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ABSTRACT
Recently, adversarial machine learning attacks have posed serious
security threats against practical audio signal classification systems,
including speech recognition, speaker recognition, and music copy-
right detection. Previous studies have mainly focused on ensuring
the effectiveness of attacking an audio signal classifier via creating
a small noise-like perturbation on the original signal. It is still un-
clear if an attacker is able to create audio signal perturbations that
can be well perceived by human beings in addition to its attack ef-
fectiveness. This is particularly important for music signals as they
are carefully crafted with human-enjoyable audio characteristics.

In this work, we formulate the adversarial attack against mu-
sic signals as a new perception-aware attack framework, which
integrates human study into adversarial attack design. Specifically,
we conduct a human study to quantify the human perception with
respect to a change of a music signal. We invite human participants
to rate their perceived deviation based on pairs of original and
perturbed music signals, and reverse-engineer the human percep-
tion process by regression analysis to predict the human-perceived
deviation given a perturbed signal. The perception-aware attack
is then formulated as an optimization problem that finds an opti-
mal perturbation signal to minimize the prediction of perceived
deviation from the regressed human perception model. We use the
perception-aware framework to design a realistic adversarial music
attack against YouTube’s copyright detector. Experiments show
that the perception-aware attack produces adversarial music with
significantly better perceptual quality than prior work.

1 INTRODUCTION
Adversarial machine learning attacks, originated from the image
domain [15, 30, 39, 65], have recently become a serious security
issue in audio signal processing system designs leveraging machine
learning, including speech recognition [14, 19, 53, 60, 79], speaker
identification [4, 18], and music copyright detection [57].

Adversarial machine learning attacks attempt to create a small
perturbation on the original audio signal such that a machine learn-
ing classifier can yield an incorrect output. For example, a small
change in a speech command could make Amazon Echo [1] and
Google assistant [2] recognize a different, yet malicious command
[19, 81]. And manipulating copyrighted music might bypass the

copyright detection in YouTube [57]. One key component in ad-
versarial audio signals is the perturbation, which is designed to
cause misclassification and at the same time be small enough to
be hardly noticed. To quantify the perturbation, existing studies
[18, 42] usually use a mathematical distance (e.g., the Euclidean
distance [57], or more generally, the 𝐿𝑝 norm [15]) between the
original and perturbed audio signals. As a result, the perturbed
signal with the minimized distance to the original one could be
considered as a good candidate under the constraint that it can
successfully spoof the classifier.

However, the 𝐿𝑝 norm based methods only measure the mag-
nitude distance between two signals; but the human perception is
much more complex than computing the magnitude distance. There
exists a gap between the mathematical distance and the eventual
human perception. Although the two may be related in some way
(e.g., zero distance meaning no signal perturbation), there is still no
direct relation to indicate an increase or decrease of the distance in
mathematics would be human-perceived as the same. For example,
adding a perturbation that is the same as the original music signal
is equivalent to increasing the volume of the music, which does
not quite change the human perception of music quality. Indeed, a
few studies [15, 53] have pointed out similar issues and indicated
that new methods are needed to measure the perceptual similarity
between the original and perturbed signals; but there is limited
work on systematically designing adversarial machine learning
from the human perception perspective.

In this paper, we create a new mechanism to craft adversarial
audio signals. We focus on generating adversarial music signals
to bypass a music copyright detector and hardly raise human at-
tention. To this end, we formulate the relationship between signal
perturbation and human perception with two key steps: i) quantify-
ing the change of human perception with respect to the change of
a music signal; and ii) finding a new way to generate perturbations
to minimize the change in human perception and fool a classifier.

To study how a change of a music signal affects human percep-
tion, we first conduct a human study where volunteers quantify
their perceived deviations between the original and perturbed sig-
nals as ratings on a Likert scale [66]. We use regression analysis to
build an approximate mathematical relation between the change
of music and the human-perceived deviation rating obtained from
the human study. Given a perturbed signal, we use the regressed
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model to predict the human rating on the perceived deviation. We
call this output quantified deviation (qDev).

We then reformulate adversarial machine learning for music
signals as a perception-aware attack problem of finding a pertur-
bation that minimizes its qDev while misleading a target classifier.
The reformulation, however, leads to a computationally intractable
optimization with a non-convex and non-differentiable objective
function. To solve this problem, we propose a method by reducing
the search space for finding a feasible solution. We observe that a
common process in music classification is to identify and extract
audio fingerprints (e.g., high energy values on certain frequencies)
from a signal’s spectrogram [13, 51, 73]. Creating a perturbation
may introduce additional frequencies and energy values, which
will generate new fingerprints different from the original signal.
Such difference can be used to fool the target classifier. Meanwhile,
to make the perturbation less noticeable to humans, our proposed
perception-aware attack is designed to create new frequencies and
energy values as a perturbation to minimize the qDev metric. We
show that the perception-aware attack can produce adversarial
music more effectively in terms of attack success rate and human-
perceived quality. We test our perception-aware attack on different
genres of music against YouTube’s copyright detection. Experi-
mental results show that the perception-aware attack can produce
effective adversarial music to bypass YouTube’s detection while
achieving a significantly higher perceptual quality compared to a
recent 𝐿𝑝 norm based attack [57].

Our major contributions are summarized as follows.

• We conduct a human study to understand how human partici-
pants perceive the music signal perturbation. We use regression
analysis to model the relationship between the audio feature
deviation and the human-perceived deviation for music signals.

• Based on the regressed human perception model, we propose,
formulate, and evaluate the perception-aware attack framework
to create adversarial music.

• The perception-aware attack is able to perturb music signals
with better perceptual quality and achieve higher attack success
rates than conventional 𝐿𝑝 norm based attacks against YouTube’s
copyright detector.

• To the best of our knowledge, our study presents the first sys-
tematic work that integrates human factors into the internals of
adversarial audio attacks. We believe the results will encourage
further human-in-the-loop research.

The rest of the paper is organized as follows: Section 2 introduces
the background and the motivation of our study. Section 3 elabo-
rates our human study with regression analysis. We formulate the
perception-aware attack framework, create a realistic attack, and
conduct experiments in Sections 4, 5, and 6, respectively. Potential
defense strategies are discussed in Section 7. Finally, we summarize
related work in Section 8 and conclude this paper in Section 9.

2 BACKGROUND AND DESIGN MOTIVATION
In this section, we briefly introduce the background and describe
our motivation and design intuition.
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Figure 1: Music with multiple track signals by different in-
struments, and each track contains a series of notes.

2.1 Representation of Music Signal
As an example shown in Fig. 1, a digital music signal 𝑠 (𝑡) at sample
time 𝑡 ∈ {0, 1, 2, · · · ,𝑇 } (where 𝑇 is the number of signal samples)
can be represented as the sum of audio track signals [69], i.e., 𝑠 (𝑡) =∑𝐽
𝑗=1 𝑠 𝑗 (𝑡), where 𝐽 is the number of tracks, and the track signal

𝑠 𝑗 (𝑡) is a time-series of harmonic notes [37, 47, 48, 55]. A note,
similar to a phoneme of speech [79, 80], is the smallest signal unit
of a piece of music consisting of a fundamental frequency and a set
of harmonics [27, 28, 72].

2.2 Adversarial Audio Attacks
Given a classifier with prediction function 𝑓 (·) which takes the
input audio signal 𝑠 (𝑡) and outputs the correct label 𝑓 (𝑠 (𝑡)) = 𝑦,
existing adversarial audio attacks [16, 53, 78] aim to add a small
signal perturbation 𝛿 (𝑡) to the original audio signal 𝑠 (𝑡), and then
supply the perturbed signal 𝑠 (𝑡) = 𝑠 (𝑡)+𝛿 (𝑡) to the classifier that
accordingly generates an incorrect label. The method of creating
𝛿 (𝑡), which mainly inherits from the fundamental framework in
the image domain [15, 65], can be formulated as

minimize ∥𝛿 (𝑡)∥𝑝 (1)
subject to 𝑓 (𝑠 (𝑡)) ≠ 𝑦,

where ∥𝛿 (𝑡)∥𝑝 denotes the 𝐿𝑝 norm of the perturbation 𝛿 (𝑡) [15, 30].
The objective of (1) is tominimize the change of the perturbed signal
𝑠 (𝑡) from the original 𝑠 (𝑡). Since it is computationally difficult to
solve (1), many variants of formulating the adversarial audio attacks
have been proposed for distinct attack scenarios, such as speech
recognition [16, 53, 78], speaker recognition [18, 81], and music
copyright detection [57]. To still make 𝑠 (𝑡) look like 𝑠 (𝑡), these
formulations limit the 𝐿𝑝 norm of the perturbation 𝛿 (𝑡) within a
given threshold 𝜖 , i.e., ∥𝛿 (𝑡)∥𝑝 ≤ 𝜖 . The 𝐿∞, 𝐿2, and 𝐿0 norms are
commonly adopted in the literature to create adversarial attacks
targeting various audio signal classifiers [16, 18, 38, 42, 81].

