
Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via
Geolocation API

Xiao Han
University of South Florida

Tampa, FL, USA
xiaoh@usf.edu

Junjie Xiong
University of South Florida

Tampa, FL, USA
junjiexiong@usf.edu

Wenbo Shen
Zhejiang University

Hangzhou, Zhejiang, China
shenwenbo@zju.edu.cn

Zhuo Lu
University of South Florida

Tampa, FL, USA
zhuolu@usf.edu

Yao Liu
University of South Florida

Tampa, FL, USA
yliu21@usf.edu

ABSTRACT
Location spoofing attack deceiving a Wi-Fi positioning system has
been studied for over a decade. However, it has been challenging
to construct a practical spoofing attack in urban areas with dense
coverage of legitimate Wi-Fi APs. This paper identifies the vulnera-
bility of the Google Geolocation API, which returns the location
of a mobile device based on the information of the Wi-Fi access
points that the device can detect. We show that this vulnerability
can be exploited by the attacker to reveal the black-box localization
algorithms adopted by the Google Wi-Fi positioning system and
easily launch the location spoofing attack in dense urban areas with
a high success rate. Furthermore, we find that this vulnerability can
also lead to severe consequences that hurt user privacy, including
the leakage of sensitive information like precise locations, daily
activities, and demographics. Ultimately, we discuss the potential
countermeasures that may be used to mitigate this vulnerability
and location spoofing attack.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; Web appli-
cation security; • Networks → Wireless access points, base stations
and infrastructure.

KEYWORDS
Wi-Fi Localization; Localization Attacks; Geolocation APIs

ACM Reference Format:
Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu. 2022. Location
Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560623

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560623

1 INTRODUCTION
Wi-Fi positioning systems have been commercialized and widely
used as a complement to conventional GPS-based positioning sys-
tems. Specifically, a mobile device relies on its 802.11a/b/g compat-
ible wireless interface to collect Wi-Fi information, e.g., Medium
Access Control (MAC) addresses about Wi-Fi access points (APs)
in its vicinity. The mobile device sends this information to a Wi-Fi
positioning system, which then looks up a database table that maps
collections of Wi-Fi information to geographic locations and replies
to the mobile device with a corresponding location.

Spoofing attacks against Wi-Fi positioning systems have been
studied for over a decade. The basic idea is simple and straightfor-
ward. In particular, when at location B, an attacker simply broad-
casts theWi-Fi information collected from locationA. Consequently,
a mobile device at location B is deceived and obtains a wrong po-
sition estimate of location A from the Wi-Fi positioning system.
Although this type of spoofing attack is easy to implement and
seems to be effective, surprisingly, past research and practice show
that such an attack can trivially impact a Wi-Fi positioning system,
especially in urban environments with dense coverage of Wi-Fi
APs. For example, the SkyLift, a low-cost Wi-Fi device that spoofs
locations by using Wi-Fi microchip ESP8266, “may have little or
no ability to spoof locations in dense urban environments where
there are dozens of Wi-Fi networks” [18], and [52] mentions that
spoofing attacks failed to spoof a victim device from its current lo-
cation to a location far away, where the current location is covered
by multiple public Wi-Fi APs.

Traditional attacks assume that the victim device is located in
environments surrounded by few visible Wi-Fi APs (i.e., less than
5) . In practice, however, a victim device normally receives Wi-Fi
information from both the attacker and dozens of legitimate APs
nearby, and reports all collected Wi-Fi information to the Wi-Fi
positioning system. This implies that the existence of legitimate APs
may interfere with the attacker’s fake information in the decision-
making process at the Wi-Fi positioning system. Tippenhauer el al.
[52] proposes to remove Wi-Fi signals from legitimate Wi-Fi APs
by using physical-layer jamming, such that the spoofing attack can
achieve a better success rate. Nevertheless, jamming attacks require
additional wireless equipment that is programmable at the physical
layer. This can further complicate the practical implementation of
the attack. Moreover, the victim device may be aware of jamming

https://doi.org/10.1145/3548606.3560623
https://doi.org/10.1145/3548606.3560623

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

signals, and detecting the presence of jamming attacks has been
extensively studied in the literature [54, 63].

