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Abstract. GPS-free outdoor localization becomes popular because of the expanding scale of WiFi
deployments in metropolitan areas. As a substitution or complement to the Global Positioning
System (GPS), WiFi localization systems provide very accurate results in WiFi-rich area. However,
the current WiFi localization systems are not robust to WiFi external signal attack. In this study,
we implement a reverse engineering model to decode the Android WiFi localization system output.
With the aid of reverse engineering mode, we implement both static and dynamic external signal
attacks to make the smartphone believing it is located in another location or moving along the
attacker’s designed route using a portable programmed IoT device ESP8266. We also demonstrate
that the WiFi based localization and navigation are vulnerable to external signal attacks by testing
this attack on Android smartphone. Finally, we discuss the possible defense solutions and the future
work. Our study indicates the smartphone is vulnerable to external signal attacks and there is an
urgent need for defense solutions.
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1 Introduction

Without a doubt, smartphones have become one of the most widely used technologies today. Billions
of users in the world are relying on mobile positioning and navigation services on a daily basis [1].
Applications range from map navigation, service suggestion, to social media, all require accurate and
authentic location data. In the meantime, the popularity of these location-based applications has become
a honey pot for attackers. Those attackers aim to manipulate the location data, which is reported by
smartphones, for criminal activities. In the past, the traditional positioning system relies on GPS signals.
However, with the rapid development of WiFi technology, the WiFi-based positioning system has been
widely used, which is not only as a complementary location-based service of GPS but also as a major
positioning system [2].

Because most positioning signals are not encrypted, the current positioning system is vulnerable to
spoofing attacks where the attackers can send falsified wireless signals to change the smartphone location
result. The previous research shows that a static attack that spoofs the smartphone location system to
a false position is easy to achieve. But the dynamic attack that making the smartphone believe it is
moving along the designed fake route of the attacker is limited [3]. In this paper, we exploit the current
vulnerabilities of the Android wireless location system and design both static and dynamic attacks against
it. We prove that it is feasible to attack the current smartphone location system and it is imperative to
find a defense solution for this type of attack.

Numerous studies have attempted to explain the risks of location spoofing attack [4] and have created
GPS, WiFi spoofers to alternate the positioning result of smartphones. Previous studies have shown
that the positioning system is vulnerable to external signal attacks by broadcasting false GPS and WiFi
positioning signals [5]. However, the current attacks still have a lot of limitations such as they require
a specific shape of the route for a dynamic route or they can only spoof the device to a static position.
Thus, it is important to study the possibility of the external signal attacks of current location systems
and access the robustness of current location systems against these attacks.

In this paper, we first systematically study the current positioning system by designing a machine
learning model using reverse-engineering to mimic the current Android positioning algorithm. Second,
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we design an external wireless signal spoofer using a portable IoT device. Third, we design the attacking
algorithms on the device and evaluate the attack results using experiments. We also discuss defense so-
lutions and future work. In summary, the key contributions of this paper include:

– We propose a machine learning model for building a reverse-engineering model of the Android WiFi
positioning system. This proposed positioning model can mimic the positioning system and can help
us to understand the attack and defense of the positioning system.

– We implement the external signal attack on a low-cost portable IoT device.
– We evaluate the attack in the real-world scenario. We prove the current smartphone is vulnerable to

the external signal attack.

The rest of the paper is organized as follows. Section II introduces the background and threat model.
Section III describes the WiFi positioning algorithm reverse-engineering. Section IV shows the implemen-
tation of the attack. Section V demonstrates the result and evaluation of a real-world attack. Section VI
discusses the defense solutions and the future directions of our work. Finally, Section VII concludes this
paper.

2 Background and Threat Model

In this section, we start by providing the background of the smartphone positioning system, smartphone
positioning system, positioning-based smartphone apps, and the external signal attacks. We then describe
the unique challenges in attacking the smartphone positioning system.

