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Abstract

Federated learning (FL) is a new machine learning framework which trains a joint
model across a large amount of decentralized computing devices. Existing meth-
ods, e.g., Federated Averaging (FedAvg), are able to provide an optimization guar-
antee by synchronously training the joint model, but usually suffer from stragglers,
i.e., IoT devices with low computing power or communication bandwidth, espe-
cially on heterogeneous optimization problems. To mitigate the influence of strag-
glers, this paper presents a novel FL algorithm, namely Hybrid Federated Learning
(HFL), to achieve a learning balance in efficiency and effectiveness. It consists of
two major components: synchronous kernel and asynchronous updater. Unlike
traditional synchronous FL methods, our HFL introduces the asynchronous up-
dater which actively pulls unsynchronized and delayed local weights from strag-
glers. An adaptive approximation method, Adaptive Delayed-SGD (AD-SGD), is
proposed to merge the delayed local updates into the joint model. The theoreti-
cal analysis of HFL shows that the convergence rate of the proposed algorithm is
O( 1

t+τ ) for both convex and non-convex optimization problems.

1 Introduction

Federated Learning (FL) Konečnỳ et al. (2016), has emerged as an attractive paradigm for training
a joint model in a federated network. Compared to the standard parallel optimization framework
where the model is trained with the large-scaled dataset on a central server Shalev-Shwartz & Ben-
David (2014); Goodfellow et al. (2016), FL trains a joint model under the coordination of a server
across a large number remote devices. The joint model is learned with the updates from the remote
devices via local training on their private data Johansson et al. (2007); Lee & Nedic (2013); Bonawitz
et al. (2017); McMahan et al. (2017). Since the model is trained without sharing data, the data
privacy can be greatly enhanced in FL.

Two key challenges arise in FL. First, FL typically trains the model on a heterogeneous network,
where the remote devices are large in number and have a variety of computing power and commu-
nication bandwidth. This makes the training process suffer from many stragglers which are slow
in their local model training. Second, FL usually trains on a heterogeneous dataset, where training
data are highly unbalanced and non-i.i.d. To tackle these challenges, several FL frameworks have
been studied in literature. For example, Federated Averaging (FedAvg) McMahan et al. (2017) is
developed to address the communication constraint by performing multiple local learning steps on
a subset of remote devices before uploading the model updates into the server.

The convergence of FedAvg can be guaranteed Li et al. (2019) when the following two assumptions
are made: (i) during the learning process, all remote devices are active, and (ii) the server can access
all remote devices with equal probabilities. Later works following the first assumption Zhou & Cong
(2017); Li et al. (2019); Woodworth et al. (2018); Wang et al. (2019); Yu et al. (2019) and follow-
ing these two assumptions Stich (2018); Li et al. (2019); Khaled et al. (2020); Karimireddy et al.
(2020); Qu et al. (2020); Yang et al. (2021) have been conducted to further improve FL performance.
However, these two assumptions usually do not hold in practical FL applications, due to the fact that
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Table 1: Notations Summary
N, i total number, index of the remote device

F (·), Fi(·) joint objective, local objective of FL
X,Xi total, local learning dataset
T, t number, index of global communication rounds
E, e number, index of local epoch steps
wt, n joint model after round t and its dimension

wi
t, g(wi

t) model, gradient of i-th device at round t

straggles would commonly exist in the network. Once the straggler has the same possibility to be
chosen by the server, the learning speed will be greatly reduced. Moreover, the data heterogeneity
of FL tells that these stragglers could not be excluded from the training process, as they may contain
unique local data that could not be found in other devices.

In this paper, we propose a new FL algorithm, called Hybrid Federated Learning (HFL), to en-
hance the learning performance of FL with the presence of stragglers in the network. The proposed
HFL has two key components: a synchronous kernel and an asynchronous updater for two dif-
ferent communication scenarios. The synchronous kernel aims to synchronize those devices (i.e.,
non-stragglers) that have high enough computation and communication capacities, and performs
the same training strategy as FedAvg which synchronously communicates with the selected devices
in every communication round. The asynchronous updater aims to incorporate model updates of
those stragglers, which could be several steps behind the synchronous kernel, into the joint model
training process. Moreover, to bridge the gap between the delayed gradients and the optimal gradi-
ents from stragglers, we develop an adaptive approximation method called Adaptive Delayed-SGD
(AD-SGD). In particular, the proposed AD-SGD first applies the Taylor expansion to approximate
the optimal gradient of a straggler from its delayed gradients in a distributed network. Meanwhile,
an adaptive hyper-parameter controlling mechanism is developed to reduce the bias of Taylor series
approximation.

We evaluate our proposed HFL algorithm through both theoretical analysis and comprehensive ex-
periments. On both convex and non-convex optimization problems, we provide the theoretical con-
vergence guarantee with non-i.i.d distributed data. The discussion of the convergence rate of HFL
is also provided. The experimental results show that HFL outperforms existing FL algorithms. In
summary, the contribution of this paper are as follows

• To address the learning of heterogeneous data in FL network with stragglers, we propose a
hybrid structured algorithm HFL consisting of a synchronous kernel and an asynchronous
updater to jointly train the model, enabling a learning balance in efficiency and effective-
ness.

• To obtain the optimal joint model, we develop an adaptive approximation method AD-SGD
to bridge the gap between the delayed gradients and the optimal gradients.

• We show the performance of theoretical analysis and experiments, which guarantees a con-
vergence on both convex and non-convex optimization problems.

Paper organization. In Section 2, we describe the background of HFL. In Section 3, we detail
our proposed HFL algorithm. In Section 4, we provide theoretical analysis on the convergence
rate of HFL. In Section 5, we provide experimental results and analysis by comparing HFL with
existing algorithms. For the supplementary material, we introduce the related works in Section A,
the detailed demonstration of convergence results in Section B and the extended experiment settings
and results in Section C.