In this paper, we aim to address the following research questions.
First, is it possible to spoof a Wi-Fi positioning system in dense
urban areas without physical-layer jamming? If yes, what are the
critical conditions that an attacker must meet? The main research
challenge that we face to answer both questions is that location
estimation algorithms that are adopted by a typical Wi-Fi position-
ing system are not public information. In other words, it is unclear
how a Wi-Fi positioning system determines the position estimate
when it receives Wi-Fi information from different locations. Using
the example of Google, assume that the Google Wi-Fi positioning
system receives mixed Wi-Fi information collected from Hamilton
Park in New Jersey and Empire State Building in Manhattan in the
same request. How does Google determine the location? Where is
the position estimate result from Google?

We aim to resolve this challenge and unveil the key factors
that can significantly affect the success of the spoofing attack. We
focus on the Google Wi-Fi positioning system, because it is the
mainstream and most widely adopted system that supports the nav-
igation and localization needs for over 1 billion people worldwide
[15]. We find that Google provides the Geolocation API that en-
ables a mobile device to obtain its location estimate by submitting
collected Wi-Fi information to Google. Upon the request from this
API, Google searches a location look-up table (LLT), which contains
the locations of Wi-Fi APs in the connected world.

We find that an attacker can exploit the Geolocation API to re-
veal the location data residing in LLT at a negligible cost. We refer
to this attack as LLT inference attack. Specifically, assume that the
attacker detects multiple APs from the geographic location that he
is currently at. Without the LLT inference attack, the attacker can
only know that these APs are close to his current location. Nev-
ertheless, by launching the LLT inference attack, the attacker can
further identify the precise locations recorded by LLT for these APs.
Knowing this information is important for the attacker because it
can enable the attacker to launch successful spoofing attacks in
dense urban environments without physical-layer jamming. In par-
ticular, given the revealed locations of Wi-Fi APs in LLT, an attacker
is capable of identifying the black-box localization algorithms used
by the Google Wi-Fi positioning system. We discover four criteria
enforced by Google in determining the position estimate when it
receives mixed Wi-Fi information from multiple locations. These
criteria can guide an attacker to intelligently craft malicious Wi-Fi
information that deceives a victim device. The contributions of this
paper are summarized below.

• We create the LLT inference attack that is capable of stealing
the location data from the Google location database by ex-
ploiting the Google Geolocation API. It enables the attacker
to obtain the precise locations of APs in LLT, nomatter where
these APs are located. We thoroughly validate this attack
and point out the restrictions on conducting this attack.

• We demonstrate that an attacker can figure out the black-
box localization algorithms used by Google based on the
precise locations of APs revealed by the LLT inference attack.
Specifically, the attacker can know how Google generates

1.

3.Client
Server

2.
Wi-Fi APs

Figure 1: Localization process of Wi-Fi positioning system: 1.
The client device detects Wi-Fi APs in its reception range. 2.
The client device queries the LLT server. 3. The server returns
a position estimate based on the received Wi-Fi information.

a position estimate in the response to an API request that
includes mixed Wi-Fi information from multiple locations.

• We further show that an attacker can construct a highly
efficient location spoofing attack against the Google Wi-
Fi positioning system with the knowledge of the precise
locations of APs and the localization algorithms used by
Google. Unlike the traditional location spoofing attack, the
discovered attack is more lightweight and stealthy, because
it does not need to jam the Wi-Fi signals from legitimate
APs for a good success rate in most cases.

• In addition to the location spoofing attack, we discover that
the LLT inference attack can raise other severe privacy con-
cerns. For example, the precise location of an AP enables an
attacker to know the exact address of the apartment, house,
building, office, etc that hosts this AP. As a result, the attacker
is able to infer sensitive information (e.g., precise locations,
video content that they watch, and demographics) through
Wi-Fi traffic analysis targeting a specific household. Besides
the Google location service, we further study the vulnerabil-
ity of other location services (e.g., Mozilla, SkyhookWireless,
and WiGLE) and identify that the Mozilla location service is
vulnerable to the LLT inference attack.

