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ABSTRACT

We debut the Warmonger attack, a novel attack vector that can
cause denial-of-service between a serverless computing platform
and an external content server. The Warmonger attack exploits the
fact that a serverless computing platform shares the same set of
egress IPs among all serverless functions, which belong to different
users, to access an external content server. As a result, a mali-
cious user on this platform can purposefully misbehave and cause
these egress IPs to be blocked by the content server, resulting in
a platform-wide denial of service. To validate the Warmonger at-
tack, we ran months-long experiments, collected and analyzed the
egress IP usage pattern of four major serverless service providers
(SSPs). We also conducted an in-depth evaluation of an attacker’s
possible moves to inflict an external server and cause IP-blockage.
We demonstrate that some SSPs use surprisingly small numbers of
egress IPs (as little as only four) and share them among their users,
and that the serverless platform provides sufficient leverage for
a malicious user to conduct well-known misbehaviors and cause
IP-blockage. Our study unveiled a potential security threat on the
emerging serverless computing platform, and shed light on potential
mitigation approaches.
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Figure 1: Warmonger attack threat model.

1 INTRODUCTION

In recent years, the Functions-as-a-Service [25, 29, 44], or FaaS, has
emerged as a new cloud computing paradigm, replacing traditional
cloud services like IaaS, PaaS, and SaaS. As a new service model,
Faa$S provides a platform on which developers, particularly Web
App developers, can directly compose code on the platform using
popular languages like JavaScript and Python; while tasks like code
storage, maintenance, and execution are all handled by the FaaS
platform that is backed by the cloud service provider’s (CSP’s) pow-
erful infrastructure. Because the code is migrated from the origin
server to the Faa$ platform provided by the CSP, the application
owner no longer needs to maintain a local server, and thus the FaaS
is also commonly known as the Serverless Functions.

In a nutshell, a developer can compose a piece of code, usually
one that is simple and single-purposed that is suitable for web
applications, and deploy it to one of the CSP’s dedicated data centers
or its distributed edge servers. This piece of code, or the serverless
function, remains dormant until it is triggered by an event, such as
an HTTP(S) request sent to a dedicated URL. After being activated,
the function will run once and subsequently return to be inactive
until the next trigger arrives. A serverless function runs on the
CSP’s powerful infrastructure and can be deployed on edge servers
close to the end-user, and thus provides the benefit of a more agile
response. Furthermore, a serverless function only runs once after
it is invoked, rather than occupying an always-run server instance,
which can save significant computational resources and costs.

Like many other cloud-based services, serverless functions ac-
commodate multiple Internet users to allow the share and reuse of
CSP’s limited hardware and software resources. On such a shared
platform, a typical security threat is that improper or insufficient
user isolation may cause a user’s private data to be accessed by
another unauthorized user on the same platform. To date, many
research studies have been published in this regard. For example,
[29] found that allowing code to move smoothly towards shared
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data storage may exacerbate the potential for rogue code to col-
lect customer-wide signals. [61] studied the security implications
of the ways the serverless platforms separate the roles of various
accounts using virtual machines or containers, and evaluate their
performance in terms of scalability, cold start latency, and resource
efficiency.

In this paper, however, we unveil a novel security threat on such
a shared platform that differs from previous studies. Specifically, in
this attack vector, the attacker’s target is not a particular user, but
all the users on the shared platform; and the attacker’s objective is
to interrupt the normal operation of all the users on the platform
including herself, by intentionally abusing the shared resources to
invoke platform-wide punishment. An example is demonstrated in
Figure 1. In this example, the attacker instructs a serverless function
to send obviously-malicious requests from the serverless platform
to an external server. Such requests may inflict the external server’s
protective behaviors such as rate limit and IP blockage, which,
consequently, result in collateral damage to all the users on the
serverless platform who share the same set of IPs.

To understand the practicality and impact of this attack, namely
the Warmonger attack, we conducted experiments to collect and
analyze the egress IP usage patterns of four major SSPs; Amazon
Web Service (AWS) Lambda, Google App Engine, Microsoft Azure
Functions, and Cloudflare Workers. Our study revealed worrisome
results in some of the SSPs. For instance, we found Cloudflare
Workers mainly relies on as little as 4 egress IPs on some of the
edge servers that we have evaluated, these IPs are shared among
other users on the serverless platform and are used for roughly
one month before they are replaced with another 4 IPs. Our study
also demonstrates interesting and non-intuitive IP usage patterns
of these SSPs, which can further facilitate studies in this direction.
We further evaluated the leverages a serverless platform provides
to a user, i.e., what malicious behaviors a user can conduct on this
platform. Our study shows that it is possible for a malicious user to
conduct well-known offensive behaviors such as HTTP flooding,
continuous SSH connection and port scanning. We summarize our
contributions as follows:

e We identified the potential risk on the serverless functions
platform, where a misbehaving user (i.e., the attacker) can cause
collateral damage and affect other users. The proposed Warmonger
attack, to the best of our knowledge, is the first such attack to reveal
and address this new attack vector.

e We conducted experiments to collect and statistically analyze
the egress IP usage patterns of different SSPs, such as the amount
of IPs used and their usage frequencies, and how they are shared
among different users.

e We also assessed the “leverage” a serverless function provides
to a malicious but nonetheless unprivileged user, that is, what mali-
cious behavior a regular user can conduct on a serverless platform
to really trigger protective reactions from the external server.

o Our study reveals drastically different IP usage patterns be-
tween different SSPs and consequently identifies various potential
risks. Our study elucidates potential remedies against such attacks.

The rest of this paper is structured as follows. In Section 2, we
first introduce the background of the SSPs and how they are used in
today’s Internet. We describe the threat model in Section 3, where

we provide details of the Warmonger attack, including the roles
that are involved and our assumptions. In Section 4, we describe
the details of the experiment setup, the results, and our analysis
and insights. In Section 5, we experiment with the capabilities of a
malicious user on the serverless platform and discuss potential mali-
cious behaviors that an attacker can use to intrigue the Warmonger
attack between the serverless platform and an external server. We
discuss potential remediation and preventative measures that can
take to address this attack in Section 6, and discuss related work in
Section 7. We finally conclude our work in Section 8.

2 BACKGROUND

2.1 Serverless Computing

As we have described in Section 1, serverless computing is a cloud
computing paradigm in which the cloud service provider allocates
on-demand computing resources and operates the machines on
their customers’ behalf. It differs from conventional cloud comput-
ing services in the following aspects.

Functionality: Serverless computing is a dedicated code-execution
platform. A serverless function service provider provides an IDE
(usually web-based) where a developer can directly write code. Such
functions are most commonly used for web applications, which are
usually light-weight and input- and output-oriented.

Infrastructure: a serverless function does not persist in memory,
nor does it have reserved resources for its exclusive use. A serverless
function becomes alive only when it is activated and is “destroyed”
once the execution is done.

Convenience: SSPs support many of the most popular languages,
such as JavaScript, Node.js, Python, and offer user-friendly web-
based or command-line interface (CLI) based IDE. A developer only
needs to compose the code either directly in the web-IDE, or write
code locally and then upload it to the platform using CLI commands,
without any worry about other issues such as purchasing and main-
taining hardware, and configuring code composing and executing
environments.

Cost: since a serverless function does not reserve any resource,
the user does not pay if the function does not run. In other words,
the user only pays for the resource the serverless function actually
consumes when it runs, which is very inexpensive. For instance,
AWS Lambda charges only $0.0000166667 for every GB-Second (i.e.,
cumulatively used 1 GB of memory for 1 second).

Depending on where a serverless function is executed, a server-
less service platform can also be classified as cloud serverless, where
the serverless function is stored and executed on one of the SSP’s
data centers selected by the user before the function is developed,;
and edge serverless, where the serverless function will be pushed to
the SSP’s edge servers across the world, and will be executed on an
edge server closest to the location where the trigger request is sent.