2 Background

2.1 FL Objective

Consider a distributed network which has one central server and N remote devices. Each remote
device owns its local private dataset Xi, for i = 1, 2, · · · , N . We denote the whole training dataset
as X = {X1,X2, · · · ,XN}. In this paper, we consider the local data are non-i.i.d., i.e., the data
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Figure 1: The joint learning process of the proposed HFL using both synchronous kernel and asyn-
chronous updater with the presence of stragglers. One normal device and two stragglers are only
illustrated as an example.

distributions for any two remote devices can be different. A FL process starts with an initialization
of a model in the server, and iteratively performs local model training in individual remote devices
and joint model updating in the server. Table 1 summarizes the use of mathematical symbols in this
paper, and the learning objective of FL can be formalized as follows

min
w

{
F (w) ,

N∑
i=1

piFi(w)

}
, (1)

where w is the joint model parameter vector, Fi is the local objective function and pi is the weighted
factor of the i-th device, where pi ≥ 0 and

∑N
i=1 pi = 1. Specifically, we denote the training

samples in Xi as Xi = {xi,1, xi,2, . . . , xi,ni
}, then the local objective Fi(·) can be defined as

follows

Fi(w) ,
1

ni

ni∑
j=1

L(w;xi,j), (2)

where L(·; ·) is the loss function for all remote devices. In each round, the selected remote device re-
ceives the current joint model from the server and performs its local training via Stochastic Gradient
Descend (SGD) as follows

wi
t+1 = wi

t −
E−1∑
e=0

ηt∇Fi(wi
t,e,X

i
t,e), (3)

where wi
t ∈ Rn is the received joint model from the server at t-th round, and e = 0, 1, . . . , E − 1

represents the local training epoch index and ηt is the learning rate at the t-th communication round,
determined by the server. The second term in Equation (3) denotes the overall model update or
gradients from the i-th device, denoted by g(wi

t). Then, we have wi
t+1 = wi

t − ηtg(wi
t). After

this, the model update wi
t+1 can be sent back to the server to update the joint model through model

updating.

2.2 Design Motivation

It is desired to have all remote devices participating the training process, in order to achieve the
optimal performance in solving Equation (1). However, the presence of stragglers in the distributed
network will significantly reduce the training speed of existing synchronous FL methods which is
actually determined by the slowest device.

To reduce the impact of stragglers, some prior studies Stich (2018); Li et al. (2019); Karimireddy
et al. (2020); Yang et al. (2021) have been taken and provide a partial participation algorithm: a
threshold K(1 ≤ K ≤ N) is empirically selected so that the server only accepts model updates
from the first K remote devices while discarding the rest N − K slow participators regarded as
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stragglers. By doing so, the bottleneck of stragglers can be avoided by simply excluding them from
the training process. However, due to the data heterogeneity of FL, the removal of those stragglers
can greatly reduce the learning performance. Hence, the presence of stragglers in FL usually causes
the dilemma of“ efficiency-effectiveness” in learning.

To achieve a balance in learning efficiency and effectiveness, it is necessary to incorporate model
updates from stragglers without incurring a long waiting time for synchronization in the server. This
motivates us to develop a hybrid learning framework in which both synchronous learning for normal
devices and asynchronous learning for slow devices (i.e., stragglers) are considered. However, the
incorporation of the delayed model updates from stragglers into the joint model in the server should
be carefully designed, which is detailed in the next section.

3 Hybrid Federated Learning

3.1 Outline

The server in our proposed HFL divides its connected remote devices into two categories: normal
devices and stragglers, based on their communication and computation performance. This can be
typically done by analyzing their historical behaviors. We denote the set of normal devices by S1

and the set of stragglers by S2, where |S1|+ |S2| = N . Hence, the HFL consists of two components:
synchronous kernel which communicates with the normal devices in each communication round, and
the asynchronous updater which incorporates delayed model updates (i.e., neural network gradients)
from stragglers.

Similar to existing synchronous FL methods McMahan et al. (2017); Konečnỳ et al. (2016); Li et al.
(2019), we perform model update of the synchronous kernel as a weighted summation of a sequence
of local updates. For each straggler, we use τi, i ∈ S2, to indicate the number of rounds behind to
the current sequence. Especially, we have τi = 0, i ∈ S1, for normal devices. Then, the current
joint model with both the synchronous kernel and the asynchronous updater would be

wt =


∑
i∈S1

piw
i
t if t ≤ max

i∈S2

τi∑
i∈S1

piw
i
t +

∑
i∈S2

piw
i
t−τi Otherwise (4)

Figure 1 illustrates the joint learning process of the proposed HFL using both synchronous kernel
and asynchronous updater with the presence of stragglers, where only one normal device and two
stragglers are only given as an example. At t = 0, the server initializes a joint model and broadcasts
it to all devices. At t = 1, only the normal device completes local training and return its model
updates to the server for synchronously updating the joint model, handled by the synchronous kernel.
At t = 2 and t = 3, when a straggler completes its local training, the asynchronous updater can
incorporate the delayed model updates to the joint model.

It is clear that the main challenge is how to utilize the delayed model updates to contribute the
training of the current joint model. The shown updating mechanism in Equation (4) is problematic
in that at the t-th communication round, the i-th straggler actually sends back a delayed gradient
g(wi

t−τ ). To reach the optimal solution of wt, we need to approach the “up-to-date” gradient g(wi
t)

from g(wi
t−τ ), which is a well-known problem in asynchronous SGD optimization field Stich &

Karimireddy (2019); Arjevani et al. (2020); Glasgow & Wootters (2020). In addition, stragglers in a
FL network can have a variety of computation power, which leads to a highly unbalanced distribution
of τ . Thus, in this paper, we develop an adaptive approximation solution to address this problem.

3.2 Adaptive Delayed-SGD (AD-SGD)

In order to bridge the gap between the gradient from the joint model g(wi
t) to the delayed gradient

g(wi
t−τ ), we propose a novel adaptive approximation method. For simplicity, when there is no

confusion, we omit the index i in the rest of this paper for presentation purpose.