2.3 Motivation and Design Intuition
Although existing adversarial audio attacks mathematically limit
the magnitude of the perturbation 𝛿 (𝑡) via ∥𝛿 (𝑡)∥𝑝 ≤ 𝜖 , it is still
not clear whether such a constraint is the most effective to make
the perturbation unnoticeable by human beings. For example, a few
studies [15, 53] have noted the concern on whether the 𝐿𝑝 norm
metric is appropriate to measure the signal similarity from the
human perception perspective. In other words, there is no evidence
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to show that the deviation in human cognition can be represented
by ∥𝛿 (𝑡)∥𝑝 . As a result, we are motivated to investigate the problem.
Our goals are twofold: i) relating the change of a music signal to
the deviation of human perception and ii) finding a new way to
create the perturbation that is unnoticeable by human beings as
much as possible. To achieve these goals, our design consists of
three major components.

(1) Reverse-engineering human perception of signal deviation, we
treat human perception as a black box and design a human study
to quantify human perceived deviations. Specifically, we invite
volunteers to assign a rating of perceived deviation to measure
the difference between the original and perturbed signals. Then,
we reverse-engineer the black box via regression analysis to
build a relationship between the signal deviation and the human-
perceived deviation.

(2) Reformulating the adversarial audio attack as the perception-aware
attack, based on the relationship found in the human study,
we establish the perception-aware attack framework with the
objective to quantitatively minimize the perceived deviation
while attacking audio classification.

(3) Demonstrating a realistic attack against a music copyright detec-
tor, based on the new attack framework, we create adversarial
music against YouTube’s copyright detector. We demonstrate via
experiments the effectiveness of the attack in terms of success
rate and human-perceived deviation.

2.4 Threat Model
In this paper, we consider an attacker that aims to find a perturba-
tion 𝛿 (𝑡) to a music signal 𝑠 (𝑡) such that 𝑠 (𝑡)=𝑠 (𝑡)+𝛿 (𝑡) leads to
an incorrect output of an audio signal classifier, which is similar
to the goal of existing audio attacks [16, 42, 57, 65, 78, 81]. At the
same time, the attacker is designed to be aware of how 𝑠 (𝑡) affects
the human perception and minimizes its perceived deviation from
𝑠 (𝑡). We assume that the attacker has no knowledge of the algo-
rithm design or parameter choices in the classifier, but has access
to the classification result of any input signal. We also assume that
the attacker has no access to the classifier’s training database. A
representative commercial scenario is that an attacker wants to by-
pass YouTube’s copyright detector [57] and use copyrighted music
content in an unauthorized way to attract more online views for
advertisement revenue gain.

3 REVERSE-ENGINEERING HUMAN
PERCEPTION OF MUSIC SIGNALS

In this section, we present how to quantify the human perceived
deviation of music signals. We first analyze the key features for the
signal quality, then conduct the human study, and lastly present
the study results and regression analysis.

3.1 Audio Features for Human Perception
Based on existing studies in audio engineering [31, 40, 46, 52, 68],
there are four widely-used features: pitch, rhythm, timbre, and
loudness. Pitch is the subjective perception of highness or lowness
of a sound, and is referred to as the fundamental frequency 𝜔0 of
a note [35, 43]. Rhythm is described as the tempo of the musical
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Figure 2: Computing deviation values via DTW.

sound [68], which depends on the length of each note and the
time intervals between adjacent notes. Timbre is the mixture of
the harmonics, which brings the ”color” to music [43, 75], and it is
similar to the characteristics of the speech [24]. Loudness measures
the intensity of an audio signal and can be seen as the energy level
or the volume of the signal [68].

In the following, we briefly introduce the commonly-used meth-
ods to compute the feature deviations between two signals 𝑠 (𝑡) and
𝑠 (𝑡) in the literature. For each feature, the procedure is the same
and shown in Fig. 2: 𝑠 (𝑡) and 𝑠 (𝑡) each will be separated into frames
with a small time interval (e.g., 16ms [31]). The signal samples in
each frame are used to generate a feature value (e.g., pitch value).
The feature values from all frames constitute a time-series data
vector. Then, an algorithm called Dynamic Timing Warping (DTW)
[58, 59] is used to quantify the similarity between the time-series
vector for 𝑠 (𝑡) and the one for 𝑠 (𝑡), and generate a vector of frame-
wise deviation values for the feature. The advantage of DTW over
the Euclidean distance is that DTW can reduce the time distortion
[54] via finding an optimal path between two time-series vectors.
For instance, the red line in Fig. 2 indicates the DTW path between
𝑠 (𝑡) and 𝑠 (𝑡).

• Pitch: The pitch value in each frame is the basic frequency 𝜔0
obtained via pitch estimation, which is a maximum likelihood es-
timation problem [25] via finding𝜔0 from harmonics

∑𝑀
𝑚=1𝑚𝜔0.

The estimated pitch values from all frames form a time series
for each signal and then DTW is used to generate the vector of
frame-wise pitch deviation values between the two signals.

• Rhythm: Rhythm computation is based on pitch estimation. A
deviation value for rhythm between two frames is computed
as the linear regression error in DTW during computing the
deviation value for pitch [46]. All these values generated during
DTW form the vector of frame-wise deviation values for rhythm.

• Timbre: The timbre value for each frame is computed as a Mel-
Frequency Cepstrum Coefficient (MFCC) [23]. The vector of
frame-wise deviation values for timbre is the result of the DTW
between the MFCC vectors for 𝑠 (𝑡) and 𝑠 (𝑡).

• Loudness: Loudness is closely related to the 𝐿𝑝 norm used in
existing adversarial attack formulations (1). The loudness for
each frame is usually calculated as the short-term log-energy
[68], which is the logarithm of the total energy of the frame.
After two short-term log-energy vectors for 𝑠 (𝑡) and 𝑠 (𝑡) are
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Figure 3: Impacts of a noise-like perturbation on the music features: a 2-second attack example “Boom Boom Pow” from
existingwork [57]. Specifically, (a) and (b) shows thewaveforms and spectrums, respectively; (c) and (d) show the pitch contours
and the rhythm DTW paths between the perturbed and original signals, respectively.

obtained, the DTW between them generates the vector of frame-
wise deviation values for loudness.

The last step for each feature is to aggregate the computed vector
of frame-wise deviation values into a single value to represent the
overall feature deviation. According to existing studies [31, 56],
the non-linear average calculation is commonly adopted for pitch
and rhythm aggregations, and linear averaging is used for timbre
and loudness. After the aggregations, the resultant four feature
deviation values form a final feature deviation vector to describe
the audio characteristic deviation from 𝑠 (𝑡) to 𝑠 (𝑡).

3.2 Impacts of Audio Feature Deviations
To have a good sense of how pitch, rhythm, timbre, and loudness
change in a perturbed music signal, we show the feature deviations
caused by an adversarial example in [57] in Fig. 3.

As [57] adopted an 𝐿𝑝 norm based formulation to create adver-
sarial audio and limited the 𝐿𝑝 norm of the perturbation, Fig. 3a
shows that there is a minor waveform change in the time-domain
between the original and perturbed music signal. This indicates
that the perturbation only incurs a small energy or loudness change
to the original signal.

Next, we look at the waveform change in the frequency-domain
and compare the power spectrum in Fig. 3b. The observed change is
more evident than the time domain in Fig. 3b: the third harmonic in
the original harmonics is suppressed, which leads to inharmonicity
in the signal and can negatively impact the timbre feature and
accordingly the audio quality.

If we look at the pitch contours (i.e., the curves drawn by con-
necting all pitch values over time) for the original and perturbed
signals in Fig. 3c, we observe the evident difference of the pitch fea-
tures between the two signals. Similarly, Fig. 3d shows the optimal
DTW path of the perturbed signal to the original one. Intuitively,
a music signal with the minimal rhythm deviation should have a
nearly straight line DTW path. Fig. 3d shows that the DTW path of
the perturbed signal is tortuous compared with the original one.