2.2 Denial of Service with Shared Resources

Interference between users is a necessary security concern on any
platform with shared resources. In the era of cloud computing, more
and more users are steering from private and dedicated resources,
i.e., hardware and software, to public and shared ones due to con-
venience and cost considerations. Such transition, however, comes



with associated potential risks. Some recent studies covered server-
less computing in various aspects. For example, authors in [61]
illustrated how SSPs use virtual machines or containers to isolate
the functionality of different accounts. And authors [29] in pointed
out that allowing code to flow to shared data storage is potentially
tricky because it exacerbates the security management challenges
associated with multi-tenancy and the potential for rogue code
to collect signals across users. In short, if these shared resources
are not handled securely, it could lead to a degradation of service
across the cloud platform and affect other regular users who use
that shared infrastructure or code.

The Warmonger attack proposed and studied in this paper shares
similarities with the studies described above. In this paper, our con-
tribution lies in the study of a problem that may have been over-
looked on a new platform, and we used experiments to demonstrate
the practicality and impact of such an attack.

3 THREAT MODEL

In this section, we provide details of the threat model of the War-
monger attack. Specifically, we discuss the scenario where this
attack applies, the attack vector and attacker’s objective, the victim,
the impact, and the scope of this attack.

The attack model includes three participating entities, i.e., the
attacker, the victim user, and the visitor; it also involves two plat-
forms, i.e., the serverless service provider (SSP), and the target
server. We introduce each component in the following.

3.1 Participants

In this subsection, we present the definitions and assumptions of
all the entities involved in the Warmonger attack.

Serverless Service Provider (SSP): An SSP is a service provider
that provides serverless computing service to the public. The SSP
provides a platform and computational resources that allow a user
to register, write and run serverless functions on this platform.

Target Server: A target server refers to a server hosting resources
that are accessible by external applications. The target server is
rather an abstract concept. For example, a target server could be a
private server that runs on a standalone machine or on the cloud,
such as an online SQL server containing private data. It could
also be a public service, such as GitHub’s API entry point (https:
//api.github.com) that a user uses to access account-specific service
or information. Nonetheless, the target server’s IP or domain name
is public information and is known to the attacker. We assume that
the target server is protected by an intrusion prevention system
(IPS), which monitors the network traffic and reacts to anomalies
by blocking the IP addresses of malicious and intrusive traffic.

User: A user is a client of an SSP who develops and deploys
serverless functions to exchange messages with the target server.
A victim user is an innocent user that uses an SSP’s service and is
affected by the Warmonger attack.

Attacker: The attacker is a user who has a valid account on the
SSP’s serverless computing platform. We assume that the attacker
knows how to trigger the reaction of IPS systems.

Visitor: A visitor is an entity that utilizes the serverless function
by sending a request to activate it. A visitor can be someone who

visits a website. For instance, a website owner can include a trig-
gering URL in the website’s main page, such that once the page is
visited, a request will be sent to activate a serverless function. In
this case, the website owner is a user of the serverless function, and
the one who visits the web page is a visitor.

3.2 Attack in Action

The attack vector of the Warmonger attack is straightforward. To
launch this attack, the attacker composes a serverless function that
sends malicious traffic (such as a large amount of HTTP requests,
we will discuss more details of such possible “malicious behaviors”
in Section 5) to the target server to inflict its IPS to block the at-
tacker’s IP. However, since the blocked IP is actually the serverless
platform’s egress IP that is shared among all users, such IP-blockage
will cause the victim user unable to access the target server.
Essentially, the Warmonger Attack is a denial-of-service (DoS)
attack, whose objective is to disrupt the victim users’ operation
rather than gaining any direct benefit. However, the Warmonger
attack differs from a traditional DoS attack in the following aspects.
First, in a traditional DoS attack, the attacker is usually an outsider
who is not part of the victim. While in the Warmonger attacker, the
DoS is caused as collateral damage made to the attacker herself. The
attacker acts like a “warmonger” that inflicts the “war” between
the serverless computing platform and the target server. Thus, we
name this attack the “Warmonger attack”. Second, in a traditional
DoS attack, the attacker’s goal is to at least partially paralyze the
target server or exhaust its bandwidth, which becomes more and
more difficult with all DoS countermeasures in place [11, 20, 38].
The Warmonger attack, on the other hand, aims to purposefully
inflict the target server’s IPS system to block its egress IP, which
is much easier to achieve. In some sense, the Warmonger attack is
the inverse of a traditional DoS attack: while a DoS attack attempts
to find novel ways to circumvent the IPS and cause damage to the
target server; the Warmonger attack uses all the well-known and
existing DoS attack vectors to “inform” the IPS of the arrival of an
attack to cause IPS-induced DoS for users with the same egress IP.

4 STATISTICAL ANALYSIS OF EGRESS IPS

Based on our description in Section 3, two hypotheses must be true
for the Warmonger attack theory to be realistic: first, a serverless
computing platform indeed lets its users share a reasonably small set
of egress IPs, such that an IP, which is blocked due to the attacker’s
misbehavior, has high probability to be reused by the victim user;
and second, the serverless function provides sufficient leverage to
the attacker, such that she can really use a serverless function to
conduct some obviously malicious behavior and cause her egress
IP to be blocked. We explore these two key components in depth in
the following two sections.

Specifically, in this section, we demonstrate our results of egress
IP usage patterns of four major SSPs in the North American mar-
ket, which are based on a number of months-long experiments we
have conducted during July and November of 2020. In the next sec-
tion, we investigate the possibilities and limitations of a serverless
function’s capability, and use experiments to demonstrate some
easy-to-achieve behaviors that can potentially inflict protective
reactions of IPS systems.
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We will start this section with a brief description of the evaluated
SSPs. After that, we will provide details of the experiment setup
and then move on to demonstrate the analytical results and discuss
our observations.

4.1 Evaluated Vendors

We have studied four major SSPs: Cloudflare Workers[13], Amazon
Web Service (AWS) Lambdal[5], Microsoft Azure Functions[41], and
Google App Engine[26]. Cloudflare is a dedicated Content Delivery
Network (CDN) provider, while the other three are comprehensive
cloud service providers. Cloudflare Workers is edge serverless, i.e.,
a serverless function will be distributed to all Cloudflare’s CDN
edge servers across its CDN network, and executed on the edge
server nearest to where the triggering request is sent. On the other
hand, all the other three SSPs are cloud serverless, a user must
specify which data center they would like a serverless function
to be hosted and executed. Note that AWS also provides an edge
serverless service, namely Lambda@Edge, which combines Lambda
and Cloudfront, AWS’s CDN service, such that a serverless function
can be executed on Cloudfront’s CDN edge servers. In this study,
we did not cover Lambda@Edge and only evaluated Lambda.

4.2 Experiment Setup

The purpose of these experiments is to thoroughly analyze the
egress IP usage of each SSP. Based on the threat model we have
described before, we deem the following factors can affect the
egress IPs used by a serverless platform to access an external server:
the visitor’s location, i.e., where the triggering request is sent; the
location of the server where the serverless function is executed;
and the location of the target server.

To simulate the visitor’s and the target server’s locations, we
rented five AWS EC2 instances on AWS’s different data centers
and one Alibaba Elastic Compute Service (ECS) instance in China.
The six locations include: Montreal (Canada) and Ohio (U.S.) from
North America; Hangzhou (China) from Asia; Sydney (Australia)
from Australia; Paris (France) from Europe; and Sao Paulo (Brazil)
from South America.