Taylor Expansion. We apply the Taylor expansion Folland (2005); Bischof et al. (1993) to expand
the gradient update g(wt) for the current joint model at the (t− τ)-th step as follows

g(wt) = g(wt−τ ) +∇g(wt−τ )(wt −wt−τ )

+O((wt −wt−τ )2)In,
(5)

4



where In is a n-dimension all-ones vector, and ∇g(·) represents a gradient matrix, whose element
gi,j = ∂L2

∂wi∂wj
for i, j ∈ n. Note that g(wt−τ ) is the zero-order item in the Taylor expansion of

g(wt) and the major difference between the expected model gradient g(wt) and the delayed model
gradient g(wt−τ ) comes from the higher-order components ∇g(wt−τ )(wt − wt−τ ) + O((wt −
wt−τ )2)In. Intuitively, we could use the full Taylor expansion in Equation (5) to approach g(wt),
however, this is unrealistic due to its high computation cost. Additionally, even solving the first-
order item∇g(wt−τ )(wt −wt−τ ) is also highly non-trivial, which is considered to be the Hessian
matrix H(wt−τ ) of the joint loss function.

Approximation of Hessian Matrix. Since the computation cost of the Hessian matrix in the FL
network is still expensive, we consider an alternative approach to address this problem with a limited
computational resource.

In particular, we use the gradient of the joint model g(wt−τ ) computed during the local training
process. An outer product matrix R(wt−τ ) ∈ Rn×n can be obtained with g(wt−τ ) at the (t− τ)-th
communication round as

R(wt−τ ) =

(
∂

∂w
L(wt−τ ;X)

)(
∂

∂w
L(wt−τ ;X)

)>
. (6)

It can be seen that the outer product matrix R(wt−τ ) and the Hessian matrix H(wt−τ ) are two
equivalent methods to calculate the fisher information matrix Friedman et al. (2001), because the
cross entropy loss in this case is a negative log-likelihood with respect to the softmax function. This
equivalent approach for solving the Hessian matrix has been applied in the recent works Choro-
manska et al. (2015); Kawaguchi (2016). Thus, from the already computed gradients, we obtain an
alternate approximation method to the Hessian matrix by the outer production.

Adaptive Hyper-parameter. Using the gradient outer product to approximate the Hessian matrix,
the optimal gradient g(wt) could be represented as follows

g(wt) = g(wt−τ ) +R(wt−τ )(wt −wt−τ ). (7)

However, this approximation still could still a large error from the omitted high-order items
O((wt) − wt−τ )2)In in the Taylor expansion, especially with a large delay τ , which is common
in FL network settings. Thus, in order to reduce the impact from different stragglers, we introduce
an adaptive hyper-parameter to control the weight of our approximation into the joint model aggre-
gation, which is related to the value of τ and the training round t. The main idea is that a slower
straggler (i.e., a larger τ ) contributes less into the joint model training, and this contribution contin-
uously decreases when communication round increasing (i.e., t) in order to reduce oscillation when
the learning converges. In particular, our AD-SGD method introduces a hyper-parameter λt with an
exponential decay function on t and τ as follows

λt = λ0 exp(−(t− τ)). (8)

where λ0 is a user-defined parameter. While its optimal value can be determined through cross
validation, a constant value of λ0 = 0.5 is used in our experiments. The choice of λ0 in our HFL
algorithm will also be discussed in detail with experimental results in Section. 5.2.

Therefore, using the AD-SGD method, the joint model update for our HFL algorithm in Equation (4)
can be given

wt = (1− λt)ŵt + λt
∑
i∈S2

pi(w
i
t−τi − ηtg(wi

t)), (9)

where g(wi
t) is approximated from the outer product matrix as g(wi

t) = g(wi
t−τi)+R(wi

t−τi)(w
i
t−

wi
t−τi).

3.3 Algorithm Description

To this end, we use the AD-SGD method to bridge the gap between the delayed gradients and the
optimal gradients for stragglers in FL. In particular, we approximate the Hessian matrix using the
outer product gradient with a low computation cost, which have been proved to be equivalent for the
calculation of the Fisher information matrix. With the help of AD-SGD, we are able to achieve a
learning balance in efficiency and effectiveness when stragglers are present in FL. Specifically, we
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Algorithm 1 HFL: Remote device side, index i

Input: Training data Xi, local epoch number E.
The i-th device receives the learning rate ηt and the latest joint model wt from the server at the
t-th round.
Initialize local model: wi

t = wt.
for e = 0 to E − 1 do

Perform local training process via SGD using Equation (3).
end for
if Communication round is (t+ τi) then

Return wi
t+τi and g(wi

t+τi) to the server.
end if

Algorithm 2 HFL: Server side

Initialization: FL network with N devices, communication round T , initialized parameter λ0,
and two sets of remote devices S1 for stragglers and S2 for normal devices.
for t = 0 to T − 1 do

if Updates received from i-th device then
if i ∈ S1 then

Update wt with local model updates wi
t−τi and g(wi

t−τi).
else if i ∈ S2 then

Recall the saved joint model wt−τi .
Approximate the optimal update g(wi

t) using Equation (7).
Update the wt using Equation (9).

end if
Broadcast the updated wt and ηt to the i-th device.

end if
end for

summarize the proposed HFL algorithm in Algorithm 1 and 2, where Algorithm 1 introduces the
local learning process and Algorithm 2 shows the joint model updating mechanism.

According to Algorithm 1, at the t-th round, the i-th remote device receives the current joint model
wt from the server, performs the local training process with E epochs and sends model updates
back to the server at the (t + τi)-th round with various delays for stragglers (τi ≥ 0). And for the
server side, unlike existing FL methods, the server stores a backup model at the t-th round when the
straggler receives the joint model. When the delayed gradient g(wi

t+τi) is received by the server at
the (t+τ)-th round, the server updates the joint model based on the updating rule using Equation (9).

Note that compared to existing synchronous FL algorithms, e.g., FedAvg, there is no extra com-
munication rounds and extra remote device computational requirement in our HFL. In particular,
the approximation cost from the Equation (9) mainly comes from the additional storage of several
previous joint models on the server. The backup of the previous joint model does not violate the
privacy settings of the FL network.

4 Convergence Analysis

In this section, we provide the convergence analysis of the proposed HFL algorithm with the adaptive
approximation method AD-SGD for the delayed gradients. In this paper, both the convex and non-
convex optimization problems are investigated. Due to the space limitation, we only provide the
results and leave the detailed proof to the supplementary materials in Section B.