Note that creating adversarial music inevitably causes some
distortions of the original signal. Fig. 3 demonstrates that there
may exist some way to better coordinate such distortions among
all audio features to mimic the original signal’s quality as much as
possible since they are eventually perceived by humans. If we look

at the basic adversarial audio attack formulation used in recent
research [18, 42, 57], the 𝐿𝑝 norm of the additive noise is only
relevant to the loudness feature without a clear relation to the other
three features. It is evident that 𝐿𝑝 norm is much easier to compute
than pitch, rhythm, and timbre via gradient descend. At the current
stage, we do not focus on the computational aspect but on the
human perception aspect and continue to understand how these
features affect human perception.

3.3 Human Study Procedures and Setups
To understand how different features affect human perception. We
conduct a human study with the procedure shown in Fig. 4: we
first generate a dataset that consists of pairs of original and per-
turbed music signals. For each pair, we can compute (according
to the procedure in Section 3.1) the deviation values for the four
features, which form a feature deviation vector. Then, we invite
every human participant to assign a deviation rating to each pair
based on his/her perceived difference. Next, considering the feature
deviation vectors as the inputs and the human ratings as the out-
puts, we use regression analysis to find the best model to describe
the relation between the vectors and the ratings. In this way, we
can reverse-engineer the human perception process to build an ap-
proximation model to quantitatively predict how much a perturbed
signal is perceived by a human.

Original music

signal s(t)

Perturbed music 

signal s(t)

Human perception ratings

Deviation computation

Regression analysis

Sensitivity analysis

Regression models

Performance evaluation
Ratings

Pitch

Rhythm

Timbre

Loudness

• 

• 

• 

• 

Best Pitch

Rhythm

Timbre

Loudness

• 

• 

• 

• 
Dataset generation

Figure 4: The human study procedure and steps.

DatasetGenerations. Since there is no publicly available dataset
that provides various versions of perturbed music signals, we pro-
pose to generate our own dataset with the following requirements:
(i) sufficient diversity of music genres, (ii) sufficient perturbations
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Figure 5: Distributions of human ratings of perceived deviation for all pairs of music clips.

from the pitch, rhythm, timbre, and loudness perspective, and (iii)
slight or moderate perturbation to avoid making participants feel
overly noisy.

We build a dataset of 60 pairs of original and perturbed music
clips from the genres of Pop, Hip-hop, Rock, Jazz, Classical, R&B,
Country, and Disco. To make participants concentrate on each small
perturbation, we crop each music clip to a 5-second WAV format
(16kHz, 16-bit PCM, Mono) to avoid audio compression. As there is
no guideline or reference to standardize the dataset generation for
our study, we aim to create perturbed signals with different feature
deviations and varying intensities for human participants such that
the data is diverse for regression analysis. Specifically, we use two
main mechanisms to create perturbed music clips.

• Additive noise: an intuitive method is to inject additive noise
into the original music. The noise will affect all four features at
the same time. To broadly affect the original music, we consider
injecting the noise from three aspects: amplitude, frequency and
time. To control the amplitude of the noise, we can choose the
signal-to-noise (SNR) level from 0dB, 5dB, 10dB, and 15dB [70].
To inject frequency-sensitive noise, we use both white noise
[71] (covering all frequencies with equal intensity) and colored
noise (with the power concentrated at certain frequencies). To
make noise time-varying, we set random duration and interval
of the noise, but the total injection duration is less than the half
of the original music length. In addition, since existing audio
perturbations (e.g., in [57]) cause noise-like sounds, the additive
noise data rated by human participants should help build a model
to properly predict the deviations of noise-like perturbations.

• Additive notes: To ensure distinctive deviations among all music
features, we also inject additive notes to the original music. To
inject notes with the pitch manipulation, we randomly choose
notes with the pitch value from 27.5Hz to 4186Hz [41] (88 notes
space). For rhythm manipulation, we randomly select the addi-
tive notes with different lengths and ensure the intervals between
adjacent notes are less than 50% of the original signal’s length.
To create timbre deviation, we select different instruments to
play the additive notes as long as the notes are within the valid
pitch ranges of those instruments.

Human Participation. We recruited 35 participants who are
college students with ages falling between 20 and 35. All the partic-
ipants are volunteers without any compensation. Each participant

was asked to listen to each pair of the original and perturbed music
clips, and then assign a deviation rating on a Likert scale [66] ac-
cording to his/her overall music perception: 0−1 perfect perceptual
quality with imperceptible noise, 1−2 good perceptual quality with
quiet noise, 2−3 noticeable with slight noise, 3−4 noticeable and
noisy, and 4−5 very noisy. More specifically, 1−2 means volunteers
can only notice some small perturbation after listening to a part
of music clips many times, and 2−3 indicates the deviation can be
noticed by listeners but not noisy. During the experiments, all the
volunteers were given the same earphone with the same initial
volume setting. They can listen to a music clip as many times as
they want.
Ethical Considerations: Our study involved human participants that
assigned ratings by listening to music. The full protocol was re-
viewed and exempted by our Institutional Review Board (IRB),
which has determined that the study involves the minimal risk for
human participants (i.e., the risk is no more than the one that they
face during their daily lives). We follow the approved protocol to
inform them of the full study procedure and protect their identities
without publishing any personally identifiable information.

Reverse-Engineering via Regression Analysis. Given the
computed feature deviations from the original and perturbed music
clips as well as the human participant ratings of their perceived
deviation, we aim to find the best regression model 𝑀∗ ∈ M in
the model set M to minimize the mean squared error (MSE) of
regressed prediction, i.e.,

𝑀∗ = argmin
𝑀 ∈M

E∥𝑟 −𝑀 (𝑑𝑝 , 𝑑𝑟 , 𝑑𝑡 , 𝑑𝑙 )∥22, (2)

where 𝑟 is the human participant rating, 𝑑𝑝 , 𝑑𝑟 , 𝑑𝑡 , and 𝑑𝑙 are the de-
viation values (computed according to the procedure in Section 3.1)
for pitch, rhythm, timbre, and loudness, respectively. In our study,
we choose Linear Regression [32, 68], Support Vector Regression,
Random Forest, Logistic Regression, and Bayesian Ridge to form
the model set M. With𝑀∗ found in (2), we use it to quantitatively
predict any human-perceived deviation given a pair of original and
perturbed music signals.

3.4 Result Analysis and Discussion
Fig. 5 box-plots all the human ratings (ranging from 0 to 5) for
individual pairs of music clips from our human study. We can find
in Fig. 5 that human perception is indeed subjective: each pair of
music clips has a range of deviation ratings by different participants;
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there are always rating outliers for a pair of music clips. Fig. 5 also
shows that overall, the ratings and the 25%-75% boxes are roughly
evenly distributed from 0 to 5, which offers sufficient data diversity
for regression analysis.

Regression Analysis. We first use each of Linear Regression,
Support Vector Regression (SVR), Random Forest, Logistic Regres-
sion, and Bayesian Ridge to model the relationship between feature
deviation values and the average human rating, and find the best
model with the minimum MSE. We show the MSEs of different
regression models during testing in Table 1.

Table 1: MSEs of different regression models.

Model: Linear SVR Random Forest Logistic Bayesian

MSE: 1.2351 0.8558 0.1541 1.6572 1.2628

Through regression analysis, we find that Random Forest per-
forms the best among all the five regression models. As Table 1
shows, Random Forest leads to an MSE of 0.1541, which is sub-
stantially better than Support Vector Regression that achieves the
second with an MSE of 0.8558, but an over 5 times increase from
Random Forest. The other models result in even worse MSEs. As a
result, we choose Random Forest as our regression model to predict
the human-perceived deviation. Specifically, given a pair of original
and perturbed signals, we name the prediction output of Random
Forest as quantified deviation (qDev).

Correlation Analysis. Then, we analyze to what extent qDev
values and realistic human ratings move in tandem; that is, an
increase or decrease of value for one will lead to the same for
the other. This is important because when creating an adversarial
attack against a classifier, we aim to reduce the qDev value of a
perturbed signal (so its deviation rating by a human should also
decrease) such that the perturbation is hardly noticed by a listener.
We use Spearman’s rank correlation coefficient [21, 61] to model
the correlation in our study. Spearman’s coefficient is a commonly
used statistic measure to evaluate the relationship between two
variables using a monotonic function, where value 1 or -1 indicates
that the two always move in the same or opposite direction; value
0 means no correlation.

Table 2: Spearman’s coefficient between the human rating
and a deviation measure.