Figure 2: Egress IP Collection

4.3 Data Collection

The data collection scheme is demonstrated in Figure 2. Each in-
stance servers both as a visitor and a target server simultaneously.
As a visitor, each instance continuously sends requests to four
serverless functions we have deployed on the four SSPs, and each
serverless function will send six requests to the six instances once
being activated. As a target server, each instance hosts a web server,

which receives the requests sent by the four serverless functions
and logs their source IP.

These experiments were run for roughly 3 months between mid-
August 2020 and late October 2020. In order to achieve high gran-
ularity, we initially experimented with various intervals between
two visitor-sent requests, ranging from 5 seconds to 40 seconds. We
later found such small granularity is unnecessary and adjusted it
to 600 seconds. Based on our analysis, although these 600 seconds
intervals will cause some IPs not to be logged, it won’t affect the
overall trend. All the following demonstrations are based on 600
seconds intervals, and all previously collected finer-grained data
was down-sampled to fit in the same scale.

In the following demonstration, we will use the format visitor-
SSP-target to refer to a specific set of egress IPs. For example,
Montreal-Cloudflare-Paris refers to egress IPs used by a serverless
function on Cloudflare Workers’ platform, when the function is
triggered by a visitor in Montreal and the target server is in Paris.

4.4 Results

In the following, we analyze the egress IP usage patterns of the
four SSPs based on our collected data.
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4.4.1 Statistical Results Explained.

In the rest of this subsection, we demonstrate the results of our
experiment using a highly-condensed figure as shown in Figure 3,
which shows the egress IP usage pattern of Montreal-Cloudflare-
Sydney. This figure integrates multiple dimensions and warrants a
detailed explanation, which is provided below.

The figure contains three parts: a histogram plot (hist-plot) dis-
played on the left part of the figure; a Cumulative Distribution
Function plot (CDF-plot) and a scatter plot (scatter-plot) that over-
laps with each other and are displayed on the right.

For the hist-plot, the y-axis (the left y-axis on the figure) repre-
sents the date of the experimented period, ranging from Aug 17,
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Figure 4: Cloudflare and Microsoft Influenced by Visitor’s Location

2020 to Oct 31, 2020 !, with each tick represents one day. The x-axis
(the top-left x-axis on the figure) represents the number of different
egress IPs used on a specific day. For each bar of the hist-plot, we
further divided it into multiple subsections, with each subsection

represents the frequency of appearance of a specific IP on that day.

The hist-plot provides an intuitive view of how many IPs were
used, and how frequently each IP appears, on a specific day. Take the
date 26-Sep-2020 as an example, as highlighted in Figure 3. From the
hist-plot, we can find 6 egress IPs were used on Sept 26 because the
length of the bar is 6 according to its x-axis. This bar is divided into
6 subsections, but only 4 are visible and the other 2 are so short and
packed at the left-end and cannot be clearly seen. The information
conveyed by these subsections is that, out of the 6 IPs, 4 of them are
used much more frequently than others. Furthermore, we can also
tell these 4 IPs are evenly used because the 4 visible subsections
have about the same length.

The scatter-plot is associated with the left y-axis and the bottom

x-axis. The bottom x-axis shows the “indices” of different egress IPs.

LA part of Microsoft Azure’s data was corrupted and we only display a smaller range
from Aug 19, 2020 to Sep 19, 2020.

Specifically, for each different IP we observed during the experi-
mented time period shown in the figure, we give it a unique integer
index starting from 0 based on the first time it was seen. Also note
that such indices across different figures are not comparable, i.e.,
IP-1 in two different figures may represent different IPs.

The scatter-plot gives details about the IP usage pattern that
are not provided by the hist-plot. For example, using Sept 26 as
an example again, we can find 6 IPs were used on that day based
on the hist-plot, and from the scatter-plot, we can see these IPs
are with the indices 15, 16, 17, 18, 19, and 20, as shown by the
horizontal blue-circles. The scatter-plot also allows us to observe
the day-to-day change of the IP usage pattern. For example, we can
see the IPs 4, 5, 6, and 7 are the major four IPs used during Aug
19 to Sept 23, roughly a month; and in the next month, these four
IPs were not used any longer and IPs 15, 16, 17, 18 became the new
major-four. Based on the scatter-plot we may conclude Cloudflare
Workers mainly uses only 4 IPs on this specific serverless platform
and rotates the IPs on a monthly basis.

The CDF-plot is associated with the right y-axis and the bottom
x-axis, which shows the overall use-percentage of a specific IP
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Figure 5: Google and AWS Influenced by Visitor’s Location

during the complete experimented period shown in the figure, such
information cannot be obviously seen from either the hist-plot or
the scatter-plot. For instance, from the scatter-plot, we can tell that
a total of 25 IPs were observed during the experimented period,
and IPs 4, 5, 6, 7, and 15, 16, 17, 18 are the most used 8 IPs, which,
however, does not give accurate values of how frequently each IP
were used. The CDF-plot provides this information in specific. For
instance, we can observe the vertical length of the CDF-plot for IPs
4,5, 6,and 7 are about 0.1 and are of roughly the same length, which
indicates that each of these four IPs occupies 10% of the overall
observed IPs during the period.

4.4.2  Influence of Visitor’s Location.

As explained before, a serverless platform can be either cloud
serverless, where the serverless function is stored and executed on
an SSP’s specific data center; or edge serverless, where the serverless
function is executed on a distributed edge server. Intuitively, when
sending requests to the same target server, edge serverless will
use a different set of IPs if the visitor is at a different location,
because the function will be executed on different edge servers; and
cloud serverless will use the same set of IPs because the same data

center executes the serverless function regardless from where the
function is triggered. In this subsection, we validate our hypothesis
by displaying the results by varying the visitor’s locations but
fixing the target server’s location. Although we do not present all
the results due to the space limit, we denote that the presented
results representative and all other results follow the same trend.
Cloudflare is a CDN provider, and its Workers serverless plat-
form is known to run on its distributed edge servers, making it an
edge serverless platform. We compare two traces, i.e., Sao Paulo-
Cloudflare-Ohio and Montreal-Cloudflare-Ohio, in Figures 4a and 4b.
By observing these two figures, it is obvious that they do not share
many similarities. Specifically, in the hist-plot of the Sao Paulo-
Cloudflare-Ohio trace shown in Figure 4a, we see 18 IPs were used
for most days, while there were only 5 for the Montreal-Cloudflare-
Ohio trace in Figure 4b. Comparing these two figures, we can con-
clude that the edge servers located close to Montreal use much
fewer egress IPs, which may be due to the fact that Sao Paulo has
more than 10 times the population compared with Montreal and
needs more egress IPs to accommodate more network traffic. On
the other hand, however, the scatter-plot reveals the edge server in



Sao Paulo did not rotate its egress IPs, i.e., the same 18 IPs were used
for almost the whole experimented period, with only 4 outlier-days
from Aug 31 to Sep 3. For the Montreal trace, however, it is clear
that only IP 6 was used for a longer time, other IPs, such as IPs 7,
8,9, and 17, 18, were only used for one month. It is also important
to denote that the IPs in Figures 4a and 4b are completely different
without any overlap. Because we have seen thousands of different
IP addresses during our experiment, it is not feasible to give each IP
a unique index and plot them in one figure. Therefore, we decided to
use the same index starting from zero on both figures, and verbally
describe if those two sets of IPs ever overlap.

These observations help us to draw the following conclusions.

It is harder for an attacker to cause complete IP blockage for the
Sao Paulo edge server because of its larger number of egress IPs,
however, once successful, the impact lasts much longer, which could
be longer than the 3 months shown in our trace. On the other hand,
it is quite easy for an attacker to cause complete IP-blockage for
the edge server in Montreal since it only uses 4 to 5 IPs on most
days, but whose impact can last only approximately one month.

Next, we present the results for the other SSPs, which exhibit
non-intuitive and interesting differences.