Smartphone Positioning System. The current state-of-art smartphone positioning system uses
multiple signal sources, including GPS, and WiFi as the input to determine the position of the device [6].
The Global Positioning System (GPS) is a traditional positioning system using satellite signals. Since the
GPS positioning signal may not be available under certain conditions such as bad weather, dense buildings
or intentionally blocking signal, the smartphone positioning system uses other Wireless signals such as
the WiFi as a substitution or complement to the GPS. In this paper, we focus on Google geolocation
API which is used for an Android-based WiFi localization system. In brief, the Android-based WiFi
localization service relies on a central reference database as shown in Figure 1 [7]. The central reference
database is maintained by the location service company and stores most geolocation information of WiFi
APs around the world. When a user device such as a smartphone initiates a request of location, the device
starts to scan all the WiFi APs around it. Once the device gets all the BSSIDs/MAC/RSSI information
of these APs, it starts to query the central reference database with these data. If the central reference
database can find it, it will return a MAC: location pair for each MAC. Finally, the positioning algorithm
computes the positioning result based on the data received from the central database. This positioning
result can be reported alone or as a complement to increase the accuracy of GPS results.
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Fig. (1) WiFi Localization Service.
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Positioning-Based Smartphone Apps. The use of location service represents one of the biggest
advancements in smartphone technology. With the location service, the smartphone app can deliver online
content to users based on their physical location. The popular location service-based smartphone apps
include map navigation, service suggestion, social media, and game. These apps can provide users location-
related content such as a positioning marker on the map and surrounding environment details. With the
development of smartphone technology, the location service market grows rapidly. 55% of smartphone
users use location-based services of the smartphone and the research study shows the young population
more prefers to use the location services [8].

WiFi external signal attacks. The unencrypted civilian GPS signal is vulnerable to spoofing
attacks. Many studies are showing that using a radio simulator or a satellite simulator to send false GPS
data can successfully launch a location spoofing attack to GPS system [9, 10]. In [9], The authors use a
satellite simulator to attack a navigation system to create a dynamic route. However, their attack requires
a new attack route that has the same shape as the real route drive, which is limited in many areas.

Some attacks are effective but not stealthy. In [11], the attack needs to inject malicious code into the
smartphone application or modify the smartphone software system. This type of false GPS signal attack
can be detected by the malware defense mechanism. Because the WiFi signal plays an important role
in the positioning system, some studies use manipulated WiFi signals to spoof the positioning system.
As reported in [12], the iPhone location can be relocated when attackers sending WiFi beacons to other
locations. In addition, the Skylift project uses a low-cost ESP8266 WiFi chip to successfully manipulate
the current location of an iPhone [13]. We notice that these WiFi signal-based attacks are limited to
spoof the device to a single location in a static way. Therefore, it is urgent to test whether the attacker
can spoof the device in a dynamic way that can let the device believe it is moving along a false route
using WiFi signals.

2.1 Threat Model

In this paper, we design a novel attack against the smartphone positioning system.
The attacker, which can be hidden devices installed on the victim’s car, uses a radio simulator to block

the legitimate GPS signal. The attacker then sends the spoof WiFi beacon frame packets to the victim’s
device. The spoofing WiFi signals let the victim’s device believe it is located on a spoofed location or
moving according to a route designed by the attacker.

In our threat model, the attacker only relies on the external signal and has no access to the internal
software or hardware of the victim’s smartphone. Compared to the spoofing positioning system via the
GPS signal reported in previous work, there are two unique challenges to cheat the WiFi positioning
system.

Accuracy of spoofing result: First, to successfully attack the WiFi positioning system, an attacker
needs to keep the error of the spoofing result to a minimum. This includes two parts, the final spoofing
result should be close to the designed spoofing result. The positioning error should be minimal. In a
common attack scenario, when a target device is moving on route A, the attacker wants to let the target
device believe it is moving on route B by broadcasting the WiFi signals collected from route B. When
there are a lot of legitimate WiFi access points, it is very hard to spoof the device without jamming these
legitimate APs. To solve this challenge, Kumar, P., et al. [14] use an override method that mimics much
more spoofing APs than legitimate APs (more than five times). These false AP signals can successfully
attack the location-based apps on Android and iPhone devices. Therefore, the attacker can broadcast
stronger WiFi signals and more SSIDs to increase the false input of the WiFi positioning algorithm, which
can achieve a more accurate positioning result. Our study aims to solve how to increase the accuracy of
the positioning result using the low power profile IoT device ESP8266.