Deviation Measure: 𝐿2 𝐿∞ SNR qDev

Spearman’s Coefficient: 0.3909 0.0893 0.0134 0.9608

Table 2 lists the Spearman’s coefficients between the human
rating and each of the following deviation measures: 𝐿2 norm [57],
𝐿∞ norm [18, 57], SNR [19, 79], and qDev from Random Forest. It is
seen from Table 2 that qDev has a very high correlation with the re-
alistic human rating, indicating it can be quite useful for predicting
a human-perceived deviation of a signal. In other words, minimiz-
ing qDev in a mathematical formulation to form an audio signal
perturbation would be most likely suppress a human’s attention
to the signal deviation caused by the perturbation. Interestingly,
we also observe that the commonly used 𝐿𝑝 norms and SNR are

in fact not well related to human perception (e.g. 𝐿2 norm has the
best correlation of 0.3909). Table 2 offers quantitative evidence to
echo the concern raised in related studies [15, 53] that suggests new
ways to measure the human perceptual similarity may be needed.

Sensitivity Analysis. To explore which feature is potentially
more important than others in human perception, we conduct sen-
sitivity analysis via the One-at-a-time (OAT) strategy [6, 11, 49]:
we remove in turn pitch, rhythm, timbre, and loudness to form
three-feature inputs for regression, and measure the MSE of the
resultant regression. We find Random Forest is always the best in
our OAT analysis to minimize the MSE with only three features
reaming as the inputs.

Table 3: Sensitivity analysis for each feature.

Excluding: Pitch Rhythm Timbre Loudness None

MSE: 0.1891 0.1581 0.1889 0.3539 0.1541

Table 3 shows the MSE of Random Forest for each regression of
excluding pitch, rhythm, timbre, and loudness in turn. From Table
3, loudness that represents the energy of the perturbation appears
to be the most sensitive feature to human-perceived deviation. For
example, removing loudness leads to a 129% MSE increase from
0.1541 to 0.3539. But it is clear that the other features individually
contribute to the overall human perception, and removing one of
them causes more MSE in the regression.

Overall, we find in the human study that Random Forest is the
best regression model to yield the minimum MSE to predict the
human rating as qDev. Simpler regression models, such as Linear
Regression or SVR, do not perform as well as Random Forest. This
may also confirm that human perception is indeed a complicated
process. In addition, qDev is a much more appropriate metric than
the conventional 𝐿𝑝 norm or SNR in terms of both MSE and Spear-
man’s correlation with the human rating, and the features of pitch,
rhythm, timbre, loudness all contribute to the overall perception.

4 PERCEPTION-AWARE ATTACK
STRATEGIES

With the metric of qDev regressed via Random Forest from audio
features, we reformulate the problem of creating adversarial music
signals into a perception-aware attack framework. We then analyze
how to narrow down the search space in the reformulation, and
eventually find an efficient solution via dynamic clipping.

4.1 Problem Reformulation
Existing studies [16, 42, 78, 81] solve the original optimization
problem in (1) via finding a sub-optimal yet efficient alternative
solution. For our perception-aware reformulation, it is natural to
think about reformulating existing alternative solutions by directly
replacing its 𝐿𝑝 norm with the new metric of qDev. However, such
a reformulation no longer offers the advantage of computational
efficiency because the process of computing audio features in qDev
is unfortunately non-linear, non-convex, and non-differentiable
[25]. Accordingly, we formulate the perception-aware attack by
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replacing 𝐿𝑝 norm with qDev in the original form (1) as

minimize qDev(𝑠 (𝑡), 𝑠 (𝑡)), (3)
subject to 𝑓 (𝑠 (𝑡)) ≠ 𝑦,

where qDev(𝑠 (𝑡), 𝑠 (𝑡)) denotes the qDev between the perturbed
signal 𝑠 (𝑡) = 𝑠 (𝑡) + 𝛿 (𝑡) and the original one 𝑠 (𝑡). To ensure 𝑠 (𝑡) to
be a valid waveform, we always constrain the normalized amplitude
of each of its sample points to be in [−1, 1] [18].

Finding the optimal solution to (3) becomes even more difficult
than the original one in (1) because computing qDev involves a
much more complicated process than the 𝐿𝑝 norm. Our strategy
is to analyze what properties the perturbation signal 𝛿 (𝑡) should
have towards finding a solution to (3).

4.2 Perturbation Signal Property Analysis
Since the solution to (3) is computationally intractable, we have to
narrow down the search space for the perturbation signal 𝛿 (𝑡) by
analyzing what properties it should have.

The reformulation (3) means two obvious goals that the per-
turbation signal 𝛿 (𝑡) should achieve: i) misclassification (i.e., the
attack should fool the classifier) and ii) minimized qDev (i.e., it also
produces good perceptual quality a human can perceive). At first
glance, the two goals seem to contradict with each other (as the
best perceptual quality of music indicates no change of its signal
and thus no attack success). We need to explore one step further
to understand what audio features 𝛿 (𝑡) needs as a result of each of
the two goals, then consider all needed features jointly to reconcile
any conflict to construct a search space of 𝛿 (𝑡) that is sufficiently
narrowed down towards a feasible solution.

Properties for Attacking Audio Fingerprinting. First, we
consider what feature properties 𝛿 (𝑡) should have towards launch-
ing a successful attack. A key technique for audio signal classifi-
cation is audio fingerprinting [12]. The technique and its variants
have been widely adopted in audio signal watermarking [9, 20],
integrity verification [29], music information retrieval [17, 51, 73],
broadcast monitoring [5, 34, 50] and copyright detection [57].

The essential idea in audio fingerprinting is to consider certain
high-energy areas of an audio signal in the spectrogram as its
fingerprints. As an example shown in Fig. 6(a) [73]: an energy peak
(anchor point) is paired with other peaks within a certain target area
in a signal’s spectrogram, then the fingerprints are computed based
on the frequency information of the peaks and the time intervals
between them. Fig. 6(b) shows there are many peaks in a signal’s
spectrogram that lead to a large number of fingerprints for audio
signal classification and identification.

As we can observe from Fig. 6, peaks in the spectrogram are a
key feature for audio signal classification. These peaks are usually
the results of a mixture of high-energy points of audio signal har-
monics [29, 33, 73]. From the attacker’s perspective, creating new
positions of harmonics in the spectrogram should be a direct way to
manipulate the fingerprints, which can lead to the misclassification
of the signal. In the audio features, timbre is the most relevant to
the harmonics of the signal [43, 55]. Given an energy threshold
(that represents the loudness) for perturbation 𝛿 (𝑡), a good way to
create the attack is to affect the feature of timbre for the signal.

Anchor 

Point

(a) Fingerprinting generation. (b) Distribution of peaks.

Figure 6: Fingerprinting generation via finding all peaks in
a signal’s spectrogram.

Properties for Good Perceptual Quality. Next, we consider
what feature properties 𝛿 (𝑡) should have for good music percep-
tual quality. From the sensitivity analysis in the human study in
Section 3.4, all features, pitch, rhythm, timbre, affect the human
perception of signal deviation or the metric of qDev. The change
of any of them may result in an increase of qDev and accordingly
a noticeable change by human perception. To further explore the
relationship between the musical features and human perceived
deviations, we remove two features at a time to measure the MSE
of the resultant regression.

Finding Feasible Search Space. To summarize, it would be
good to 1) change the feature of timbre for a potentially successful
attack, and 2) manipulate only one feature while keeping the others
unchanged as much as possible to maintain the perceptual quality.
to reconcile the two requirements: we propose to change timbre
much more than the other features.

Now the question becomes how to create 𝛿 (𝑡) with a quite dif-
ferent timbre feature while maintaining almost the same pitch and
rhythm features. The traditional perturbation design in (1) usually
generates a noise-like perturbation and is not able to create this
required signal because it causes all distortions of pitch, rhythms,
and timbre (as shown in Fig. 3). As a music signal consists of well-
crafted, human-enjoyable musical notes, we propose to create 𝛿 (𝑡)
by reproducing the same music notes via new instruments. The
timbre feature is always associated with the harmonics, and we
can find these natural harmonics from the instruments. In this way,
the timbre of 𝛿 (𝑡) can be changed substantially due to different
harmonic characteristics of new instruments; but pitch and rhythm
may deviate less if we find appropriate instruments to play the
same notes. To demonstrate the feasibility of our design, we com-
pare the feature deviations of a perturbed music signal mixed by
randomly-generated noise and instrument-generated music notes.

Table 4: Noise vs notes played by a different instrument.