First of all, all the other SSPs are cloud serverless, and a user must
first select a data center to host the serverless function. Therefore,
intuitively, one would assume the egress IPs should be the same
regardless of where the request is from. However, we see different
results in different SSPs. In the rest sub-figures in Figures 4 and
5, we present the results of the other three SSPs. In these figures,
we intentionally selected traces different from the one used in
Figures 4a and 4b to present more varieties of our results.

Although these figures look very similar to each other, it is
important to point out that, the IPs between Figures 4c and 4d,
and Figures 5a and 5b substantially overlaps (with more than 99%
overlapping), while the IPs between Figures 5c and 5d merely have
0.7% overlap. In other words, Lambda will use different IPs to reach
the same target server when the request is sent from different
locations. One possible reason could be the serverless function on
the Lambda platform may be executed on different hypervisors in
the same data center, which was assigned different IPs, when the
request is sent from different places.

These figures exhibit very interesting characteristics and we
summarize our observations in the following.

We start our analysis by discussing the trend of the hist-plot.

Looking at the hist-plot from the high-level, we can find Google

does not present a clear trend of change on how it uses egress IPs.

Although more IPs were observed in some days than others, the
average IPs used through the experimented period is about 50. On
the other hand, Azure and Lambda both show clear changes in how
many IPs are used. For both Azure and Lambda, we see a significant
drop in the number of IPs started from Sep 1, with Azure dropped
from an average of 75 to about 50, and Lambda dropped from an
average of 50 to about 15. However, it is unclear to us why there
were such drastic changes in the IP usage pattern. Looking at the
absolute numbers of IPs, Lambda uses fewer IPs, indicating it is
easier to be attacked.

When we look closer to each bar of the hist-plot, we can find
although each SSP uses many IPs in one day, some are used more

frequently than others, which is indicated by the uneven distribu-
tion of the subsections in these bars (the dark-blue chunks on the
left of each bar are subsections that are too short to be displayed
individually). The exception lies in Lambda after Sept 1, where these
(less than 20) IPs were used relatively evenly, as shown by most
subsections can be clearly differentiated.

We then move on to examine the scatter-plot. Among the three,
Lambda exhibits the most unique characteristic. On each day, Lambda
would use a new set of IPs, and an old IP will be used at most for
two to three consecutive days and then will not appear again. This
IP usage pattern results in the line-like plot as presented in Fig-
ures 5¢ and 5d. For Google and Azure, both will use some new IPs
each day that have never been seen before, which is indicated by
the diagonal boundary line, while old IPs are still being used for a
prolonged period of time, indicated by the scattered circles above
the boundary line.

For Azure, new IPs are used each day, and such new IPs are
used more frequently than old IPs, which is indicated by the clear
dark-blue boundary on the scatter-plot. Old IPs will still be used
for about 2 weeks and then gradually disappear, indicated by the
trend that the circles above the boundary-line transit from dense to
thin as time goes. For Google, such a trend is less clear. Each day,
Google will also use some new IPs, but those IPs are not as heavily
used as Azure, indicated by the fact that the boundary line is not as
dense as that in Azure’s case. And old IPs are still frequently used
without any obvious trend to be abandoned. Observing Figures 5a
and 5b, the scatter-plot for the first 100 IPs are slightly darker than
the rest of IPs, indicating the first 100 IPs are used slightly more
frequently than the rest.

At last, we look at the CDF plot. the CDF-plot of Azure trace
presents a roughly straight line, indicating all IPs that appeared
in the plot are used relatively evenly during the experimented
period. The CDF-plot of the Google trace presents a slight concave
at around IP index 100, which means the first 100 IPs are used
slightly more frequently than the rest of IPs, which confirms our
observation based on the scatter-plot discussed before. The CDF
plot of Lambda presents a polyline with two phases. Both phases
are straight lines, indicating all IPs are used more or less the same.
The phase-change at around IP index 80 (or date Sep 1) is because
of the sharp drop of the number of IPs since fewer IPs were used in
each day after Sep 1.

These two cloud serverless platforms (excluding Lambda because
it behaves similarly to edge serverless) exhibit completely different
characteristics compared to Cloudflare Workers. First, since their
egress IPs are independent of the visitor’s location, an attacker can
be at any location and still affect all the users across the world. In
comparison, in Workers, an attacker is only able to attack the set of
users that share the same edge server. Second, since all three SSPs
use new IPs each day, the impact of the attack lasts much shorter
compared to the case in Workers. For Lambda, in particular, the
impact can only last for two or three days because each IP is used
for two to three days at most (most IPs are used only for one day).

4.4.3 Influence of Target Servers Location.

A serverless platform may also use different IP addresses to ac-
cess target servers at different locations. And whether or not the
SSP uses different egress IPs for different locations may also affect



Table 1: Egress IP Overlap Ratio for different visitor-SSP-target server combinations.

Montreal | Hangzhou | Ohio Paris | Sao Paulo | Sydney
Montreal_Microsoft_éregions 99.93% 99.87% 99.87% | 99.87% 99.87% 99.87%
Paris_Microsoft_6regions 99.93% 99.93% 99.93% | 99.93% 99.93% 99.93%
Montreal_Google_6regions 99.68% 99.68% 99.68% | 99.68% | 99.68% 99.68%
Paris_Google_é6regions 99.68% 99.68% 99.68% | 99.68% 99.68% 99.68%
Montreal _AWS_6regions 66.72% 46.71% 66.88% | 51.29% 55.31% 75.30%
Paris_ AWS_é6regions 73.49% 66.50% 73.56% | 67.93% 69.02% 92.08%
Montreal_CF_6regions 21.40% 16.87% 17.70% | 16.87% 19.34% 26.34%
Paris_CF_6regions 20.39% 15.13% 14.47% | 14.64% 15.30% 18.59%

the effectiveness of the Warmonger attack. For instance, assume
the target server is a cloud computing platform, says Google, which
provides services in multiple locations that share the same IP block-
list. In this case, if the SSP uses the same IPs to access target servers
in any location, the attacker only needs to attack one target server,
and cause these IPs to be blocked completely by the entire cloud
computing platform.

In this subsection, we analyze the egress IPs when the visitor’s
location keeps unchanged, but the visitor instructs the serverless
function to send requests to target servers at different locations.
We define the metric Egress IP overlap ratio as the percentage of
egress IPs of a particular visitor-SSP-target among the entire IPs of
visitor-SSP-{all 8 targets). Our results show that different SSPs also
exhibit different characteristics, as present in Table 1.

From Table 1, we can find that among these SSPs, Azure and
Google do not differentiate egress IPs according to target server’s
locations, as shown the overlap ratio is very close to 1. On the other
hand, we see clearly different behaviors for Lambda and Workers.
Specifically, Lambda has overlap ratios ranging from 0.55 to 0.92,
and Workers has an even smaller overlap ratio which is only around
0.2. This indicates that Lambda and Workers are more likely to use
different IPs to access servers at different locations.

4.4.4  Feasibility Validation: Different Users/Serverless Functions.

In the previous subsections, we have thoroughly demonstrated
different vendors’ egress IP usage patterns. However, one may still
question the feasibility of the proposed Warmonger attack: all the
analyses done so far are from a single user’s perspective, but can
this user’s misbehavior really affect others? Or in other words, do
all the users really share the same set of egress IPs? This question
leads to two scenarios, i.e., will the SSP use the same set of egress IPs
when: 1). the same user-deployed serverless function is triggered
by different visitors; and 2). different serverless functions on the
same SSP platform are triggered.