• We evaluate the performance of the location spoofing attack
using public APs collected in the city where we conducted
this research. The result shows that an attacker can success-
fully fool a victim device with a success rate of 0.99 (i.e. 693
out of 696 trials) compared to that of 0.5 achieved by the tra-
ditional spoofing attack without jamming. We also discuss
the potential countermeasures to mitigate the discovered
location spoofing and the LLT inference attacks.

2 BACKGROUND
In this section, we introduce the preliminaries of Wi-Fi positioning
systems, then the Google Geolocation API, and finally present an
overview of our work.

2.1 Wi-Fi Positioning Systems
The most widespread techniques of Wi-Fi positioning systems in-
clude range-based mode and range-free mode. Both modes use

Location Heartbleeding: The Rise of Wi-Fi Spoofing A�ack Via Geolocation API CCS '22, November 7�11, 2022, Los Angeles, CA, USA.

Wi-Fi APs as localization stations that broadcast service announce-
ment beacons from known locations at a �xed interval (e.g., 102.4
milliseconds). In range-based mode, a mobile device detects localiza-
tion signals transmitted by nearby Wi-Fi APs, records the Received
Signal Strength (RSS) measurements, and sends the aggregated
Wi-Fi information to the Wi-Fi positioning system, which then
converts these RSS values into ranges and estimates the position
of the client device based on these ranges. In range-free mode, the
client device scans Wi-Fi APs in its reception range. The Wi-Fi
positioning system then estimates the position of the client device
based on the known locations of these visible Wi-Fi APs. Typically,
both modes achieve a positioning accuracy in the order of meters.

Location lookup table (LLT). Google Wi-Fi positioning system
is a metropolitan area positioning system. It is a software-only
system that requires a mobile device to have a WLAN-capable
chipset and Internet connection. Google maintains the LLT, which
contains estimated location data of Wi-Fi APs in the connected
world. Google updates and extends its LLT by correlating GPS
location data and the Wi-Fi information uploaded by a mobile
device. For each Wi-Fi AP available in LLT, Google records its MAC
address and an estimated geographic location.

Localization process. The localization process of Wi-Fi posi-
tioning systems can be divided into three steps as seen in Figure
1. In step 1, a mobile device scans all 802.11a/b/g channels for vis-
ible Wi-Fi APs. Meanwhile, it records their MAC addresses and
corresponding signal strengths once detects these APs. In step 2,
the mobile device queries the Google LLT server with the recorded
MAC addresses and corresponding signal strengths over an en-
crypted channel. In step 3, the LLT server compares the reported
MACs to the data residing in its LLT, computes a position estimate
leveraging the estimated geographic locations of these MACs in
LLT, and �nally returns the position estimate to the mobile device.

2.2 Google Geolocation API
Geolocation API is one of the Places APIs hosted by Google Maps
Platform. It returns a localization result based on the information
about cell towers and Wi-Fi nodes that a mobile client can detect.
The communication is done over HTTPS using Power-On Self-Test
(POST). Both request and response are formatted as JSON (an open
standard �le format). In this paper, each API request is composed of
information about Wi-Fi APs. Due to privacy concerns of leaking
location data of Wi-Fi APs, the request payloadwifiAccessPoints
must contain at least two Wi-Fi access point objects. For each Wi-
Fi AP object, the �eld ofmacAddressis required, and all other
�elds are optional, includingsignalStrength , age, channel, and
signalToNoiseRatio . A successful geolocation request returns a
JSON-formated response containing the �elds oflocation and
accuracy, wherelocation consists of an estimated geographic
location with latitude and longitude, andaccuracy indicates the
accuracy of the estimatedlocation in meters and represents the
radius of a circle around the givenlocation . In the case of an error,
the API returns a JSON-formated error response. The error could be
related to various reasons. For example, no location data in LLT for
the received Wi-Fi MAC addresses would result in an error indicat-
ing no results were found even the request was valid. In most cases,

Google Geolocation API is adopted to provide accurate position
estimates for web services, such as restaurant recommendations.