Pitch Rhythm Timbre Loudness qDev

Instrument: 0 0.85 25320 2873 2.23

Noise: 0.9049 7.239 19521 1988 3.86

As shown in Table 4, the additive instrument produces a higher
loudness value than noise (indicating a more energy level); at the
same time, it generates more timbre deviations (25320 vs 19521)
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but less pitch and rhythm deviations than the noise. Depending
on the difference between 𝑠 (𝑡) to 𝑠 (𝑡), the non-linearly aggregated
pitch and rhythm deviations have values commonly in the range
from 0 to 50, and the linearly aggregated timbre and loudness
deviations usually range from zero to tens of thousands. There
exists an obvious deviation gap between instrument-generated
notes and randomly-generated noise of different features. We also
use qDev to quantify the deviations, and the instrument-generated
notes have a clearly lower qDev value than random noise (2.23
vs 3.86). This makes it a much more desirable signal component
for 𝛿 (𝑡) in terms of both human-perceived quality (low qDev) and
attack effectiveness (more timbre variation).

Consequently, we can effectively narrow down the search space
by considering 𝛿 (𝑡) as a linear combination of signals consisting
of the same music notes played by different instruments for the
original music signal. Then, generating the perturbed signal 𝑠 (𝑡)=
𝑠 (𝑡)+𝛿 (𝑡) is like finding “subtle” instrumental track signals then
optimally remixing them (based on qDev) into the original music.

It is worth mentioning that a music signal can consist of both
instrumental and vocal tracks. It is possible to add a new vocal
track (i.e., the same vocal notes sung by a different voice to change
the feature of timbre) into the perturbation 𝛿 (𝑡). As it is easier to
generate instrumental signals by computer music synthesis, we
only use instrumental tracks to form 𝛿 (𝑡) in this paper.

4.3 Perception-Aware Attack Formulation
With the shrunk search space, we write 𝛿 (𝑡) = ∑𝐾

𝑘=1 𝜃𝑘𝛿𝑘 (𝑡), where
𝐾 denotes the number of different instrumental tracks, 𝛿𝑘 (𝑡) is the
𝑘-th instrumental track signal, and 𝜃𝑘 is the non-negative weight
for 𝛿𝑘 (𝑡). Next, we reformulate (3) into a perception-aware attack
of finding the best linear weights 𝜃𝑘 in 𝛿 (𝑡) to minimize the qDev:

minimize
{𝜃𝑘 }𝑘∈[1,𝐾 ]

qDev
(
𝑠 (𝑡), 𝑠 (𝑡) +

∑︁𝐾

𝑘=1
𝜃𝑘𝛿𝑘 (𝑡)

)
(4)

subject to 𝑓

(
𝑠 (𝑡) +

∑︁𝐾

𝑘=1
𝜃𝑘𝛿𝑘 (𝑡)

)
≠ 𝑦,∑︁𝐾

𝑘=1
𝜃𝑘 = 𝜖, (5)

P𝑠 (𝑡 ) ⊆P𝛿𝑘 (𝑡 ) ∀𝑘 ∈ {𝑘 |𝑘 ∈ [1,𝐾], 𝜃𝑘 ≠0}, (6)

where (5) ensures the energy level of the perturbation signal 𝛿 (𝑡)
is less than a threshold 𝜖 , P𝑠 (𝑡 ) and P𝛿𝑘 (𝑡 ) in (6) represent the sets
of pitch values in the original signal 𝑠 (𝑡) and the 𝑘-th track signal
𝛿𝑘 (𝑡), respectively; (6) ensures that 𝛿𝑘 (𝑡) covers the pitch range of
𝑠 (𝑡) so the pitch feature of 𝛿𝑘 (𝑡) does not deviate much from 𝑠 (𝑡).

The optimization (4) is a problem of finding the optimal linear
weights. Although still non-differentiable, (4) opens a door for a
grid search based heuristic solution. Specifically, we can let each
linear weight 𝜃𝑘 be a multiple of a small step Δ (that is a fraction of
the threshold 𝜖 in (5)), then enumerate all combinations of possible
values for {𝜃𝑘 }𝑘∈[1,𝐾 ] to find a solution to (4). For example, setting
Δ=0.1𝜖 and 𝐾 =10 produces 92,378 combinations in total. Iterating
through them, though not very efficient, is quite feasible for an
attacker’s computing capability today.

4.4 Dynamic Clipping
The optimization in (4) finds out a perturbation signal 𝛿 (𝑡) based on
the entire duration of the original signal 𝑠 (𝑡). However, a piece of
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Frames

Adjacent-

frame timbre 
deviation

Clip 2Clip 1 Clip 3 Clip 4 …

Choose the N-1
largest values

Clip n

Figure 7: Overview of dynamic clipping.

music can consist of multiple segments with audio characteristics
varying within a wide range of instruments and vocals, creating
distinct timbre features. For better perceptual quality and attack
effectiveness, it is necessary to segment 𝑠 (𝑡) into 𝑁 clips according
to evident timbre changes and create the perturbation for each clip
using the clip-wise optimization based on (4). We call this procedure
dynamic clipping.

Fig. 7 shows the overall process of dynamic clipping: in order to
dynamically segment 𝑠 (𝑡) into 𝑁 clips, we first separate 𝑠 (𝑡) into
small frames and compute the timbre deviation between each pair
of adjacent frames (using the timbre deviation calculation discussed
in Section 3.1). Then, we identify 𝑁 −1 pairs which have the 𝑁 −1
largest adjacent-frame deviation values, as they contain the most
evident 𝑁 −1 changes of timbre over the duration of the music. We
use the timing boundary between two frames in a pair as a timing
position to segment 𝑠 (𝑡). In this way, 𝑠 (𝑡) is segmented into 𝑁 clips,
each of which will be used to find a corresponding perturbation
based on (4).

5 REALISTIC BLACK-BOX ATTACK AGAINST
COPYRIGHT DETECTOR

In this section, we create a realistic attack based on the perception-
aware attack framework in Section 4. We choose the YouTube
copyright detector as our target as YouTube has exhibited some
robustness against noise and perturbations [57]. Because there is no
knowledge of YouTube’s design, we create our own detector based
on open-source information for an adversarial transfer attack. We
first present how to generate additional instrumental tracks for the
perturbation signal given a music signal, then describe the design
of our detector as a surrogate model for YouTube’s detector.

5.1 Perturbation Signal Generation
Perturbation signals generated by (4) require the detailed music
notes of the original music. For a popular piece of music, its Musi-
cal Instrument Digital Interface (MIDI) file is usually available in
online databases (e.g., FreeMidi.org and Nonstop2k1). The MIDI file
contains all instrumental tracks with music notes. We use Music212
to play a downloaded MIDI file with different instruments to form
a perturbation for (4). To achieve the diversity of the timbre feature
for (4), we consider an instrument set of instruments across the
four families stringed (Guitar, Electric Guitar, Violin, Viola, Cello,

1FreeMidi.org:https://freemidi.org/, Nonstop2k:https://www.nonstop2k.com/
2Music21 is a Python-based toolkit for computer-aided musicology. In this work, we
use it to produce different instrumental tracks playing the same musical notes
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Figure 8: Process of obtaining the threshold from YouTube.

Bass, Electric Bass), woodwind (Clarinet, Flute, Saxophone, Oboe,
Bassoon), brass (Trumpet, Baritone, Tuba, Horn, Trombone), key-
board (Piano, Electric Piano). We empirically select at most two
instruments from each family based on a music genre to reduce
the computational complexity and the pitch range requirement for
perturbation generation in (6).

5.2 Surrogate Detector
Audio Fingerprints. A copyright detector takes audio fingerprint-
ing features as the input. We select the fingerprints and their ex-
traction method introduced in [73]. We extract fingerprints by
considering the time, frequency, and amplitude data of the audio.
Specifically, we use Fast Fourier Transform (FFT) to generate a
spectrogram of an audio signal and extract the spectral peaks of
acoustic harmonics, which are shown invariant and reproducible
from signal degradation [13] and robust to noise and distortion [73].
We then apply the fast combinatorial hashing method [73] to form
these fingerprints to hashes for the similarity comparison later.

Detection Design. The detection is built to compute the similar-
ity of the fingerprints of an input signal to the detector’s database.
If the similarity score is higher than a similarity threshold, the de-
tector will raise an alarm. To ensure our surrogate detector has a
degree of transferability to YouTube’s detector, we must adopt a
threshold that is similar to YouTube’s. We note that our objective
is not to precisely rebuild YouTube’s model, but to choose an ap-
propriate threshold (even in a rough way) such that we can use the
surrogate detector to predict the output label during minimizing
qDev in (4). Because music consists of diversities of audio features,
we choose one threshold for each of 8 music genres: Pop, Hip-hop,
Rock, Classical, Jazz, R&B, Country, and Disco.