Instinctively, the answer to these two questions should be both
positive, because in today’s Internet, IP addresses are scarce re-
sources [50] and it does not seem reasonable for an SSP to assign
one or a set of IPs to an individual user, especially considering
the large user populations. To validate this hypothesis, we created
two independent EC2 instances on AWS’s Canada data center to
emulate two different visitors who will send requests to activate
serverless functions, and two independent but identical serverless
functions on each SSP’s platform. We conducted two experiments
to simulate the scenarios described before, where in the first exper-
iment we let the two visitors request the same serverless function
on each platform; and in the second one we let one visitor trigger

the two independent serverless functions on the same platform.
Our results again show interesting differences among these SSPs
that are described in the following.

Specifically, according to our experiment, a serverless function
will always use the same set of IPs when being requested by dif-
ferent visitors. However, the two independent serverless functions
share the same set of IPs on Azure and Workers platform but will
use a completely different set of IPs on Google and Lambda plat-
forms. We further investigated Azure and Workers platform by
registering 5 different user accounts and deploy 2 serverless func-
tions within each account, and still obtained the same conclusion,
which suggests that Azure and Workers do share egress IPs among
different users.

On the other hand, for Google and Lambda’s case, at the first
glance, they do not seem vulnerable to the Warmonger attack be-
cause egress IPs are not shared. However, we believe they still have
the potential to be affected based on the reasons we listed below.

Recall that based on our IP usage analysis demonstrated in Fig-
ures 5a and 5d, we conclude that on Google and Lambda’s platform,
a serverless function will be assigned new IPs each day. Specifically,
a serverless function will be given some new IPs each day while
the old IPs will still be used for some days and then disappear (2
- 4 days on Lambda platform, and 10+ days on Google platform).
However, because it is well-known that IPv4 addresses are scarce
resources nowadays [50], it is reasonable to assume those IPs are
not completely abandoned but are reused and reassigned to other
serverless functions or other services on Google and AWS’s cloud
computing platform. In this case, if the attacker is able to cause a
set of IPs being blocked by certain target servers for a long time,
this would be like a time bomb and may cause unpredictable conse-
quences depending on which user or what other cloud service uses
these set of IPs and how they are used.

Furthermore, although such IP isolation among different server-
less functions can prevent the platform-wide DoS, it is still vul-
nerable to a more targeted “point-kill”. We leave a more detailed
discussion regarding this attack in Section 6.3.

4.4.5 Launching Warmonger Attack.

The last question remains to be answered is how hard or easy it is
for an attacker to really cause one specific IP to be blocked. Because
the egress IP is automatically assigned to a serverless function by
the platform and is out of the control of the attacker, it seems that
the attacker may not be able to ensure the target server sees the
same IP for each malicious request.

In fact, the attacker has two approaches to cause a specific IP to
be blocked by conducting sufficiently malicious behavior against



Table 2: Numbers of IPv4 vs IPv6 for Cloudflare and Google . Cell format: {Workers-v4, Workers-v6}, {Google-v4, Google-v6}.

Paris Montreal Ohio

SaoPaulo Sydney HongKong

Paris (27,28}, {14, 13} | {42, 44}, {10, 13}

{44, 39}, {15, 13}

{39, 28}, {13, 8} | {23,41},{16,10} | {20, 42}, {15, 13}

Montreal {11, 12}, {13, 11} | {18, 24}, {13, 14}

{24, 20}, {12, 13}

{23, 13}, {13, 7} | {11,20},{17,10} | {12, 22}, {13, 13}

Ohio {156, 144}, {14, 13} | {246, 222}, {13, 15} | {258, 240}, {13, 12} | {246, 157}, {12, 9} | {163, 248}, {19, 10} | {154, 244}, {14, 12}

SaoPaulo (28,29}, {12, 12} | {55, 54}, {12, 14}

{64, 59}, {14, 16}

(61,31}, {11,8} | {29,60}, {15, 11} | {28,52}, {15, 12}

Sydney {98, 99}, {14, 11}

{163, 163}, {15, 15} | {178, 169}, {13, 14}

{173, 98}, {16, 9} | {102, 177}, {18, 11} | {102, 165}, {19, 12}

HongKong | {101, 102}, {12, 11} | {177, 183}, {13, 14} | {185, 178}, {13, 16} | {181, 105}, {11, 7}

{104, 179}, {16, 9} | {91, 174}, {14, 14}

the target server. We refer “malicious behavior” to any action that
can trigger a protective reaction from a firewall or an intrusion
detection/prevention system at the target server. An intuitive exam-
ple can be sending a larger number of requests to the target server
or constantly scanning its TCP/UDP ports.

The first approach is to behave maliciously in one serverless func-
tion activation. For instance, the attacker can instruct the serverless
function to send 1,000 requests once it is activated. As we have
tested on all platforms, as long as the serverless function is in a
single execution, all the requests will have the same egress IP. How-
ever, this approach may not be applicable for Cloudflare Workers
who limit the CPU time of one execution to be only 10 ms. The
second approach is for the attacker to constantly activate serverless
functions and conduct malicious behaviors on each activation. And
the success rate of this approach highly depends on the number of
IPs used in a specific time period, e.g., a day. If we simply assume
all egress IPs are evenly used (which is not, the practical IP usage
patterns are demonstrated by the hist-plots discussed before), in
order to cause one IP to be blocked, the attacker will have to send
malicious requests n times more than the target server’s threshold
where n is the number of used egress IPs. For instance, if the target
server’s threshold is 100 requests per hour and there are 10 IPs
being used on the serverless platform, the attacker needs to send,
statistically, 1,000 requests to cause any and all IPs to be blocked.

4.5 IPve

We recognize that the deployment of IPv6 may be a potential miti-
gation to the Warmonger attack and conducted similar experiments
to evaluate these SSP’s IPv6 usage patterns. We first tested if a spe-
cific SSP supports IPv6 by using a serverless function to access an
IPv6-enabled website, and found that only Google and Cloudflare
support IPv6 at the time when the experiments were conducted.
Microsoft and AWS gave “network is unreachable” and “address
family not supported by protocol” errors, respectively, when being
used to access an IPv6 website. The following experiments were
only conducted on the two SSPs that support IPv6.

We began with assigning an IPv6 address to each of the six
instances mentioned above, and then used each instance to activate
a serverless function to access both IPv4 and IPv6 addresses of all
other instances, similar to the experiments we have described in
Sections 4.2 and 4.3. The experiments were conducted from July 24,
2021 to August 8, 2021, lasting 2 weeks. The request interval was set
to be 600 seconds, similar to previous experiments. In Table 2, we
present the comparison of the overall observed numbers of IPv4 and
IPv6 addresses during the experimented period. To be concise, we
put both Cloudflare’s and Google’s results together in one table cell.
For instance, the top-left cell reads {27, 28}, {14, 13}, which means

when we used the instance in Paris to access itself, we observed 27
IPv4 addresses and 28 IPv6 addresses used by Cloudflare Workers,
and 14 IPv4 addresses and 13 IPv6 addresses used by Google App
Engine. The results in Table 2 show that Cloudflare and Google use
roughly the same number of (sometimes even less) IPv6 addresses
albeit they have a much larger IPv6 address pool. We have also
compared the detailed IPv4 and IPv6 usage patterns and found that
they are very similar; therefore, we skip demonstrating the IPv6
usage patterns due to the page limit.

Our IPv6 experimental results reveal that despite the vast avail-
ability of IPv6 addresses in theory, the actual number of allocated/used
addresses is quite limited, making the Warmonger attack a practical
threat to current IPv6 designs by SSPs. We provide more detailed
discussions on the IPv6 issue in Section 6.3.

5 WARMONGER ATTACK: EMPIRICAL
EXPERIMENT

In the previous section, we have analyzed the egress IP usage pat-
terns of different SSPs, which theoretically demonstrates the poten-
tial risk of the Warmonger attack. In this section, we use experi-
ments to demonstrate the practicality of this attack.