2.3 Overview of the Attack
In this section, we present an overview of our attacks. Our work
can be categorized as follows:

First, we demonstratethe LLT inference attackin Section 3, which
is capable of discovering the geographic location of each AP avail-
able in LLT from the Google location database. We validate this
attack and present the restrictions on launching it. In Section 4, we
show the privacy concerns raised by the LLT inference attack.

Second, in Section 5, we show how the revealed locations of APs
in LLT enable an attacker to launch a successful location spoo�ng
attack in dense urban areas without jamming. Our �ndings are
summarized into four criteria. In Section 6, we evaluate the e�ec-
tiveness of our spoo�ng attack under di�erent scenarios. We also
show the weakness of the traditional spoo�ng attacks even under
optimal conditions. Finally, we discuss the potential countermea-
sures mitigate our spoo�ng attack in Section 7.

3 LLT INFERENCE ATTACK
As mentioned earlier, we discover that an attacker can use the
LLT inference attack to reveal the geographic locations of APs in
LLT from the Google location database. We thoroughly discuss the
privacy threat raised by this technique. Eventually, it enables an
attacker to construct the location spoo�ng attack without relying
on jamming techniques in dense urban areas.

Brief overview of the LLT inference attack. Assume that the
attacker is at location! 1 and he detects= APs from this location,
namely�%1, �%2, ...,�%=. As discussed earlier, the attacker wants
to know the precise locations that are recorded by LLT for these
APs. Towards this goal, we �nd that the attacker can simply use
an AP that its coarse location is far away from location! 1 (e.g.,
over 300 meters), and makes= API requests with this faraway AP
and each of the detected APs (this faraway AP must be available in
LLT, but the attacker does not need to know its precise location).
In particular, the attacker sends= API requests with (�%1, faraway
AP), (�%2, faraway AP), ..., and (�%=, faraway AP) individually, and
accordingly Google returns the attacker with= position estimates
' 1, ' 2, ...,' =. We discover that, under certain conditions (see Section
3.3), these position estimates can leak the LLT to the attacker. In
what follows, we discuss these conditions and the details of the
attack. Note that, for each API request, the attacker only needs to
�ll in the �elds of macAddressandsignalStrength for each of the
two APs. Other �elds such aschannel andsignalToNoiseRatio
are optional and they do not impact on the localization results. The
attacker can just rule out these �elds.

3.1 Range-free Mode
We start by demonstrating the LLT inference attack using the range-
free mode as shown in Figure 2(a). For the range-free mode, the
payloadwifiAccessPoints of a Geolocation API request only con-
tains the �eld of macAddressof each AP. Recall that the range-free
mode localizes a mobile device based on the known locations of APs
in the reception range of the mobile device. The range-free mode
does not use RSS values to localize a device, nor does it provide

CCS '22, November 7�11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

(a) Range-free mode (b) Range-based mode

Figure 2: Examples of the Google Geolocation API requests
with two APs using the range-free mode and the range-based
mode, respectively.

the estimated distances between APs and a mobile device in the
response to an API request.

We �nd that Google returns a position estimate that is the middle
point on the line between the geographic locations of two APs in
LLT by making an API request with these APs using the range-free
mode. This means that even without the estimated distances, an
attacker can compute the locations of APs in LLT using the position
estimates obtained by making API requests with pairwise APs. In
particular, as shown in Figure 3(a), let�%� , �%� , and�%� denote
three APs detected from three di�erent locations! � , ! � , and! � ,
respectively. By making API requests with pairwise APs, i.e., (�%� ,
�%�), (�%� , �%�), and (�%� , �%�) using the range-free mode, the
Geolocation API returns the position estimates' �� , ' �� , and' �� ,
respectively, where' �� , ' �� , and' �� are the midpoints between
the geographic locations of�%� , �%� , and�%� , respectively. Then
the attacker is able to compute the geographic locations of three
APs in LLT by solving the following equation:

2
6
6
6
6
4

- � ¸ - � . � ¸ . �
- � ¸ - � . � ¸ . �
- � ¸ - � . � ¸ . �

3
7
7
7
7
5

= 2 �

2
6
6
6
6
4

- �� . ��
- �� . ��
- �� . ��

3
7
7
7
7
5

(1)

where- � , - � , and- � represent the latitude of�%� , �%� , and�%�
respectively,. � , . � , and. � represent the longitude of�%� , �%� ,
and�%� respectively,- �� , - �� , and- �� is the latitude of' �� ,
' �� , and' �� respectively, and. �� , . �� , and. �� is the longitude
of ' �� , ' �� , and' �� respectively. The six unknowns- � , - � , - � ,
. � , . � , and. � can be directly solved from Equation(1). They form
the geographic locations of these APs residing in LLT.

Validation. We validate the conjecture that the above position
estimate is the middle point leveraging theaccuracy �eld of each
Geolocation API response. For each API request, in addition to
the position estimate, Google also returns anaccuracy value that
describes how accurate the localization is. The physical location
of the mobile device falls in a circle that centers at the position
estimate with a radius of the accuracy value. Assume that�%� and
�%� indeed lie on the circle and the distance between�%� and
�%� is the diameter of this circle as seen in Figure 3(b). As a result,
the returnedaccuracy value must be equal to half of the distance
between the inferred geographic locations of�%� and �%� . To
validate our conjecture, we perform a trial of experiments using

(a) (b)

Figure 3: LLT inference attack: (a) The geographic locations
of �%� , �%� , and �%� in LLT calculated using the position
estimates ' �� , ' �� , and ' �� from API requests with pairwise
APs, i.e., (�%� , �%�), (�%� , �%�), and (�%� , �%�) using the
range-free mode and (b) �%� and �%� lie on the circle around
the position estimate ' �� given the accuracy �eld.

1,590 public APs, which are collected while driving 1.6 miles along a
route starting from location! � where we detect�%� . We then make
API requests with pairwise APs between each of the 1,590 APs and
�%� using the range-free mode and obtain the position estimate and
the accuracy value of each API request. The geographic location
of �%� in LLT is calculated using Equation (1).

Our intuition is that, given the known location of�%� and the
position estimates by making API requests with pairwise APs be-
tween 1,590 APs and�%� , the distance between the location of
�%� and each position estimate must be equal to the corresponding
accuracy value if the position estimate is indeed the midpoint be-
tween two APs according to our conjecture. We then calculate such
a distance and compare it with theaccuracy value. We observe
from experimental results that theaccuracy value is almost equal
to the distance between each position estimate and the location of
�%� with negligible error. For example, the maximum di�erence
that we have measured between the distance and theaccuracy
value is only about 0.95 meters even the measured distance is over
1,000 meters. Such a result demonstrates that the position estimate
is the middle point on the line between two APs by making an
API request with 2 APs using the range-free mode. Therefore, we
conclude that an attacker is capable of inferring the geographic
locations of APs in LLT using Equation (1).

Update. We noticed that Google gradually changed the returned
values of the Geolocation API in early October 2021. Consequently,
after October 2021, instead of returning the middle point between
two APs as the position estimate for an API request with these APs,
the Geolocation API directly returns the geographic location of one
out of two APs by making the same API request. We know this
because we had already discovered the locations of multiple APs in
LLT by solving Equation(1)before October 2021. For example, we
have obtained the locations of�%� and�%� in LLT detected from
location! � and! � before October 2021, respectively. By making
an API request with the same APs using the range-free mode after
October 2021, the Geolocation API returned the position estimate
' �� that is only 0.86 meters away from the location of�%� inferred
before October 2021. We start with the LLT inference attack created

Location Heartbleeding: The Rise of Wi-Fi Spoofing A�ack Via Geolocation API CCS '22, November 7�11, 2022, Los Angeles, CA, USA.

before October 2021 because we can not validate the up-to-date
LLT inference attack alone. In the meantime, the inferred locations
of APs before October 2021 provide ground truth reference to the
up-to-date LLT inference attack valid since October 2021.