Fig. 8 shows the process we use to approximately calibrate the
surrogate detector’s threshold towards YouTube’s. This process is
similar to the one proposed in [18] that estimates the threshold of a
black-box model. In particular, to obtain the threshold for a music
genre, we choose a song from the genre, crop it into clips, choose
the most representative clip that contains the highest number of
fingerprints among all the clips. Then, we randomly add instrumen-
tal track signals with different energy levels to this clip, generating
a number of clips with perturbations of varying energy levels. We
send these clips to YouTube to see the copyright detection results,
and set the detection threshold for the surrogate detector such that
it yields the same results as YouTube does.

6 EXPERIMENTS AND RESULTS
In this section, we present the experiments and results. We first de-
scribe the experimental settings, then discuss the audio perceptual
quality and attack effectiveness of generated adversarial music.

6.1 Experiments Setup
Music Dataset: To cover a wide range of music data, we selected 32
top hits songs of the last 20 years from 8 genres: Pop, Hip-hop, Rock,
Classical, Jazz, R&B, Country, and Disco. We created 56 clips of
5–10 seconds and 16 clips of 30 seconds clips for human evaluation,
and 160 clips of 30 seconds for attack strength evaluation. We have
verified that all the clips were copyright-detected by YouTube.
Default Experimental Setups: The default settings in (4) for the
perception-aware attack include the search step Δ=0.1𝜖 , the num-
ber of instruments for perturbation generation 𝐾 =7, and the num-
ber of clips in dynamic clipping 𝑁 =6.
Attack Method Comparison:We compare the perception-aware
attack with two recent attack methods: the ICML20 method against
YouTube in [57] and the psychoacoustic attack framework [41, 53,
60]. Specifically, for the ICML20 attack, we directly adopted the
source code provided by the authors of [57]; for the psychoacoustic
attack, we followed the two stage attack introduced in [53]: we
first used the ICML20 method to generate an adversarial music
perturbation then applied the iterative process that involves the
masking threshold [53] instead of the 𝐿𝑝 norm in the loss function
to improve the perception. Finally, We implemented a random noise
attack method that adds random noise to music as a baseline case.

Here we provide a YouTube link that demonstrates adversarial
clips created by the perception-aware attack in comparison with
other attacks: https://www.youtube.com/watch?v=IfBAzmdN5ds.

6.2 Perceptual Quality of Adversarial Music
We first evaluate the perceptual quality of adversarial music cre-
ated by the perception-aware, ICML20, psychoacoustic attack, and
random noise attacks. In the experiments, given original music,
we created perturbed music clips of 5–10 seconds under each at-
tack by increasing the energy threshold of the perturbation such
that the perturbed clip exactly bypassed YouTube’s detector. For
each perturbed clip, we used the Random Forest regressed qDev in
Section 3.4 to predict its deviation from the original clip.
Human Evaluations: We involved 14 of 35 human volunteers
in the training study in Section 3 to participate the evaluations.
They formed Group 1 (G1) in our evaluations. We also recruited
additional 15 college student volunteers, referred to as Group 2
(G2), to participate the evaluations. The age ranges of G1 and G2
are 20-34 and 22-33, respectively. The results of G1 can show the
test accuracy of the regressed qDev model and the results of G2
can further demonstrate the generalizability of the regressed model
(i.e., the training model built from a group of people can be used to
predict the rating of another group of new people who are not in
the training set). Every music clip in our evaluations was rated by
all participants in both G1 and G2.
Human Rating vs qDev under Different Attacks: Fig. 9 illus-
trates the average human ratings and qDev values of the perception-
aware, ICML20, psychoacoustic, and random noise attacks for each
music genre. It is evident from the figure that the perception-aware

https://www.youtube.com/watch?v=IfBAzmdN5ds
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Figure 9: Human ratings and qDev values: Perception-aware, ICML20, psychoacoustic, and random noise attacks.

Table 5: The MSEs of qDev among genres (G1 vs G2).

Pop Hip-hop Rock Classical

0.726 vs 1.027 0.161 vs 0.316 0.235 vs 0.382 0.480 vs 0.230

Jazz R&B Country Disco

0.153 vs 0.333 0.426 vs 1.277 0.444 vs 0.299 0.735 vs 1.070

attack always achieves much smaller deviation ratings and qDev
values than the other three attacks. For example, for classical music,
the perception-aware attack obtains ratings of 0.71 (G1) and 1.61
(G2) (indicating perfect and good perceptual quality according to
the rating guideline, respectively) while the ICML20, psychoacous-
tic, and noise attacks get 3.15 (G1) vs 2.91 (G1), 2.59 (G1) vs 2.56 (G2),
and 3.40 (G1) vs 3.12 (G2), respectively (indicating noticeable and
noisy). It is also observed that rock music seems harder to perturb
for the perception-aware attack and has ratings 2.04 (G1) and 2.60
(G2) (noticeable with slight noise). Overall, Fig. 9 shows that the
perception-aware attack achieves substantially better perceptual
quality than the ICML20, psychoacoustic, and random noise attacks.
Accuracy of qDev-based Prediction: By comparing the qDev
value with the human rating in every genre in Fig. 9, we can see
that qDev is a good prediction to the human rating as the qDev does
not deviate much from the average human rating for each genre.
For example, the Hip-hop music created by the perception-aware
attack has the qDev of 2.06 compared with the average human
rating of 2.07 (G1) and 2.27 (G2). Table 5 shows the MSE between
the qDev value and the average G1 rating compared with the MSE
between the qDev value and the average G2 rating in each genre.
The MSEs averaged over all genres are 0.4107 (G1) and 0.5848 (G2),
which are both higher than the training MSE of 0.1541 in Table 1 in
Section 3.4. Overall, it is observed that G2 incurs a slightly higher
average MSE than G1 in the evaluation as new participants bring
new subjective judgements.

Table 6 compares the MSEs for G1 and G2 in different regression
models built from the training in Section 3.4. We can see that all the
test MSEs increase from the training MSEs in Table 1, and Random
Forest still achieves the minimum MSE for both G1 and G2. In all
regression models, Random Forest also exhibits the minimum MSE
increases from the training MSE to the test MSEs of either G1 or
G2.
Role of Additive Noise Data in Training: As we discuss previ-
ously, to evaluate the importance of additive noise data for building

Table 6: MSEs of different regression models.

Model: Linear SVR Random Forest Logistic Bayesian

MSE-G1: 1.5826 2.2894 0.4107 1.9263 1.5012

MSE-G2: 1.9568 2.6169 0.5848 2.2103 1.8521

an accurate regressionmodel in Section 3.3, we only use the additive
note data to train a new qDev∗ metric and compare the prediction of
qDev∗ with G1 and G2 ratings. Specifically, it is observed that when
we replace qDev with qDev∗, the MSE increases from 0.4107 to
2.0054 for G1, and from 0.5848 to 2.2944 for G2. As a result, additive
noise is essential to build an accurate qDev model.
Impact of Dynamic Clipping: We also evaluate the impact of
dynamic clipping in Section 4.4 on the overall perceptual quality
of the perturbed music. We compare its performance with a static
clipping design inwhich a clip is uniformly segmented into 6 smaller
clips with equal length for perturbation generation.

Table 7 shows the qDev values of the two designs for differ-
ent music genres. We can observe that dynamic clipping achieves
uniformly better perceptual quality in all genres.

Table 7: qDev values in dynamic vs static clipping.

Pop Hip-hop Rock Classical

Dynamic: 1.8953 2.9250 2.6051 1.4956
Static: 2.2522 3.1854 3.1955 1.7558

Jazz R&B Country Disco

Dynamic: 1.8653 1.3897 1.6925 2.1933
Static: 2.9192 2.0925 2.0230 2.2588

Perceptual Quality without Reference. Previous experiments
were conducted in a formal lab setting to quantify the perceived
deviation via actual human ratings and qDev estimates. When a
person listens to music during the daily life, there is no reference
for him/her to perceive a deviation. The person may or may not
notice an issue if the music is perturbed.