5.1 Ethical Considerations

While the most straightforward approach to test the Warmonger
attack’s practicality is to deploy a serverless function and use it
to attack a real target server, is obviously unethical to do so. To
understand the influences of the Warmonger attack without causing
real-world impacts, we design a detached experimental environment
that can indirectly launch and evaluate this attack.

Specifically, we detach the serverless function and the target
server by inserting a surrogate server of our own. The surrogate
server is an EC2 instance running on AWS with a static IP, which
acts as the target server to a serverless function and as a client to
a real-world target server. All the offensive traffic, such as a large
amount of HTTP(S) requests, will only be directed to the surrogate
server to avoid any negative impact real users. And in the case we
need to relay some traffic to a real target server, the worst case is
only the surrogate server’s IP be blocked. Furthermore, as demon-
strated below, our analysis mainly stays on partial experiments,
indirect analysis and comparison. We conducted very little amount
of traffic forwarding via the surrogate server to a real-world target
server without affecting any real user.

5.2 Approach

The basic idea of the Warmonger attack is for the attacker to pur-
posefully misbehave and cause the target server to block the at-
tacker’s egress IP addresses. Although many simple brute-force



attacks can very likely achieve this goal, such as simply instruct-
ing the serverless function to send an overwhelming number of
HTTP(S) requests, it is not feasible to be tested due to ethical rea-
sons even with our detached experiment setup, because this may
violate the serverless service provider’s user agreement. Therefore,
the “experiments” in this section are combinations of real-world
experiments, if we deem such experiment will not incur any real-
world impact, and discussions and comparisons when a real-world
experiment is not feasible.

5.3 Flooding

It is intuitive that flooding the target server is the easiest way
to cause the sender’s IP to be blocked. Flooding attacks can be
launched on different layers. For instance, the Ping flood, or ICMP
flood, exploits the ICMP protocol on the Network layer; the SYN
flood takes advantage of the TCP protocol on the Transport layer;
and the HTTP flood uses the HTTP protocol on the Application
layer. The Application layer flooding is the easiest to apply, where
the attacker only needs to use an application or a simple script to
send HTTP(S) requests. The lower layer floodings, however, will
require the attacker to have access to lower layers of the TCP/IP
stack and modify the content of raw packets. During our experi-
ment, we composed serverless functions on all the tested platforms
attempting to access the raw socket in order to modify the raw
packet, and found that none of the platforms allows us to access
any resources below the Application layer. This may be because the
SSP has purposefully disabled the access to lower layers for security
considerations, or the serverless function platform is implemented
as a virtualized sandbox that does not have a realized lower layer
at all. Therefore, in the following flooding attack experiment, we
only focused on evaluating the Application layer flooding attack.

Another potential barrier that may prevent the attacker from
successfully launching the flooding-based Warmonger attack is
the relative limitation imposed by the SSP and the target server.
Intuitively, the SSP should also have a limitation on how a serverless
function can be used. For instance, the SSP may disable a serverless
function if it has been requested significantly frequently, or it sends
too many requests per single execution. If such limitation is lower
than the target server’s IP-blockage limitation, the attacker will not
inflict the target server’s IPS reaction using the serverless function.
To test such limitations of the serverless function platform, we
designed the following two experiments.

In the first experiment, we composed a serverless function on
each SSP platform, in which we used a for loop and the concur-
rent method (whenever possible, see later description for details) to
send 500 HTTP requests to our surrogate server without any rate
throttling. We then activated this serverless function and verified
if it was executed and all the 500 requests were sent. In the second
experiment, we changed the serverless function to send out one
request to our surrogate server, but we ran a local script to activate
this serverless function 500 times both using a for loop and con-
current method. The amount of 500 is arguably insufficient to be
recognized as a real DoS attack and causes the IP to be blocked, but
we were concerned that a larger amount of requests will make us
be really recognized as a malicious user and cause our session or

account to be suspended. Furthermore, as we show below, many
real-world websites actually set the threshold much lower than 500.

We deployed these two experiments on the four SSPs. Our re-
sults show that only Cloudflare Worker cannot finish sending 500
requests in a single execution. This is due to Workers limits a single
serverless execution to be no more than 10 ms CPU time [15], and
we found only about 50 requests were sent before the serverless
function is terminated by the system. For the remaining three, al-
though we were unable to find any specification on such resource
limit, we can make the empirical conclusions based on our experi-
ments: Lambda supports concurrent execution and can send up to
100 requests per second, while Google and Azure do not support
concurrent and can send only 5 to 8 requests per second.

Due to the reasons we have explained above, we think this exper-
iment is infeasible to be tested in the real-world environment even
with our detached configuration. However, we were able to find
real-world examples that suggest reasonable and practical thresh-
olds that are used for DoS detection. Specifically, in this Cloudflare
technical blog [23], the author provides a number of Cloudflare
customers’ Firewall settings. From the blog, we can find that in
reality, such thresholds are commonly set to be a very low value
(only tens of times per minute). Therefore, it is very practical for
an attacker to use a serverless function to inflict IP-blockage via
HTTP flooding.

5.4 Malicious Requests

Besides flooding, another approach to cause IP blockage could be
sending “malicious” requests to the target server. Because “ma-
licious” is a vague term and it essentially depends on the target
server’s IPS configuration. In this subsection, we do not focus on
any specific malicious behavior but discuss the capability that the
attacker can achieve leveraged by the serverless platform.

5.4.1 Malformed HTTP(S) Requests.

A major functionality of the serverless function is to receive,
process, and send HTTP(S) requests. Based on our evaluation, SSPs
impose very few restrictions on how such requests can be con-
structed. As we have tested, we can instruct a serverless function
to send HTTP(S) requests to any URL and include any special char-
acters and keywords in almost any part of the request. For instance,
we have tested to include the string <script></script>, one of
the most straightforward patterns to test for potential web app
vulnerabilities, as the query parameter of an URL, and as the value
of the Host, User-Agent and Cookies headers, and find that only
the change of the Host header are restricted by Google and Cloud-
flare. Since the strings we used are well-known offensive patterns
that are commonly filtered by Web Application Firewall [34], it is
reasonable to assume constantly sending requests with such strings
is very likely to inflict IPS’s protective reactions.

5.4.2  Port Consuming and Scanning.

Based on our investigation, none of the SSPs allows us to dive
down and modify the transport layer and below, i.e., an attempt
to access the raw socket will be rejected by the system with an
“Operation not allowed" error message. However, we found that
“SOCK_STREAM” is nonetheless allowed, indicating we can build a
custom port scanner to constantly send port scanning packets to



the target server. To demonstrate, we deployed Pfsense [21, 43], a
popular open-source firewall on our surrogate server, and created
a rule to block IPs who have more than 20 concurrent connections.
Then, we attempted to create and maintain multiple TCP streams
from the serverless function to our surrogate server on different
ports and easily caused ourselves being blocked.

54.3 SSH.

SSPs also provide the convenience to allow a serverless function
to establish SSH connections to a remote server [12, 42, 49], which
provides another leverage for the attacker to conduct malicious
behaviors. For instance, the attacker can use the serverless func-
tion to constantly SSH to the target server and sends apparently
malicious commands, such as attempting to login with root and
with various passwords, or including well-known malicious strings
such as a series of 0x90 (the “nop slide” usually associated with
buffer overflow attack [3]).

5.5 Censorship and State-Level Firewalls

The Great Firewall (GFW) of China is a well-known state-level
censorship system that applies strict censorship rules. Although no
explicit filtering rules have ever been published, many studies, such
as [62] [58] [22], have revealed many behaviors based on empirical
and extensive experiments.

It has been shown from existing studies that the Great Firewall
applies filtering rules to both inbound and outbound traffic. For
outbound traffic, i.e., traffic from China to other countries, the GFW
deploys various rules ranging from simple IP and DNS filtering
to sophisticated deep packet inspection that can inspect and fil-
ter sensitive keywords. For the inbound traffic, to the best of our
knowledge, GFW applies at least keyword filtering.