3.2 Range-based Mode
Although the Google Geolocation API directly returns the geo-
graphic location of one out of two APs in response to an API request
with both APs using the range-free mode, the Geolocation API does
not provide information regarding which AP is at the location of the
position estimate. Nevertheless, by using the range-based mode, an
attacker can discover this information. To be speci�c, the attacker
can make an API request with pairwise APs using the range-based
mode as seen in Figure 2(b). For each AP in this API request, the at-
tacker also includes a �eld ofsignalStrength that is the RSS value
of the Wi-Fi signals sent from this AP. According to our tests, we
�nd that the Geolocation API returns a position estimate that is equal
to the geographic location of the AP with a largersignalStrength
value in the range-based mode.

We form an API request using�%� and�%� . We �ll in the �elds
of signalStrength for �%� and�%� with -45 and -55, respectively.
By making this API request with these APs, the Geolocation API
returns a position estimate that is the same as the geographic loca-
tion of �%� . Again, we make the same API request while switching
the signalStrength values by using -55 and -45 for�%� and�%� ,
respectively. The returned position estimate is at the location of
�%� . We further make use of 17 unique APs with the SSID (Service
Set Identi�er) of "McDonalds Free WiFi" from 10 di�erent McDon-
ald's restaurants in the city where we perform this research. For
each AP, we make an API request with�%� , while assigning the
�elds of signalStrength for this AP and�%� with -45 and -55,
respectively. As a result, we successfully discover the geographic
locations of all APs at 10 di�erent McDonald's restaurants. By con-
trast, when we assign the �eld ofsignalStrength for each AP
and�%� with -55 and -45, respectively, all API requests return the
position estimates that are the same as the location of�%� .

3.3 Restrictions on the LLT Inference Attack
We also look into the restrictions on conducting the LLT inference
attack, especially using the range-based mode. We �rst describe
the usage limits of the Google Geolocation API enforced by Google.
We show that an attacker is capable of obtaining the geographic
locations of a large number of APs in LLT each month at a negligible
cost. Next, we demonstrate how the distance between the locations
of two APs in an API request in�uences the e�ectiveness of the
LLT inference attack. Finally, we present the conditions for the �eld
of signalStrength of each AP in an API request to obtain a valid
response in the range-based mode.

3.3.1 Usage of Google Geolocation API.Google Maps Platform
products (e.g., the Geolocation API) are secured from unauthorized
use by accepting API calls with valid authentication credentials.
These credentials are in the form of an API key, which is a unique
alphanumeric string associated with a Google billing account. To
enable the Geolocation API, an attacker needs to apply a valid API
key using one of its Google billing accounts and associate this API
key with the Geolocation API.

The Geolocation API applies a pay-as-you-go pricing model.
For each API key associated with a billing account, Google Maps
Platform each month provides free credits of$200, which are auto-
matically applied to quali�ed products such as the Geolocation API
[32]. Google charges$5per 1,000 API requests when one makes
within 100,000 requests using the same API key each month, and
the charge decreases to$4per 1,000 API requests when an API key
exceeds 100,000 API requests. Hence, a valid API key can make up
to 40,000 free requests each month. This means that an attacker
is capable of revealing the geographic locations of 40,000 APs in
LLT for free by conducting the LLT inference attack using a single
valid API key each month. To make more API requests for free each
month, the attacker can apply as many valid API keys as it needs.
Google Maps Platform does not restrict the maximum number of
the Geolocation API requests per day. Nevertheless, each API key
is limited to 100 Geolocation API requests per second.

3.3.2 Restriction on the Distance between Two APs.Google returns
the location of the AP with a largersignalStrength in response
to an API request with pairwise APs using the range-based mode.
However, we observe in some rare cases that an API request returns
a position estimate that is di�erent from the location of the AP with
a largersignalStrength . For example, although�%� is assigned
with a larger signalStrength value, by making an API request
with �%� and �%� , the AP that we detect from location! � in
the neighborhood of location! � , we obtain the position estimate
' �� that is about 54 meters away from the revealed location of
�%� . The distance between the locations of�%� and�%� is about
213.1 meters, and the distance between�%� and �%� is about
335.5 meters. This observation motivates us to investigate which
conditions exactly enable the Geolocation API to return the location
of the AP with a largersignalStrength value.