We conducted another experiment to measure how human par-
ticipants perceive perturbed music without reference. In particular,
we selected 16 30-second music clips, and asked two questions to
each participant for each clip: (i) If familiar with the music: Assign
a deviation rating based on your memory using the same rating
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(a) Group1 (b) Group2

Figure 10: Percentages of answers by participants of differ-
ent groups unfamiliar with the givenmusic. The numbers of
answers received are 10, 14, 7, 16, 7, 8, 12, 10 in G1 (total: 84),
and 6, 8, 8, 16, 8, 10, 12, 10 in G2 (total: 78) for Pop, Hip-hop,
Rock, Classical, Jazz, R&B, Country, and Disco, respectively.

guideline. (ii) Otherwise: Do you feel abnormal about the music?
Please answer 1) Yes, 2) No, or 3) Not Sure. We totally received 140
ratings in (i) and 84 answers in (ii) from G1, and 162 ratings in (i)
and 78 answers in (ii) from G2.

Table 8 shows the average human ratings along with the number
of ratings received in each genre without reference and average
qDev values for different music genres. We can find that the rating
distribution among music genres is quite similar to Fig. 9. For exam-
ple, the Classical music can still achieve nearly perfect perceptual
quality of 0.86 (G1) and 1.73 (G2). Rock and Hip-Hop are the worst
genres to perturb and make human participants feel noticeable
with slight noise deviations. Interestingly, we find that the human
rating of G1 and G2 for R&B music is 0.5 (nearly perfect) and 1.43
(good quality) without reference, which are both improved from
the experiments with reference. The potential reason is that the
additive instrumental track signals sound natural and embedded to
the original music. It becomes hard for humans to recognize these
timbre changes without reference. Overall, the G1 and G2 ratings
are very similar in Pop, Hip-hop, Rock, and Jazz; and the ratings
averaged over all genres are also close (G1: 1.62 vs G2: 2.12).

Table 8: Human ratings without reference and qDev.

Pop Hip-hop Rock Classical

G1 rating (140): 1.4500 (18) 2.4428 (14) 2.4867 (21) 0.8583 (12)
G2 rating (162): 1.9993 (24) 2.6408 (22) 2.7988 (22) 1.7367 (14)
qDev: 1.7850 2.7133 2.5653 1.6255

Jazz R&B Country Disco

G1 rating (140): 1.7500 (21) 0.5000 (20) 1.4458 (16) 1.4821 (18)
G2 rating (162): 1.8909 (22) 1.4333 (20) 2.6606 (18) 2.0053 (20)
qDev: 2.5679 1.4905 1.6925 2.1178

Fig. 10 depicts a more interesting result of the percentages of dif-
ferent answers by participants unfamiliar with the given music. We
can see that most participants do not surely notice any abnormal-
ity in perturbed soft music (e.g., R&B and Classical). For example,
no audience finds any issue in any R&B music for both G1 and
G2; and 30% or more answers for Rock music clips are abnormal.
Fig. 10 shows that the majority of participants (i.e., 81.25% in G1
and 69.70% in G2) do not clearly notice the music perturbations
generated by the perception-aware attack. Considering the fact that
participants may form a cognitive bias in the study (i.e., they might

Figure 11: Attack success rates pairing with qDev.

feel “obliged” or “mentally-focused” to identify an abnormality),
we think that a casual listener without reference might be more
unlikely to notice the perturbation of adversarial music created by
the perception-aware attack.

6.3 Attack Effectiveness vs qDev
Next, we measure the attack success rates of the perception-aware,
ICML20, psychoacoustic, and randomnoise attacks against YouTube.
As discussed in Section 5.2, the fingerprinting similarity thresholds
in our surrogate detector were set roughly according to YouTube’s
detection results using a few music samples. But an adversarial mu-
sic clip bypassing the surrogate detector does not necessarily mean
that it will also evade YouTube’s detection. In this experiment, we
used the perception-aware, ICML20, psychoacoustic, and random
noise attacks to each create 240 adversarial clips of 30 seconds (that
100% bypassed the surrogate detector), and then uploaded them to
a private YouTube channel to test YouTube’s copyright detection.
Pairing Attack Success Rates with qDev Values: It is clear that
we can always get a 100% attack success rate by generating a suf-
ficiently large perturbation and adding it to the original music,
which can, unfortunately, produce extremely noisy sound. Hence, it
is necessary to pair the attack success rate with perceptual quality.

To this end, we focus on comparing the average qDev values
of adversarial music clips created by perception-aware, ICML20,
psychoacoustic, and random noise attacks under the same attack
success rates against YouTube. Fig. 11 shows the comparison re-
sults. As shown in Fig. 11, higher attack success rates come with
lower music perceptual quality in general. The qDev values of the
perception-aware attack are always better than ICML20, psychoa-
coustic and random noise attacks for the same attack success rate.
In particular, its qDev increases from 1.64 (good quality with quiet
noise) to 2.53 (noticeable with slight noise) when the attack success
rate goes from 20% to 80%; in contrast, the ICML20 attack has the
qDev value increasing from 2.70 (noticeable with slight noise) to
nearly 4 (very noisy). The qDev of the psychoacoustic attack ranges
from 2.30 to 3.60, exhibiting better performance than ICML20 via
its strategy to limit the energy within certain frequencies to sup-
press human attention. The random noise attack has the highest
qDev value almost reaching 5 when the attack success rate is 80%.
Overall, Fig. 11 offers very intuitive comparisons and demonstrates
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that the perception-aware attack is able to create more effective
attacks against YouTube with better music quality.
Impact of Number of Instrumental Tracks: In our experiments
for the perception-aware attack, the number of instruments used
to generate the perturbation was set to be 𝐾 =7. It means that (4)
always tries to find 7 weights assigned to 7 instrumental tracks. We
can reduce the computational complexity by restricting the number
of instrumental tracks. The less the number, the less the computa-
tional complexity (4) incurs. We conducted experiments to evaluate
the impact of this number. Specifically, we still used 7 instruments
but only choose 1, 3, or 5 out of 7 to form the instrumental track(s)
as the perturbations to create the adversarial music clips. Under
approximately the same attack success rates against YouTube, we
show the average qDev values of 160 adversarial music clips for
each various instrument selection method in Table 9.

Table 9: Attack success rates and qDev values for different
numbers of instruments.

Number of instruments: 1 3 5 7

Success rate: 78.13% 80.00% 79.38% 80.63%
qDev: 2.8901 2.7256 2.6713 2.5902

We find in Table 7 that the qDev value gradually decreases from
2.8901 to 2.5902 when we choose 1 to 7 out of 7 instruments to
create the perturbations. This is expected as the objective of (4) is
to minimize qDev and more instrument selections lead to a lower
qDev value. One interesting observation is that choosing fewer
instruments does not quite affect the attack success rate against
YouTube. However, using only one instrument creates a quite loud
music signal played by the instrument that is more identifiable to
humans. Adding more instruments and distributing weights among
them help suppress one single loud perturbation signal and makes
the overall perturbation less identifiable.

6.4 Manipulating Other Music Features
As we have discussed in Section 4, our perception-aware attack
mainly focuses on generating perturbation via revising the timbre
feature of music, which should be more effective than changing
pitch or rhythm. But it is certainly feasible to focus on manipulating
pitch or rhythm to generate perturbation. Here, we evaluate the
perturbations created by manipulating each of the pitch, rhythm,
and timbre features.

There is still an open space to manipulate pitch or rhythm with
potential optimizations. We adopt a randomized strategy to com-
pare the three manipulations. In particular, we create pitch-based
perturbations with a random energy via shifting music notes in its
spectrogram by a random frequency, rhythm-based perturbations
with a random energy via speeding up and slowing down the tempo
of music notes at a random rate, and timbre-based perturbations
with a random energy by randomly choosing one instrumental
track playing the same music notes. Because of distinct natures
in different generations, we must compare them under the same
standard. We choose the qDev as the standard, and compare the at-
tack success rates of randomly generated perturbations that always
have the same qDev value.

Table 10: Attack success rates with different manipulations.

qDev value: 1.5 2.5 3.5 4.5
Pitch: 9.38% 20.31% 29.69% 39.06%
Rhythm: 7.81% 15.63% 28.13% 54.68%
Timbre: 14.06% 31.25% 48.44% 70.31%

Table 10 shows the attack success rates of adversarial music clips
created by the three randomized manipulation methods against
YouTube under the different qDev values (64 clips for each manipu-
lation method under each qDev level). We can see that the timbre
manipulation always achieves higher success rates than pitch and
rhythm manipulations in randomized generations.

Note that it is possible to further optimize the pitch or rhythm
manipulation, or even combine all features to formulate a joint
framework to minimize the qDev. However, involving them to-
gether may incur more search complexity. A balanced manipulation
method among multiple features is also worth further studies.