The inbound keyword filtering rule makes it particularly easy
for an attacker to launch the Warmonger attack against all target
servers that are located within the GFW. To launch this attack, the
attacker can find any web server that is located within the GFW
and compose a serverless function to send an HTTP request with a
filtered keyword being a parameter of the requested URL. Since an
HTTP request is sent in clear text, GFW can identify the filtered
keyword and henceforth block the sender’s IP for a period of time.

To validate this hypothesis, we have conducted the following ex-
periment. We first randomly selected a live website that is verified
locates in China by checking its IP location, say example. com. Then,
on the surrogate server, we use Python requests library to send
an HTTP request with a parameter ?www. facebook. com appended
at the end, i.e., http://example.com/?www. facebook. com. Since
www. facebook.com is a known sensitive keyword that GFW fil-
ters, such request will not get through but receive a “Connection
reset by peer” error. Beyond this event, all subsequent requests,
although without the www. facebook. com keyword, will receive
the same error. Based on our experiment, such blockage is IP and
port-specific, i.e., the above request will cause TCP connections to
the website’s IP with destination port number 80 being blocked.
Using this technique, we can cause the GFW to block any port to
this specific IP by simply specifying a different port of the HTTP
request. For example, to cause port 443 to be blocked, we simply
send http://example.com/?www.facebook.com:443. Note that
it does not matter whether the web server recognizes or responds

to requests sent to this port since the only purpose is to expose the
filtered keyword and the port number to the GFW.

We ran further experiment to test out possible filtered keywords
by referencing the “complete list of the blocked websites in China”
[30] and used their domain names as the parameters, and find that
75 of the 141 domains can successfully trigger a GFW reaction. We
also find that the average blocking period is around 120 seconds
and such timer is reset on each new request. In other words, as
long as a new “malicious” request being seen by the GFW every 2
minutes, the inbound connection will be perpetually blocked.

It is also noteworthy that other than a few hundred throttled
requests, we did not attempt to aggressively send requests and
comprehensively test the reaction of the GFW due to ethical consid-
erations. However, it is reasonable to assume that more aggressive
and intensive violations of the filtering rules may cause more seri-
ous punishments, which may eventually lead to prolonged time or
even permanent IP blockage.

6 DISCUSSION

In the above two sections, based on our experimental results and
surveys, we discussed and demonstrated the practicality and impact
of the Warmonger attack. In this section, we discuss disclosure
handling as well as potential mitigation approaches.

6.1 Responsible Disclosure

We disclosed our discoveries to the four SSPs through their corre-
sponding security disclosure portals on April 6, 2021.

Microsoft contacted us on April 13 to request for a sample set
of our identified egress IPs, and finally responded on June 29 that
they use a large number of IPs and do not share them among users
and closed this vulnerability report subsequently, which, however,
contradicts our experimental results.

Google responded to our disclosure on April 14 stating that they
have “complex protections in place to prevent such attacks” and
decided to not track this “security bug”.

AWS responded to our disclosure on May 23, mentioning that
the same IP addresses can be shared by multiple clients, and they
are aware of this risk and have an abuse detection and mitigation
team to investigate fraudulent and malicious activities.

Cloudflare responded to our disclosures on June 8, commenting
that it is a “weak point” in their architecture and they considered
our disclosure informative but decided to close this report.

Based on our experiments presented in Section 5 and analysis in
the following of this section, the Warmonger attack can be under-
estimated by an SSP to cause long-lasting practical impacts even
when a detection system is deployed by the SSP. This is mainly
because the attack focuses on exploiting a target server’s detection
system but not the SSP’s, and the SSP’s definition or recognition of
malicious behavior may not be in perfect alignment with the target
server’s. We wish this paper can raise the broader awareness of the
threat among users, service providers, and the research community.

6.2 Empirical Impact

The empirical impact of the Warmonger attack is directly deter-
mined by how popular serverless functions are used to access ex-
ternal servers. To this end, its impact depends on many factors and



it is hard to derive its quantitative damage. On the other hand, how-
ever, there is a clear trend that the serverless computing market is
experiencing unprecedented booming [16], and using a serverless
function to access external resources is becoming a very common
approach for various Internet applications. For instance, in [16], the
author summarized nine “killer use cases” of AWS Lambda, which
presented various use cases where a Lambda serverless function is
used to access an external database, multimedia, and file servers.
Besides, there are many other examples demonstrating practical
use cases where serverless functions are used to access external
servers for various purposes [9, 53, 54, 63]. Therefore, we believe
significant damage can occur if an attacker is able to inflict the “war”
between a popular serverless computing platform and an external
server that hosts data frequently accessed by various users.
Interestingly, while we cannot launch the Warmonger attack in
the real world to verify its validity due to ethical reasons, we were
able to find indirect real-world evidence that the abuse of serverless
functions can indeed cause their egress IPs to be flagged. Specifically,
we randomly selected 1,000 IPv4 addresses from each SSP among
our 2020 dataset, and 200 IPv6 addresses from Cloudflare Workers
and Google App Engine among our 2021 dataset, and checked
those IP addresses against the Composite Blocking List (CBL) [57]
and the Scamalytics IP Address Fraud Checker [52], two online
databases that detect and publish suspicious IP addresses in real-
time. Respectively, CBL identified {2, 75, 259, 7}, and Scamalytics
identified {193, 246, 63, 0}, IPv4 addresses from {Cloudflare Workers,
AWS Lambda, Google App Engine, Microsoft Azure Functions} as
suspicious, suggesting these serverless functions are indeed being
used for actions that seemed suspicious to those two databases.
We did not find any IPv6 identified as suspicious, which may be
another indication that the usage of IPv6 is not as prevalent.

6.3 Existing and Potential Mitigation

In this subsection we discuss existing and potential mitigation
strategies from both the SSPs’ and the target servers’ standpoint.

6.3.1 From SSPs’ standpoint.

Based on the responses we have received from the four SSPs, it
appears that at least Google and AWS were aware of this potential
risk and have taken measures to mitigate it. The effectiveness,
however, depends on how an SSP assigns and rotates IPs on their
serverless computing platforms and among other cloud computing
services. Taking Google App Engine as an example, although it
does not share IP among users on any specific day, if it simply
rotates the IPs among different users on a daily basis, an attacker
can still cause the IPs assigned to her to be blocked on one day, and
potentially harm other victim users in the following days. To this
end, a better approach might be to let the IPs “cool down” for a
while, i.e., do not immediately rotate IPs from one user to another,
since in many cases IP-blockages should not be permanent.

It is also noteworthy that slowly rotating IPs, or even not sharing
IPs among users, can only partially address this attack because they
are still susceptible to a more specific “point-kill” attack as described
in the following.

In today’s Internet, many web applications use serverless func-
tions to fetch resources from third-party repositories. For instance,
[18] demonstrates how to use a Workers serverless function to

fetch information from a user’s GitHub repository and then post
it to the user’s Slack channel. The activation link is embedded in
the user’s Slack channel page, such that when the page is visited
by a visitor, the visitor’s browser will send a request to invoke
the function, which then fetches, processes, and returns the user’s
Github information to the browser for display. Github, on the other
hand, has an IP-based API request rate limit (60 requests per hour
[19]). In this case, even if the serverless function is assigned with
a unique IP that is not shared, an attacker can simply request the
user’s Slack channel 60 times, which will make Github to block the
sesrverless function’s particular IP and cause other visitors unable
to view the user’s Github information.

The SSP may also try to detect abnormal serverless function
usage by itself. This approach, however, will not be effective as far
as we are concerned. This is because anomaly detection by itself
is not a very clearly defined approach, i.e., a behavior that seems
normal to one server may be considered offensive by another. We
have discussed in Section 5, some websites consider tens of requests
within a minute as abnormal, which may not be agreed by a popular
website that sees hundreds of visits per minute.