To address this question, we again make use of 1,590 public APs
in Section 3.1. For each AP, we make an API request with�%� while
assigning thesignalStrength of �%� and this AP with -45 and
-55, respectively. As a result, we observe the following scenarios:

(1) The Geolocation API returns the position estimate equal to
the location of�%� when theaccuracy is 180 meters.

(2) The Geolocation API returns a di�erent position estimate
close to the location of�%� when theaccuracy is less than
180 meters.

We then further examine when the Geolocation API returns
the accuracy of 180 meters by making API requests with two APs
using the range-based mode. In particular, we calculate the distances
between the revealed locations of 1,590 APs and�%� . We observe
that the Geolocation API returns anaccuracy of 180 meters when
the distance between two AP is over 300 meters.And it returns an
accuracy less than 180 meters when the distance is less than 300
meters. For example, an API request with�%� and an AP randomly
selected from the 1,590 APs obtains theaccuracy of 97.1 meters and
the distance between these APs is about 297.3 meters. By contrast,
the distance between another randomly chosen AP and�%� is
about 312.3 meters, and the Geolocation API returns theaccuracy
of 180 meters. Note that theaccuracy of 180 meters is an empirical
observation from Google according to our extensive tests. We never
obtain anaccuracy that is greater than 180 meters by making an
API request with two APs. We determine the distance in meters

CCS '22, November 7�11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

between two geographic locations using the haversine formula,
which is used to determine the great-circle distance between two
points on a sphere given their latitudes and longitudes [60].

All aforementioned observations seem to imply that there is no
maximum distance between two APs to obtain the location of one
out of two APs by making an API request with pairwise APs using
the range-based mode. To further validate this implication, we make
use of APs that are thousands of meters away from�%� . These
Wi-Fi APs are extracted from Wireless Geographic Logging Engine
(WiGLE), a website that collects Wi-Fi APs that are used in the real
world [59]. For each AP we obtain from WiGLE, we again make
an API request with�%� while assigning this AP with a larger
signalStrength value. As a result, we successfully discover the
geographic locations of these APs that we choose from WiGLE and
are available in LLT, even though some APs are over 2,000 miles
away from�%� . This may indicate that the Google Geolocation
API does not enforce a maximum distance between the locations of
two APs for a valid response.

3.3.3 Restriction on RSS.ThesignalStrength is used to indicate
the amplitude of radio signal measured by a wireless receiver like
a mobile device. For example, an Atheros Wi-Fi chipset can return
an RSS value ranging from 0 to -127 [61]. We aim to examine if
all available RSS values are suitable for the LLT inference attack
under the range-based mode. According to our testing results, we
notice that, by making an API request with pairwise APs using
the range-based mode, Google returns a valid response when both
signalStrength values are over -100 but less than -35. Otherwise,
it returns an error indicating no results were found.

4 IMPLICATION OF THE LLT INFERENCE
ATTACK ON USER PRIVACY

Our results show the e�ectiveness of the LLT inference attack in
discovering the geographic locations of APs in LLT by making API
requests with two APs, especially without the restriction on the
maximum distance between these APs. In this section, we discuss
the privacy issues that may be raised by the LLT inference attack.

4.1 Privacy Threat Example I: Monitoring Daily
Activities of Residents

The feasibility of discovering the geographic location of an AP
using the LLT inference attack also implies that the attacker knows
the address of the apartment, house, building, o�ce, etc that hosts
this AP. We show that the attacker can achieve this by using the
Google reverse-geocoding API, which is one of the core features of
the Geocoding API provided by Google Maps Platform and converts
a geographic location described by latitude and longitude into a
human-readable address.