4.1 Assumptions

To illustrate the convergence analysis, we first provide several assumptions, which are widely used
in the previous works on FL Stich (2018); Sahu et al. (2018); Li et al. (2019); Khaled et al. (2020);
Karimireddy et al. (2020).
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Assumption 1. (L-smooth): The learning objective F (·) is L-smooth with L ≥ 0 such that

||∇F (v)−∇F (u)|| ≤ L||v − u||, ∀u,v. (10)

Remark 1. When the objective is µ-convex and satisfies L ≥ µ, the results in Assumption 1 leads
to

1

2L
||∇F (v)||22 +

1

µ
||v − u||22 ≤ 〈v − u,∇F (u)〉. (11)

Assumption 2. (Bounded gradient): We assume that the delayed gradients in the HFL algorithm
are uniformly bounded as

E||g(wt)||2 ≤ G2 (12)
Definition 1. (Local dissimilarity): We define the difference between the i-th local objective Fi(·)
and the joint objective F (·) with the same joint model wt is bounded as

E||∇Fi(wt)||2 ≤ B2||∇F (wt)||2. (13)

Note that whenB = 1, there is a special case that the local objective is the same as the joint objective.
In this paper, we consider the scenario thatB > 1. Additionally, to quantify the heterogeneity of the
FL network, we also introduce the non-i.i.d. degree of the learning data respect to the weighted factor
pi. For the normal devices in the synchronous kernel, we represent the learning data distribution
as Ψ1, where Ψ1 =

∑
i∈S1

pi. Similarly, the distribution for the stragglers is denoted as Ψ2 =∑
i∈S2

pi. Obviously, we have Ψ1 + Ψ2 =
∑N
i=1 pi = 1.

4.2 Optimization Analysis

Theorem 1. (Convex HFL convergence): For the convex optimization problems, let the Assump-
tions in this paper hold that F (·) is µ-convex and L-smooth, our HFL algorithm satisfies 1

EF (wt)− F (w?) ≤ L2L
3τ2G2σ2

µ6(t+ τ)2B2
+

L3G2

2(t+ τ)µ4B2
,

where B2 = B8Ψ2
1Ψ2

2, and ηt is chosen to satisfy ηt ≤ L
µ2tB4Ψ1Ψ2

.

Corollary 1. (Convergence rate convex): When the convergence of the convex problem is guaran-
teed by the settings ηt ≤ L

µ2tB4Ψ1Ψ2
, the optimization bound comes from two parts: a high-order

part L2L
3τ2G2σ2

µ6(t+τ)2B2
and a low-order part L3G2

2(t+τ)µ4B2
. Note that the high-order term would converge

to a stationary point faster as t grows and we consider the convergence rate of HFL against convex
problems as follows

EF (wt)− F (w?) ≤ O(
1

t+ τ
). (14)

Theorem 2. For the non-convex problems under the Assumption 1-2, we consider the model con-
vergence with a constant learning rate ηt that 2

min
t∈T

E||∇F (wt)||2

≤ 1

TηtB1
[F (w0)− F (w?))] ,

(15)

where the maximum of τ is bounded as t + τ ≤ T , B1 = B4Ψ1Ψ2 and the constant value of ηt
satisfies the following inequality that

η2
tLG

2
√

Ψ2B1

Ψ1

2
− ηtB1G

2 ≤ 0. (16)

Corollary 2. (Convergence rate non-convex): Let ηt ≤ 2
L

√
Ψ1B1

Ψ2
, then the inequality in Equa-

tion (16) is satisfied and we have the convergence rate of our HFL algorithm against non-convex
problems as follows

min
t∈T

E||∇F (wt)||2 ≤ O(
1

T
). (17)

1The detailed proof is shown in the supplementary material Section B.1.
2The detailed proof is shown in the supplementary material Section B.2.
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Figure 2: The learning accuracy comparison of our HFL to the excising methods on the convex
datasets: a) Fashion MNIST; b) Synthetic(0, 0); c) Synthetic(1, 1).

Discussion. Following the above proof steps, we provide the convergence guarantee and obtain
the convergence rate for our HFL algorithm. Let the maximum delayed gradient τ is bounded by
t + τ , T , the convergence rate for both convex and non-convex optimization problems is O( 1

T ).
Recall that in the FedAvg for non-i.i.d. data learning problems Li et al. (2019), the convergence rate
is O( 1

t ), where t is the synchronous communication round. We would note that the convergence
rate of the SOTA FedAvg algorithm could be regarded as a special case in our HFL when τ = 0,
which also follows the design motivation of our algorithm.

Moreover, the magnitude of the communication round for a straggler is T
τ , which indicates the

communication cost in the HFL algorithm is still close to T . Specifically, when τ gets larger,
the convergence rate of HFL might be slower. Which indicates that with fixed T communication
rounds. the learning performance of HFL can be decreased as the value of τ grows. And we will
show empirical results for the choice of different τ in Section 5.

5 Experiments

5.1 Experimental Setup

Models and Datasets. To evaluate the performance of the proposed HFL algorithm, we conduct ex-
periments on multiple datasets for both convex and non-convex optimization problems. For convex
optimization, we design experiments with logistic regression models on the Fashion MNIST Xiao
et al. (2017) and a synthetic dataset. We distribute training samples to different remote devices fol-
lowing the power law distribution to obtain non-i.i.d distributed learning data. The synthetic dataset
is generated in the same way as presented in previous studies Li et al. (2019), which is easy to be
manipulated for controlling data heterogeneity. We denote it as Synthetic(γ, ξ), where γ controls
the difference between any two local models and ξ controls how much difference between the learn-
ing data in each device. For non-convex optimization, we select Sentiment140 (Sent140) Go et al.
(2009) and The Complete Works of William Shakespeare (Shakespeare) McMahan et al. (2017) with
a LSTM classifier.

Experimental Settings. All experiments are conducted in a distributed network that consists of
N = 100 devices. The total number of global communication is T = 200 and the number of local
epochs is E = 5. The maximum value of τ is set to 10 and τi ∈ S2 are uniformly distributed. The
following methods are used for comparison:

1) Sequential SGD (S-SGD) Zinkevich et al. (2010). We implement the standard S-SGD in a
centralized environment. Therefore, this method provides the upper bound performance over all
compared methods in this paper.