6.5 Discussions
Though the perception-aware attack produce better-quality pertur-
bations, we can still notice deviations (some are minor and others
more noticeable) from the perturbed music. One may further im-
prove the attack as discussed below.
Subtlety in small qDev difference: The metric of qDev based on
current data regression of human ratings is not sufficiently sensitive
to a small value difference. For example, a qDev value decrease
from 4 to 1 should indicate an evident music perceptual quality
improvement; however, a decrease from 2.1 to 2.0 may well fall into
the error range of subjective judgements and is not fully correlated
with music quality improvement. This may indicate that within this
subtle qDev range, there might exist other improvements to make
the perturbation sound more natural and attached to the original
music. For example, some instruments (e.g., trumpet during our
observations) can produce audio characteristics more identifiable to
humans than some others, making its track evidently comparable
to the foreground tracks (e.g., the main vocal track) in the original
music. It may be necessary for (4) to select such an instrument
to beat the classification via creating more timbre variations and
minimize the qDev. There may exist other benchmarks in this case
to further differentiate the selection of instruments as a small qDev
difference may no longer help the selection.
Transition in dynamic clipping: Dynamic clipping segments a
music signal into multiple clips and finds the optimal additional
instruments for each clip. When the instrument sets for adjacent
clips are chosen in a distinct way, human participants may be
sharp enough to notice an instrumental transition. Smoothing this
transition may result in a better experience; but the smoothing still
needs to take suppressing audio fingerprints into consideration.
Robustness and bias of the regressionmodel:Our human study
and evaluations show that Random Forest achieves the minimum
MSEs in both G1 and G2 compared with other models. Based on
the Random Forest-regressed qDev, the perception-aware attack
achieves better performance than the ICML20 and psychoacoustic
attacks. As the human participants in our study are all college stu-
dents with ages 20-35 and non-music experts, we acknowledge that
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our perceptual evaluations do not reflect music experts’ judgements
but show the opinions of general young populations. Extending the
perceptual evaluations to other groups (e.g., elder populations and
music experts) will help create more accurate and robust prediction.
Genearalizability to speech: The research in this paper focuses
on the music domain. Our general human-in-the-loop methodol-
ogy can be extended to the speech domain. As there are technical
differences between fingerprinting music and recognizing speech,
we expect this leads to non-trivial efforts to rebuild the qDev model
based on human perception of speech difference, perform sensitiv-
ity analysis for speech features, and then shrink the search space
by considering qDev-friendly acoustic signals (e.g., from a set of
synthetic speech phonemes) to minimize the non-differentiable
qDev, which is worth further studies and evaluations.
Vulnerability disclosure: The perception-aware attack does not
cause an immediate operational impact, such as denial of service.
Following the practice of responsible disclosure, we reported the
issue of music copyright detection to Google. Google initially classi-
fied the case as an abuse risk. During the commmunicaiton, Google
mentioned that a copyright contentwill be taken down fromYouTube
when the copyright ownermakes a request. Google eventuallymade
the decision not to track it as a security bug.

7 DISCUSSIONS ON DEFENSE STRATEGIES
In this section, we discuss potential defense strategies.
Existing audio defense:Audio pre-processing is a potential method
to reduce the effectiveness of adversarial examples, as the small
perturbation could be mitigated during the audio squeezing [18,
19, 79, 81] and audio compression [22, 42]. These defense meth-
ods are unlikely effective against the perception-aware attack as
squeezing/compression does not quite change the spectrogram fea-
ture (e.g., the high energy harmonics will not be revised during
the processing). On the other hand, these defense methods may
not be desirable in some scenarios. For example, YouTube does not
downgrade the music quality via squeezing and compression.
Improving audio fingerprinting: The advantage of audio finger-
printing is its computational efficiency [29, 33, 73]. Exiting research
[26, 64, 73] focused mostly on extracting spectrogram features in
a robust way for fingerprinting based detection. Although these
fingerprints can be made robust to noise and pitch-shifting [26],
the perception-aware attack creates additional harmonics and spec-
trogram features that can be extracted as fingerprints and fool the
detection. We can potentially improve audio fingerprinting against
the perception-aware attack by adding the pitch and rhythm fea-
tures as other types of fingerprints. This, however, will incur sub-
stantially more costs because estimating pitch and rhythm incurs
complicatedmaximum-likelihood estimation [25] than spectrogram
based fingerprinting. There is a need to achieve a balanced tradeoff
between detection accuracy and computational complexity.
Defense in machine learning: Another possible way to defend
against the perception-aware attack is to leverage existing defense
strategies from the machine learning community. In particular, ad-
versarial training [7, 10, 30, 44, 62, 67, 77] and certified defense
[8, 36, 45, 76] are popular among the methods to provide more ro-
bustness against adversarial attacks. Adversarial training primarily
focuses on making the model robust to the adversaries via solving a

min-max optimization problem that finds the model parameters to
minimize the cost results from strong adversary examples. Given a
bounded 𝐿𝑝 ball, the re-trained model becomes more robust against
the adversarial attacks. However, the perception-aware attacker
uses qDev instead of 𝐿𝑝 norm to craft adversarial examples. This
creates a model mismatch [63] and can make the re-trained model
ill-suited. A potential way to solve the issue is to use qDev to
guide the adversarial training. However, computing qDev is a non-
differentiable process. Initial efforts can be focused on finding a
differentiable function to approximate qDev to efficiently finish the
adversarial training. Certified defense is to find an upper bound of
the adversarial loss which guarantees the robustness to any attack
in the same threat model. Existing work [8] can provide a provable
defense to the neural networks via convex layerwise adversarial
training. To use certified defense against the perception-aware at-
tack, we need to find a differential upper bound to characterize
the adversarial loss based on the qDev modeling, which, similar to
using adversarial training, involves non-trivial research efforts.

8 RELATEDWORK
Adversarial audio attacks: Most adversarial attacks [16, 18, 38,
42, 81] control the energy of the perturbation within a bounded
𝐿𝑝 ball such that a created adversarial audio example resembles
the original signal in its waveform format. In this paper, we show
that limiting the waveform change is not fully related to human-
perceived change. Instead of using the 𝐿𝑝 norm, we propose to
use qDev based on the comprehensive human study to create ad-
versarial signals with better quality. There are also a few recent
studies [3, 14, 19, 79, 80] focusing on creating inaudible or stealthy
signals as attacks. These studies generally use various strategies to
effectively hide the presence of the attack. The perception-aware
attack adopts a different strategy that creates perturbation signals
to minimize the human-perceived deviation. The ICML20 method
[57] focused on creating a neural network based black-box attack
against copyright detectors. It proposed a mathematical attempt
that enforces the perturbation to be similar to a signal of certain
frequencies to make it more natural based on 𝐿𝑝 norm. Several
studies on speech recognition attacks [41, 53, 60] also presented
psychoacoustic hiding methods to embed low energy perturbations
near the frequency of a louder signal to improve the perceptual
quality. We have adapted the approach in [53] to create music per-
turbations. Compared with ICML20 and psychoacoustic attacks,
the perception-aware attack integrates the proposed qDev into its
formulation, and creates effective adversarial music while achieving
better perceptual quality in our evaluations.
Human evaluation of audio quality: Human perception studies
[14, 18, 19, 79, 81] have been adopted to evaluate the stealthiness
of adversarial audio examples as the SNR metric may not be ap-
propriate to well reflect the human perception [19, 81]. Exiting
work [14, 18, 19, 79, 81] designed human perception studies from
different perspectives and evaluated the attack performance based
on the results of human study. For instance, [74] conducted a com-
prehensive human study to evaluate the synthetic speech quality
to reveal the impact of deep-learning based speech synthesis to hu-
man. These studies focused on analyzing the results of the human
evaluation, rather than integrating human factors into the designs.
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There are few studies [31, 68] focusing on defining human-involved
metrics for singing scoring systems. The systems were designed
to generate an absolute score to indicate the singing performance
given the recording of a human’s singing via linear weighting [68]
or non-linear neural network [31] on audio features. By contrast,
our strategy focuses on modeling the human-perceived deviation
between original and perturbed music signals, compares different
regression models, and analyzes how each audio feature affects the
overall human perception of music deviation.

9 CONCLUSION
In this paper, we conducted a human study to reverse-engineer
the human perception of music deviation via regression analysis.
Based on the analysis, we proposed the perception-aware attack
framework to create adversarial music that can mislead a music
classifier while preserving the perceptual quality. Experimental
results have shown that the perception-aware attack is effective
and achieves better music perceptual quality compared to prior
work. Our work demonstrates that perceptual quality of adversarial
attacks can be significantly improved by integrating human factors
into the adversarial audio attack design process.
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