The SSP may also reduce the “leverage” by imposing more limits
on the functionalities provided by a serverless function. For exam-
ple, it can disallow a serverless function to SSH to a remote server.
This, however, may cause the serverless computing service less
attractive and eventually harm the SSP’s profit.

All in all, we consider this issue is inherent in any service that
shares resources among users, and one solution may be the “brute
force” approach, i.e., providing sufficiently large IP pools such that
the probability for an attacker to cause a real damage is small. To
this end, it is similar to one of the ways to address DoS attacks:
we make the bandwidth so broad that the attacker cannot bring
enough traffic to overwhelm it. In practice, a holistic approach
combining multi-facet protections (e.g., rotating IPs, cooling down
IPs, enlarging IP pools and not sharing them, malicious behavior
identification) should be adopted based on an SSP’s hardware setups,
software configurations, and service portfolios. By proposing this
attack and conduct experiments to evaluate its impact in this paper,
we aim to inform the community of this potential risk and taking
necessary preventive steps before any real attack is launched.

6.3.2  From target servers’ standpoint.

Some online resources, especially user-specific and private ones,
can only be accessed with user credentials. For instance, in the pre-
vious Slack-and-GitHub example, if the user wants to make changes
to her GitHub channel rather than to merely retrieve information,
the request sent from the serverless function must include a user
token, which is a string of random characters to authenticate a user,
as a custom HTTP request header. In this case, a target server can
apply a token-based rate limit; i.e., the server will block requests
whose token has been seen more than the limit, but will not block
the IP address from which the request is sent. For instance, GitHub
allows 5,000 such “authenticated requests” per hour [19].

Such behavior of target servers may mitigate the Warmonger
attack to some extend by making it harder to succeed. Specifically,
in the case that the SSP does not share IPs among users, the SSP
is still vulnerable to the “point-kill” attack we have explained ear-
lier. However, the attacker now needs to request the user’s Slack



channel 5,000 times to saturate the new token-based limit. The
attacker can use different approaches to make such a large num-
ber of requests without being flagged as malicious by Slack. For
instance, the attacker can employ Internet bots to make such re-
quests. Nonetheless, we denote that this "point-kill” attack deviates
from the main point of the Warmonger attack, and is less effective
to inflict preventative reactions from a target server.

In the case that the SSP does share IPs among users, token-based
rate limiting may not be effective because the target server may
still block an IP address if malicious behavior, such as continuous
port scanning, is observed from that IP.

6.3.3 IPve.

Finally, it seems that the deployment of IPv6 can completely
thwart the Warmonger attack because the SSP is able to afford a
much larger number of IPv6 addresses and does not share them
among users. This mitigation, however, stays in theory at least in the
foreseeable future. Specifically, IPv6 can eliminate the Warmonger
attack only if all three of the following requirements are met.

First, SSPs upgrade to IPv6, which is an ongoing process, espe-
cially for large SSPs. Based on the four SSPs in this paper, we found
that Cloudflare Workers and Google App Engine now support IPv6,
while AWS Lambda and Microsoft Azure Functions still do not.

Second, SSPs allocate a sufficiently large number of IPv6 ad-
dresses to their serverless function platforms. While theoretically
possible, an SSP may face some technical and non-technical barri-
ers, such as configuration complexity and cost considerations. In
fact, all the four SSPs own a very large number of IPv4 addresses,
but they only allocate a very small fraction to their serverless plat-
forms [6, 14, 27, 40]. Likewise, we observed the same number of
(sometimes even less) IPv6 addresses being used by these SSPs, as
demonstrated in Section 4.5, suggesting that the Warmonger attack
is still a real threat to their IPv6-based implementation.

Third, all external servers (i.e. target servers) also need to up-
grade to IPv6. Otherwise, even if an SSP supports IPv6, the server-
less function will still use IPv4 to access the target server. Consid-
ering the slow progress of IPv6 rollout [60], it is unlikely that this
requirement will be met in the near future.

In conclusion, theoretically, IPv6 could eliminate the Warmonger
attack with the proper setup. In practice, however, it is unlikely
that IPv6 will completely replace IPv4 in the near future. Given
the current IPv6 setup of SSPs, the threat of Warmonger attacks
persists.

6.4 Limitation

Due to the limited resources and time, our study only covered
four SSPs at six locations. Based on our results, we were able to
see even for the same SSP, the IP usage patterns are drastically
different at different locations. Therefore, the study we presented
in this paper should be only viewed as a snapshot rather than the
complete picture of the attack surface. We deem it very interesting
to conduct a broader and more comprehensive evaluation to include
more SSPs and locations, and we set these as our future direction.

7 RELATED WORK

Serverless computing is a new cloud computing business model and
is under significant growth in recent years. On the other hand, very

few studies focused on identifying or addressing security threats
on this platform from either academia or the industry.

Serverless computing shares some similarities with CDN net-
working in the context of this study [2, 39]. In a typical operation, a
visitor will send a request to a CDN edge server, and the CDN edge
server will then fetch web documents from a web server and return
them to the visitor. To this end, in [28, 31, 35, 59] , the researchers
evaluated the egress IPs of CDN edge servers and observed simi-
lar results, i.e., a CDN edge also uses very few egress IPs to access
external web servers. The Warmonger attack, however, is more wor-
risome because a user can instruct a serverless function to conduct
many malicious behaviors that are not possible in a CDN.

Obtaining and analyzing the correct egress IP determines the
likelihood of IP blocking attacks. Borgolte et al. explored how to
obtain a specific IP on a cloud service [10]. After obtaining the
correct egress IPs, threat intelligence datasets or IP blocklists may be
used to label malicious, suspicious, or otherwise untrustworthy IPs
[24, 37]. In addition, several existing studies related to co-location
processing in the cloud raise the importance of security regarding
shared resources in the cloud [7, 32, 51]. Sivaramakrishnan et al.
have presented some studies on the side effects of blacklisting to
detect and mitigate the impact of malicious Internet nodes [47, 48],
whose results helped our study to identify suspicious egress IPs.

Several existing studies have explored the security of different
serverless computing platforms [33, 46, 55]. Wang et al. evaluated
metrics such as scalability, cold start latency, and instance runtime
of SSP [61]. Furthermore, the source code of the function, some
secrets stored in the container, or databases associated with the
function may all be targets of event injection attacks [36, 45]. To
address these issues, Alexandru Agache et al. proposed a new open-
source framework that has been used in AWS Lambda to improve its
security [1]. Kalev Alpernas et al. proposed a complex information
flow control method for protecting serverless [4], and Pubali Datta
et al. proposed a serverless network Valve for fine-grained monitor-
ing of information flows [17]. To address the problem that serverless
functionality is plagued by common vulnerabilities and failures in
SDKs, third-party libraries, and platform code [8], Deepak Sirone
Jegan et al. proposed a scalable security architecture of SecLambda
for protecting and enhancing programs [56]. Our work comple-
ments this gap by exploring and dealing with the impact of shared
egress IPs across different users of serverless vendors.

8 CONCLUSION

We presented the Warmonger attack in this paper. The Warmonger
attack exploits the fact that all the users on a serverless computing
platform share the same set of egress IPs. By purposefully misbe-
having, an attacker is able to inflict external content servers to
block these egress IPs and consequently cause all users on the same
platform unable to access this external server. We conducted ex-
periments to collect the egress IPs of four major serverless service
providers, and analyzed their IP usage patterns. We further evalu-
ated the potential moves an attack can take on a serverless platform.
Our study shows that the Warmonger attack is a practical security
threat that should be paid sufficient attention to by the security
community and the serverless computing industry.
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