2) FedAvg. FedAvg is considered as one of the groundbreaking works in FL research field. We
setup the FedAvg algorithm based on the settings in Li et al. (2019), which provides a convergence
guarantee against non-i.i.d. data problems. In particular, we set the possibility for the server to the
remote devices corresponding to a normalized vector that pi is linear to τi. The value of K for the
number of selected devices in each communication round is set to 10 by default.
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Figure 3: Choice of λ0: a) testing accuracy of HFL with different λ0 values; b) training loss of HFL
with different λ0 values.
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Figure 4: Choice of maximum τ : a) testing accuracy of HFL with different maximum τ values; b)
training loss of HFL with different maximum τ values.

3) FedProx Sahu et al. (2018). FedProx is one popular variant of FedAvg which adds a quadratic
proximal term to limit the impact from local updates in a heterogeneous network. In this paper,
we follow the instructions provided in the original paper to evaluate the performance with 90%
stragglers and the same remote devices possibility distribution in FedAvg.

Implementations. we define the joint model initialization w0 = 0 and the initial learning rate
η0 = 0.1 with a decay function ηt = η0

1+t . In each local training step, we consider that the remote
device use SGD to train local model with its all local training data and with a batch size of 64. For
the delayed gradients in Equation (8), we set λ0 = 0.5.

5.2 Convex Optimization Results

Comparison to benchmarks. In Figure. 2, we compare learning performance for the convex opti-
mization on both synthetic and Fashion MNIST datasets with logistic regression. The results show
that our HFL algorithm achieves the best overall testing accuracy compared to other methods. For
the Fashion MNIST dataset, it can be seen that the upper bound testing accuracy for Fashion MNIST
using the S-SGD method is 84.58% and our HFL reaches 83.41% testing accuracy. Meanwhile, the
converged accuracy for FedAvg is only 71.92% and 75.49% for FedProx. Note that the learning
curve of HFL contains some obvious oscillations, which mainly comes from the approximation of
the optimal model from delayed gradients. We can also notice that as the learning steps t grows,
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Figure 5: The learning performance of the proposed HFL compared with existing methods on the
non-convex datasets: a) testing accuracy of Sent140; b) training loss of Sent140; c) testing accuracy
of Shakespeare; d) training loss of Shakespeare.

the amplitude of the oscillation becomes smaller, which is mainly due to the use of our AD-SGD
method that can reduce the impact of delayed gradients in an adaptive way.

For Synthetic dataset, we evaluate the performance of HFL under two γ and ξ settings, i.e.,
Synthetic(0, 0) and Synthetic(1, 1). The results are shown in Figures 2b-2c. We could notice
that compared to the results in the Fashion MNIST dataset, the performance improvement of HFL
is greater than other methods on both two synthetic datasets. Meanwhile, the convergence rate of
HFL is slower in Synthetic(1, 1) than Synthetic(0, 0). The reason might be that an increasing
data heterogeneity can make the convergence rate more dependent the delayed value τ .

Choice of λ0. Here, we evaluate the choice of λ0 to the performance of HFL. We set the value of
λ0 from 0.1 to 0.9 on the Fashion MNIST dataset with a fixed communication round T = 200, and
the results are shown in Figure. 3. It can be seen that when λ0 = 0.5, HFL has the best the testing
accuracy and the training loss, and the testing accuracy results with different λ0 ranging from 0.1
to 0.9 has a symmetrical pattern with the mean value at 0.5. Additionally, we examine the largest
difference of the testing accuracy in this setting with different values of λ0 is only 0.4%, which
indicates that our algorithm might be adaptive to the setting of λ0 during the training process of
HFL.

Choice of τ . In Sec 4, our discussion suggests that the convergence rate of HFL can be influenced
by the choice of τ . We investigate this case on the Fashion MNIST dataset with different maximum
τ values, followed by a fixed communication round T = 200. The results in Figure 4 come with
maximum τ ∈ [10, 100] and τi, i ∈ S2 is uniformly distributed. We could notice when τ = 10, both
the testing accuracy and the training loss have the best performance. However, we find an inter-
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esting phenomenon that when τ = 40, 50 and 60, learning performance is significantly better than
other settings. We consider the reason of this phenomenon might indicate a non-linear relationship
between the setting of τ and the optimization performance, and this could be a interesting topic for
our further research.

5.3 Non-convex Optimization Results

We then evaluate the performance of our HFL algorithm on non-convex optimization problems. The
comparison results for HFL against existing FL methods on Sent140 and Shakespeare datasets to
train a LSTM classifier are provided. The results in Figures 5a and 5b show that our HFL algorithm
has the best overall testing accuracy and training loss against existing FL algorithms on Sent140. In
particular, the results in Figure 5a show that, although HFL has a slower convergence rate compared
to FedAvg and FedProx, the testing accuracy is significantly higher. Although there are notable
oscillations in the training process of our HFL, we consider it could be tolerated by comparing the
amplitude of the oscillation to other FL algorithms.

The results in Figures 5c-5d show the comparison on the Shakespeare dataset. From the results,
we can see that, compared to the FedAvg and the FedProx, HFL obtains has an improved testing
accuracy and training loss. Although the results show a clear gap between HFL and S-SGD method
and the convergence rate of HFL is slow in this dataset, HFL still outperforms FedAvg and FedProx
with a non-overfitting training loss and at least 12% higher testing accuracy. In conclusion, we
believe the proposed HFL algorithm has a better performance against other FL methods for solving
non-convex optimization problems.