Experimental veri�cation. We perform a trial of experiments
to demonstrate the e�ectiveness of obtaining the correct street ad-
dress given the revealed geographic location of an AP using Google
reverse-geocoding API. Each reverse-geocoding API request must
contain at least a �eld oflatlng , consisting of the latitude and
longitude values specifying the location on the map. A successful
reverse-geocoding API request returns a JSON-formated response

Figure 4: The geographic locations of �%U, �%V, and �%W
from Starbucks, Tropical Smoothie Cafe, and T-Mobile in
the Google location database, respectively.

containing the �eld of formated_address, including a street ad-
dress, postal code, and political entity (city, state, and country). In
our experiments, we �rst discover the location of an AP using the
LLT inference attack and then obtain the street address of the AP
by feeding the inferred location into the reverse-geocoding API.

To avoid the ethical issues, we take public Wi-Fi APs with rec-
ognizable Service Set Identi�er (SSID), such as "McDonalds Free
Wi-Fi", "Walmartwi�", and "Chick-�l-A Guest Wi-Fi". We detect 137
unique APs from 62 di�erent locations in the city where we conduct
this experiment. For each AP, we obtain the geographic location in
LLT using the LLT inference attack, as well as the corresponding
street address by making a reverse-geocoding API request with the
revealed location. As a result, we successfully identify the exact
street addresses for 135 out of 137 APs. For a particular example,
let �%U, �%V, and�%Wdenote 3 APs with SSIDs "Starbucks WiFi",
"Tropical Smoothie", and "T-Mobile" from 3 stores in the same build-
ing of a mall, respectively. We can still accurately di�erentiate these
stores using the revealed locations of their respective APs in LLT as
shown in Figure 4. Among the 137 APs, the locations of 2 APs are
not successfully converted by the reverse-geocoding API to valid
addresses because both APs are located in areas under construction
and Google did not update its Maps on time.

Potential privacy threat via the LLT inference attack. Exist-
ing research works have shown that the attacker can infer sensitive
information (e.g., precise locations, video content that they watch,
and demographics) through Wi-Fi tra�c analysis [6, 13, 16, 30, 47,
48, 56]. Given the capability of inferring the correct street address
that hosts the AP, the LLT inference attack further deteriorates
these attacks in that it enables the attacker to link the Wi-Fi tra�c
to the precise street address of a private household and discover
the daily activities of its residents. For example, assume that the
target AP is for a private household in the community with other
households nearby. Without the LLT inference attack, an attacker
who does not know the street address of this AP can only associate
the inferred sensitive information to all households in the same
community. Otherwise, to localize this AP, the attacker may have to
utilize specialized hardware (e.g., a directional antenna) to measure
the Angle-of-Arrival (AoA) or the Received Signal Strength (RSS)
of Wi-Fi signals emitted from this AP on the scene. By contrast, the
LLT inference attack directly infers the correct street address of
each AP given its Wi-Fi MAC address with negligible costs.

	Abstract
	1 Introduction
	2 Background
	2.1 Wi-Fi Positioning Systems
	2.2 Google Geolocation API
	2.3 Overview of the Attack

	3 LLT Inference Attack
	3.1 Range-free Mode
	3.2 Range-based Mode
	3.3 Restrictions on the LLT Inference Attack

	4 Implication of the LLT Inference Attack on User Privacy
	4.1 Privacy Threat Example I: Monitoring Daily Activities of Residents
	4.2 Privacy Threat Example II: Monitoring Relocation and Travel
	4.3 Privacy Threat Example III: Getting the Location without Requesting Permission
	4.4 LLT Inference Attack Via Other Location Services

	5 Manipulation of Google Wi-Fi Positioning System
	5.1 Initialization of the Attack
	5.2 Criterion i
	5.3 Criterion ii
	5.4 Criterion iii
	5.5 Criterion iv
	5.6 Attack Methodology

	6 Spoofing Attack Evaluation
	6.1 Evaluation of the Traditional Attack
	6.2 Evaluation of the Discovered Attack

	7 Discussion and Countermeasures
	7.1 Using Reference APs
	7.2 Using Physical Layer Features
	7.3 Mitigation of the LLT Inference Attack

	8 Related Work
	9 Ethical Disclosure
	10 Conclusion
	Acknowledgments
	References

