similarly to single-server FL settings [6], [7], [17].

Next, we aim to show the learning performance under
different values of E. Until now, it is difficult to explicitly
show the relationship between E and learning performance.
In [6], they presented that increasing E can improve the
performance. However, other studies [7], [25] showed that
when E is set as too large, it will degrade the performance.
Our experimental results in Figs. 8a-8c imply that if E = 1,
it performs the worst. If we increase the value, the accuracy
firstly increases but then decreases, e.g., in CIFAR-100, when
E = 5, the accuracy is 49.65%, but 44.65% of E = 20. Thus,
it is necessary to find a suitable value E to achieve better
performance on different datasets.

(2) Impact on bandwidth: Here, we present the im-
pact on different bandwidth settings between clients and
regional server(s), which includes three settings: (1) brc =
10MHz, bcr = 5MHz; (2) brc ∼ U [8, 12]MHz, bcr ∼
U [4, 6]MHz; and (3) brc ∼ U [5, 15]MHz, bcr ∼ U [2, 8]MHz,
where U is uniform distribution.

In Table 4, we can clearly see that different bandwidth
does not have significant impact on the testing accuracy. For
example, on EMNIST dataset, the testing accuracy of these
three settings are 85.02%, 85.05% and 84.97%. The is due
to the fact that the learning performance is independent
on the network parameter settings, and only depends on
the setting of learning models (e.g., data distribution and
hyper-parameters). However, the bandwidth has a large
influence on the transmission latency, because each regional
server should wait for the slowest client that performs small
bandwidth and then process the aggregation. On CIFAR-100

𝑈3 = 10𝑈2 = 15

𝑈1 = 20

𝑉1,2 = 5 𝑉1,3 = 10

𝑉
2
,3
=
1
5
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Fig. 9: Asymmetric multi-server FL architecture.

dataset, if the bandwidth follows brc ∼ U [5, 15]MHz, bcr ∼
U [2, 8]MHz, the total communication time is 2936.91sec,
which is 49.86% higher than equal bandwidth setting. There-
fore, if each regional server has limited bandwidth budget,
the best way is to equally divided to each client, which can
achieve the best performance on communication.

7.5 Impact on different Multi-Server FL Network Archi-
tectures
Here, we aim to show the impact on multi-server FL
network architecture. In this subsection, we additionally
consider two more network architectures: asymmetric and
5 regional servers. As such, we simulate an asymmetric FL
network architecture in Fig. 9, which also includes 3 regional
servers and 85 clients in total. In addition, we present the
learning performance of multi-server FL network architec-
ture with 5 regional servers. To make the regional servers
efficiently serve the clients, we assume that the overlapping
areas at most includes 3 regional servers, and also keep the
network within 85 clients.

In Fig. 10, it can be observed that the symmetric network
architecture achieves the best learning performance on con-
vergence perspective. The more complex network architec-
ture, i.e., asymmetric and more regional servers, degrades
the learning performance, especially incurring higher vari-
ance in each communication round. The observation may
come from the unbalanced regional aggregation. Although
they achieves the similar testing accuracy in final, symmetric
network uses fewest communication rounds to achieve the
targeted testing accuracy. In order to show the training
performance for the large-scale multi-server FL network, we
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Fig. 10: Impact on different multi-server FL network architectures.

embed the EMNIST dataset on a 20 regional servers, which
includes 150 clients. The MS-FedAvg also substantially out-
performs HFL, which can achieve 84.68% testing accuracy
(80.86% for HFL). It indicates that MS-FedAvg works stably
on complicated networks. Designing the relationship be-
tween the learning performance and network architectures
will be our further work. More specially, it is worth noting
that all the learning performance under different networks,
MS-FedAvg significantly outperforms HFL.

8 RELATED WORK

Current research on FL wireless networks improved the
communication efficiency on the following aspects. (1) how
to properly allocate resource to clients. [45] designs how
to properly select clients and how bandwidth is allocated
among the selected clients in each communication round.
[46] jointly considers bandwidth allocation and clients
scheduling problem. For bandwidth allocation sub-problem,
they aim to allocate more bandwidth to the clients with
worse channel conditions, and develops a greedy policy to
solve the clients scheduling sub-problem. (2) deadline based
FL architecture. [47] develops clients selection algorithm
for deadline based HFL via contextual combinatorial multi-
armed bandits to improve the training performance. (3)
physical layer quantization. For bandwidth reduction, [48]
sparsifies the gradient estimates of clients to accumulate
error from previous communication rounds, and project the
resultant sparse into a low-dimensional vector. In [49], they
clarify how to communicate between clients and the central
server and evaluate the impact on the various quantization.
In addition, they design the physical layer quantization
both on uplink and downlink. They mainly minimize the
communication latency by solving an optimization problem
subject to the constraint of obtaining a good model. How-
ever, few of them propose the details of the convergence
guarantee in their papers.

FL was first proposed in [2], where they proposed the
FedAvg algorithm and showed the advantages empirically
on different datasets and local dataset distribution settings.
Followed by [2], the authors propose the strategy to address
the communication bottleneck problem by increasing the
local training epochs [6], [7]. Specifically, this method is also
a feasible solution to improve the convergence rate. Based
on this method, some new algorithms are developed from
different perspectives. [17] adds a variant control variable

to reduce the local model updates and global model due
to the non-iid distribution of local datasets, and [50] and
[51] designs FL algorithm for asynchronized FL via Hessian
approximation. [29] designs server level momentum and
extends the local SGD optimizer to AdaGrad, YOGI and
ADAM, [35], [52], [53] proposes client level momentum FL
algorithm, and [54] shows the impact on local batch size of
both sided level momentum FL. However, these algorithms
are mainly developed on single-server FL. In this paper,
different from the above existing works, we derive the
convergence results of the typical multi-server FL in [16]
that obtains the impact on non-iid datasets and the initial
local models, which is much more challenging.

Based on the highly efficient edge computing architec-
ture, some studies focus on edge facilitated FL: HFL [10]–
[12] and clustered FL [13]–[15]. However, they also rely on
communicating to the central server, large communication
delay is difficult to be avoidable compared to our proposed
multi-server FL. Another direction of distributed learning
is fully decentralized/serverless [55]–[57]. In decentralized
FL, clients need to exchange the model updates with their
neighbors not to the servers. This is different from our pro-
posed multi-server FL architecture, where the local model
updates are required to be aggregated on regional servers.
However, even though the network of decentralized FL is
well-connected, it is not avoidable to reduce the degradation
due large communication delay, since the bandwidth of each
client should be much less than edge computing.

9 CONCLUSION

In this paper, we proposed the MS-FedAvg algorithm and
presented theoretical analysis on non-iid datasets in gen-
eral non-convex settings on a multi-server FL architec-
ture with overlapping areas, which can reduce the trans-
mission latency compared to traditional single-server FL.
Our theoretical results reveal how the overlapping areas
accelerate the convergence of the final global model. In
addition, MS-FedAvg algorithm achieves a linear speedup
under full/unbiased partial client participation strategies
compared to the existing multi-server FL algorithms. To
further improve the convergence rate, we develop a biased
partial client participation strategy. Both theoretical and em-
pirical results show the degree of bias results in a trade-off
between convergence rate and accuracy, and outperforms
other existing multi-server FL architectures. Although our
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work is based on the fundamental theory of traditional FL,
it also opens to doors to many new interesting questions
in FL studies. For the future work, we plan to investigate
how to design the algorithms based on the topology of the
multi-server FL architecture, and the consensus control.
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