6 Conclusion

In this paper, we investigated the impact of stragglers on the performance of non-i.i.d. optimiza-
tion in a heterogeneous network for FL. We proposed a new FL algorithm, called HFL, with two
key components: a synchronous kernel and an asynchronous updater to train the joint model under
two difference communication scenarios. To incorporate delayed local gradients from stragglers,
we designed an adaptive approximation method, called AD-SGD. We demonstrated the effective-
ness of HFL through theoretical convergence analysis and experimental evaluations. Theoretically,
we provided the convergence guarantee of our HFL on both convex and non-convex optimization
problems in heterogeneous network, followed by a discussion on the convergence learning rate. Em-
pirically, we showed that HFL outperforms existing synchronous FL methods on both synthetic and
real-world benchmarks.
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Supplementary
Stragglers Are Not Disaster: A Hybrid Federated

Learning Algorithm with Delayed Gradient

February 15, 2021

A Related Work

Federated learning. Federated Learning (FL) Konečnỳ et al. (2016), is a novel collaborative learn-
ing model in a distributed network which is usually with a center server and multiple remote devices.
As the development of distributed networks, FL has attracted great interest from the ML research
field. In a FL network, a joint model is trained on the server with the dataset distributed among
the remote devices. Specially, the training process of the FL model is without data sharing, which
protects the data privacy in the network. The joint model is often trained to address distributed
optimization problems, e.g., next word prediction Hard et al. (2018); Yang et al. (2018). Existing
works on the FL mainly focus on the following categories: i) communication efficiency Konečnỳ
et al. (2016); McMahan et al. (2017); Sahu et al. (2018); Smith et al. (2017); Li et al. (2019); ii)
distributed optimization problem Sattler et al. (2019); Zhao et al. (2018); Yan et al. (2020) and iii)
privacy consideration Baruch et al. (2019); Fang et al. (2019); Bhagoji et al. (2019).

Heterogeneous optimization in FL. McMahan et al. (2017) first proposes the SOTA Federated
Averaging (FedAvg), which provides a convergence guarantee on the i.i.d optimization problems
as well as being able to address the communication bottleneck of FL. By training the joint model
with only a subset of devices in each communication round, instead of a full device participation
scheme, FedAvg significantly increase the training speed of the joint model. Works from Sattler
et al. (2019); Zhao et al. (2018) consider the optimization scenarios with non-i.i.d distributed learn-
ing data, however, the results in their works come without the convergence rate. Li et al. (2019)
investigate the FedAvg algorithm and provides a novel FedAvg mechanism to address non-i.i.d data
optimization. A convergence guarantee is provided in Li et al. (2019) with two assumptions: i) all
the remote devices are active during the training process; ii) the server can randomly access each
server in every communication round. To address the FL in a heterogeneous network, Sahu et al.
(2018) proposes FedProx, which is a popular variant of FedAvg with an added quadratic proximal
term. This algorithm takes the statistical heterogeneity of the devices into consideration and gives
a convergence guarantee on non-convex optimization problems under non-i.i.d settings. However,
the existing works, e.g., FedAvg and FedProx, are both developed based on impractical assumptions
that can violate the FL settings in real-world applications.

B Convergence Analysis of HFL

B.1 Convex Optimization

To introduce the convergence analysis of HFL against the convex optimization problems, we first
introduce several extended assumptions, which have been applied in the previous FL convex opti-
mization researches. In particular, the Assumption 4 and 5 have been made by the previous works
Yu et al. (2019); Stich (2018); Stich et al. (2018) and the Assumption 3 is widely applied in existing
works.
Assumption 3. (Bounded local objective:) For the i-th device at the t-th communication round, we
consider the variance of the stochastic gradient against convex optimization problems in this local
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training process is uniformly bounded as

E||∇F (wi
t,X

i
t)||2 ≤ σ2. (18)

Assumption 4. (µ-Quasi Convex): The objective function F (·) for the FL network is differentiable
and µ-quasi convex with a constant value µ that

F (w?) ≥ F (u) + 〈w? − u,∇F (u)〉+
µ

2
||w? − u||2, (19)

where u represents an arbitrary weight status corresponding to the objectives.

Assumption 5. L2 smoothness: We define the difference between the optimal gradient and the
approximation as ε, where ε = ||g(wt)− g(wt−τ )−R(wt−τ )(wt−wt−τ )||. The difference value
ε is considered to be L2-smooth with a constant value L2 that

ε ≤ L2

2
||wt −wt−τ ||2, (20)

where ε can be considered as the higher order item deviation in the Taylor Expansion.

Theorem 3. For the convex optimization problems, let all the assumptions in this paper hold that
F (·) is µ-convex and L-smooth with bounded stochastic gradients, our HFL algorithm satisfies

EF (wt)− F (w?) ≤ L2L
3τ2G2σ2

µ6(t+ τ)2B2
+

L3G2

2(t+ τ)µ4B2
, (21)

when ηt ≤ L
µ2tB4Ψ1Ψ2

and B2 = B8Ψ2
1Ψ2

2.

Proof. We start the proof of Theorem 3 from an ideal t-th communication round. Supposing that
at t-th round, the server communicates with each remote device, then with a maximum delayed
gradient step τ , we have the following relationship

EF (wt+τ+1)− F (w?)

(a1)

≤ F (wt+τ )− F (w?) + 〈∇F (wt+τ ),wt+τ+1 −wt+τ 〉+
L

2
||wt+τ+1 −wt+τ ||2

(a2)

≤ F (wt+τ )− F (w?)− ηt+τ 〈∇F (ŵt+τ ),wt+τ+1 −wt+τ 〉+
L

2
||wt+τ+1 −wt+τ ||2

(a3)

≤ F (wt+τ )− F (w?)− ηt+τ 〈
∑
i∈S1

pi∇Fi(ŵt+τ ),wt+τ+1 −wt+τ 〉+
L

2
||wt+τ −wt+τ−1||2

(a4)

≤ F (wt+τ )− F (w?) +
L

2
||wt+τ+1 −wt+τ ||2 − ηt+τB2Ψ1〈∇F (wt+τ ),∇F (wt+τ )− ε〉

= F (wt+τ )− F (w?) +
L

2
||wt+τ+1 −wt+τ ||2 − ηt+τB4Ψ1Ψ2〈∇F (wt+τ ),∇F (wt+τ )− ε〉,

where the inequality (a1) comes from the L-smooth assumption, and we consider the joint model is
updated via the virtual synchronous sequence ŵ in (a2). Additionally, at (a3), we have the results
from ŵt =

∑
i∈S1

piw
i
t. And from the L2 smoothness in the Assumption C, we represent the

expansion of g(wt+τ ) = wt+τ+1 −wt+τ . Then, let A1 = 〈∇F (wt+τ ),∇F (wt+τ )− ε〉, we have

A1 ≤ 〈∇F (wt+τ ),∇F (wt+τ )〉 − 〈∇F (wt+τ ), ε〉,

from the µ-strongly convex assumption we could have

−〈∇F (wt+τ ),∇F (wt+τ )〉 ≤ −2µ2

L
(F (wt+τ )− F (w?)). (22)

And according to the Cauchy–Schwarz inequality easily we could have

ηt+τ 〈∇F (wt+τ ), ε〉 ≤ ηt+τ ||∇F (wt+τ )||ε

≤ ηt+τσ2L2

2
||wt+τ −wt||2 ≤ ηt+τσ2G2L2

2
τ

τ−1∑
j=0

η2
t+j ,
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for this inequality, when ηt ≤ L
µ2tB4Ψ1Ψ2

, we could have
∑τ−1
j=0 η

2
t+j ≤ L2τ

µ4t(t+τ)B8Ψ2
1Ψ2

2
≤

2L2τ
µ4(t+τ)2B8Ψ2

1Ψ2
2
.

Thus, we get back to EF (wt+τ+1)− F (w?) and have

EF (wt+τ+1)−F (w?) ≤ (1− 2

t+ τ
)EF (wt+τ )−F (w?)+

L2L
3τ2G2σ2

µ6(t+ τ)3B8Ψ2
1Ψ2

2

+
L3G2

2(t+ τ)2µ4B8Ψ2
1Ψ2

2

.

Let B2 = B8Ψ2
1Ψ2

2 and rearrange the result we could get

EF (wt)− F (w?) ≤
t+τ∑
j=t

L2L
3τ2G2σ2

µ6(t+ j)3B2
+

L3G2

2(t+ j)2µ4B2

≤ (t+ τ)

(
L2L

3τ2G2σ2

µ6(t+ τ)3B2
+

L3G2

2(t+ τ)2µ4B2

)
≤ L2L

3τ2G2σ2

µ6(t+ τ)2B2
+

L3G2

2(t+ τ)µ4B2
.

Proof done.
Corollary 3. (Convergence rate: convex): Following the above proof steps, we provide the conver-
gence guarantee of the convex optimization problems in our proposed HFL algorithm. In particular,
when ηt is bounded by L

µ2tB4Ψ1Ψ2
, the optimization bound of HFL could be represented as two

parts: a high-order part L2L
3τ2G2σ2

µ6(t+τ)2B2
and a low-order part L3G2

2(t+τ)µ4B2
.

Note that the high-order part would converge to a stationary point faster than the low-order part.
Thus, we introduce the convergence rate of our HFL which follows the low-order part that

EF (wt)− F (w?) ≤ O(
1

t+ τ
). (23)

B.2 Non-convex Optimization

Theorem 4. For the non-convex problems under the Assumption 1-2, we consider the model con-
vergence with a constant learning rate ηt that

min
t∈T

E||∇F (wt)||2 ≤
1

TηtB1
[F (w0)− F (w?))] , (24)

where T is considered to be a bound of τ that t + τ ≤ T , and B1 = B4Ψ1Ψ2. Specifically, the
bound of ηt needs to satisfy the following inequality

η2
tLG

2
√

Ψ2B1

Ψ1

2
− ηtB1G

2 ≤ 0. (25)

Proof. Following the L-smooth assumption for the joint objective, we start from the result at the
(t+ τ + 1)-th step as

EF (wt+τ+1)− F (wt+τ )

(b1)

≤ 〈∇F (ŵt+τ ),wt+τ+1 −wt+τ 〉+
L

2
||wt+τ+1 −wt+τ ||2

(b2)

≤ −ηt+τ 〈∇F (ŵt+τ ), R(wt) + g(wt)〉+
L

2
||wt+τ+1 −wt+τ ||2

(b3)

≤ −ηt+τ 〈
∑
i∈S1

pi∇Fi(wt+τ ),
∑
j∈S2

g(wj
t+τ )〉+

L

2
||wt+τ+1 −wt+τ ||2

≤ −ηt+τB4Ψ1Ψ2〈∇F (wt+τ ), g(wt+τ )〉+
L

2
||wt+τ+1 −wt+τ ||2

(b4)

≤ −ηt+τB4Ψ1Ψ2(G2 + ||∇F (wt+τ )||2) +
η2
t+τLB

2Ψ2

2
||g(wt+τ )||2.

14



The derivations of the inequality (b1), (b2) and (b3) follow the same steps in (22). And the results
in (b4) come from the feature of the inner product vector: for two vectors u,v ∈ R, we have
〈u,v〉 ≤ ||u||2||v||2. Then, let B1 = B4Ψ1Ψ2, we have

EF (wt+τ+1)− F (wt+τ ) ≤ −ηt+τB1E||∇F (wt+τ )||2 +
η2
t+τLG

2
√

Ψ2B1

Ψ1

2
− ηt+τB1G

2.

Then, we could summarizing the previous inequality from t = 1 to T = t+ τ that

EF (wT+1)− F (w1) ≤ −ηtB1

T∑
t=1

E||∇F (wt)||2 + Φ, (26)

where Φ ,
Tη2

tLG
2
√

Ψ2B1
Ψ1

2 − ηtB1G
2. Thus, when the value of Φ ≤ 0, the (9) comes with the

convergence guarantee. By replacing the joint model w with the optimal result w? we could have

1

T

T∑
t=1

E||∇F (wt)||2 ≤
1

TηtB1
F (wt)− F (w?). (27)

Then the proof of convergence is done.
Corollary 4. (Convergence rate: non-convex): Let the learning rate is bounded as ηt ≤
2
L

√
Ψ1B1

Ψ2
, then we have the value Φ ≤ 0 by satisfying the inequality in Eq. (25). Thus, we ob-

tain the convergence rate for the HFL algorithm on non-convex problems as

min
t∈T

E||∇F (wt)||2 ≤ O(
1

T
), (28)

where T ≥ t + τ , in this condition, we obtain a convergence rate of our HFL algorithm with the
maximum delayed gradient τ .
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Table 2: Description of the datasets in this paper.
Dataset Size Classes Devices

Fashion MNIST 70, 000 10 100
Synthetic(0, 0) 42, 522 10 100

Synthetic(0.5, 0.5) 42, 522 10 100
Synthetic(1, 1) 27, 348 10 100

Shakespeare 517, 106 80 100
Sent140 40783 null 100
MNIST 70, 000 10 100

C Experiments

C.1 Detailed Experimental Setting

Implementation. In this paper, we evaluate our HFL algorithm on multiple tasks, models and
datasets in a simulated federated network. All the experiments are performed with Pytorch Paszke
et al. (2017) platform at version 1.6.0, and we represent the remote devices by lightweight threads
with Python threading library. In order to simulate the asynchronous update process, we assign
τ -related flags to difference remote device threads.

Models. For the convex optimization problems, we evaluate our algorithm with a multinomial
logistic regression model. We represent the prediction model as f(w;xi) where w = (W,b),
which satisfies f(w;xi) = softmax(Wxi + b). Then we have the loss function as

1

N

N∑
i=1

CrossEntropy(f(w;xi)) + ε||w||2,

where we define ε = 10−4 in this paper. And for the non-convex optimization problems, in this
paper we introduce a LSTM classifier with a recurrent neural network (RNN) Zaremba et al. (2014)
architecture.

Datasets. In this part, we provide the full introduction of the datasets and the numerical information
of datasets is summarized in Table 2.

1) Synthetic Data. The synthetic data in this paper are developed followed by the original setup
from the work in Shamir et al. (2014); Li et al. (2019), which is designed to simulate a quadratic
problem. Specifically, for the i-th remote device, we generate the learning data samples (xi, yi) from
a softmax function yi = arg max(softmax(wixi+bi)), where we define xi ∈ R60, wi ∈ R60×10

and bi ∈ R10. Additionally, we define the distribution of wi,bi separately as wi ∼ N (ui, 1) and
bi ∼ N (ui, 1), where we consider ui ∼ N (0, γ). For xi, we consider xi ∼ N (vi,Σ), where Σ
represents a diagonal covariance matrix and vi ∼ N (Bi, 1), Bi ∼ N (0, ξ). In this situation, we use
the parameters γ and ξ to manipulate the heterogeneity of the synthetic dataset.

2) Fashion MNIST Xiao et al. (2017). For the real dataset, we introduce Fashion MNIST in this
paper as it has been popular among the ML research filed in the recent years. In order to build a
non-i.i.d case, we consider each remote device only contains two labels of learning samples and to
show the heterogeneity, we distribute the learning data from a power law.

3) Shakespeare McMahan et al. (2017). The Shakespeare dataset is developed from “The Com-
plete Works of William Shakespeare McMahan et al. (2017)”. The task of this dataset is to predict
the next-character from a input sequence. The number of characters(classes) is 80 and the total
number of input sequence is 517, 106.

4) Sent140 Go et al. (2009). Sent140 is a text sentiment analysis dataset and popular in the non-
convex problem experimental settings in the ML field. Sent140 provides a task to find to corre-
sponding twitter account with a sequence of 25 characters as input.

5) MNIST LeCun et al. (1998). MNIST is a classic handwritten digits dataset from 0-9 for image
classification problems. The data participation of MNIST in this paper follows the same setups in
the Fashion MNIST and we use this dataset for extended evaluations in the supplementary material.
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Figure 6: The learning performance comparison of our HFL to the excising benchmarks on convex
problems with non-i.i.d distributed datasets: a) training loss of Fashion MNIST; b) training loss of
Synthetic(0, 0); c) training loss of Synthetic(1, 1);
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Figure 7: The learning performance for the compared benchmarks on the i.i.d distributed dataset
Synthetic(0, 0): a) the testing accuracy; b) the training loss.

C.2 Results for Additional Experiments

Training loss of experiments in the paper. We first introduce the training loss results in Figure 6.
Specially, the training loss experimental settings follow the testing accuracy evaluation in Figure 2.
We consider the results of training loss support the analysis of comparison between HFL against
existing benchmarks in Sec. 5 in the main paper.

Extended experiments with i.i.d datasets. Then, we evaluate the performance of our proposed
HFL algorithm against the compared benchmarks on the i.i.d optimization problems in an identically
distributed Synthetic(0, 0) dataset. The results are shown in Figure 7 which contains the training
loss and the testing accuracy.

Extended experiments with non-i.i.d datasets. We conduct extended experimental evaluation for
HFL algorithm against the benchmarks under the non-i.i.d distributed training datasets. We first
show the evaluation on a non-i.i.d distributed Synthetic(0.5, 0.5) dataset, the results are shown in
Figure 8. Additionally, we introduce the experimental results on the non-i.i.d distributed MNIST
dataset, the compared testing accuracy and training loss for the HFL and the benchmarks are shown
in Figure 9.

Choice of τ . We extend the investigation of the choice of τ in the HFL algorithm. In the main
paper, we discuss the choice of τ with a non-i.i.d distributed Fashion MNIST dataset. Thus, in
the supplementary, we conduct multiple experiments to investigate the choice of τ . For the i.i.d dis-
tributed Synthetic(0, 0), we introduce the choice of τ in Figure. 12. And for the non-i.i.d distributed
Synthetic(0, 0), Synthetic(0.5, 0.5) and Synthetic(1, 1) datasets, we introduce the results in Fig-
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Figure 8: The learning performance for the compared benchmarks on the non-i.i.d distributed dataset
Synthetic(0.5, 0.5): a) the testing accuracy; b) the training loss.
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Figure 9: The learning performance for the compared benchmarks on the non-i.i.d distributed
MNIST dataset: a) the testing accuracy; b) the training loss.

ure. 11-14 and Figure. 10. And for the MNIST dataset, we introduce the results in Figure. 13. We
could notice from those results that they supports the analysis for the choice of τ in the main paper.
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values.
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Figure 12: Choice of τ on the i.i.d distributed Synthetic(0, 0) dataset: a) the learning accuracy
of HFL with different maximum τ values; b) the training loss of HFL with different maximum τ
values.
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Figure 13: Choice of τ on the non-i.i.d distributed MNIST dataset: a) the learning accuracy of HFL
with different maximum τ values; b) the training loss of HFL with different maximum τ values.
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