Device choice and synchronization: Second, the attacker needs to find the best portable device
that supports the 802.11 protocol. The attacker needs either a powerful device that is capable to broadcast
all the required SSIDs or a more portable device that is easy to hidden. Although a common laptop
can send the designed Wireless packets, it is too big for launching a secret attack. According to our
attack scenario, the attacker prefers a small and quiet device that is easy to be overlooked. Therefore, a
portable 802.11 g/n ESP8266 is used for sending WiFi beacon frames to simulate the WiFi APs [15]. The
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ESP8266 is a low-cost and small device that has the full function of sending 802.11 frames. According
to our bandwidth test and the online test report, this device has a stable max transmission rate of 2.7
Mbps [16]. Since a legitimate AP beacon deliveries a beacon frame at about 0.018 Mbps, the theoretical
capacity of the number of WiFi APs that one ESP8266 can send is around 150. However, during a WiFi
external attack the ESP8266 needs more resources to execute our attack algorithm, this number drops
to less than 60 in our experiment. Because in some WiFi density areas, there can be more than 60 WiFi
APs in the environment. The attacker needs to find an optimal way to divide the dataset and synchronize
the portable devices that are working together. The attacker can divide the total dataset D into several
subsets for each portable device. Therefore, each subset contains a part of SSIDs in D. Then, these devices
have to work coordinately to send the total dataset.

3 WiFi Positioning Algorithm Reverse-Engineering Model

As we know from the background, a WiFi positioning algorithm needs the data of WiFi APs and a
central reference database as input. The output is GPS coordinates with longitude and latitude. There
are four steps used in the reversing engineering of the current WiFi positioning algorithm: Data Capture,
Preprocessing, Positioning Modeling, and Algorithm Evaluation shown as Figure 2.

Data Capture

Preprocessing

Positioning Model

Algorithm 
Evaluation

{ Input: WiFi packet
Output: location coordinator. Accuracy. 

{Regression Model
(z1, z2) = β1x1 + … + βnxn

Neural Networks

{ Data has to preprocess as a format 
input matrix includes all the input.

{Accuracy, Confidence Interval
Thresholding, ROC

Fig. (2) Reverse-engineering model

3.1 Data Capture

As we introduced, the WiFi positioning algorithm relies on the querying result of the central database.
Therefore, the data capture includes a reconstruction of the central database. In addition, we also need
to collect the training/testing data for geolocations that the attacker is using.

To reconstruct a central database, we need to provide the longitude and latitude for each WiFi AP.
Therefore, the format of a record in the central database is shown as MAC: longitude, latitude. The
Google geolocation API can return a longitude and latitude pair based on the input GSM/WiFi data.
Thus, we query the Google geolocation API for every WiFi AP for its associated longitude, latitude.

To collect the geolocation training/testing data, an Android phone Nexus 6 with WiFiManager
API [17] is used for scanning WiFi SSIDs along a planned route. The WiFiManager API collects all
the essential information about the SSIDs it discovers, such as RSSI, MAC, GPS positioning coordinates,
timestamps, etc. We collect the WiFi SSIDs by driving through the route and record the SSIDs once per
second. Among these data, RSSI and MACs are used as input data. The GPS positioning coordinates
are used as the ground truth of the outcome data when observing certain SSIDs.
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In this study, we collect three routes that represent 10 WiFi-rich areas, 10 WiFi-medium-rich areas,
and 10 WiFi-poor areas. For each positioning (a certain longitude, latitude), the average number of WiFi
APs is 26.8. We consider one position with its associated WiFi APs as a data record. There are 32142
data records in our total data set.

3.2 Preprocessing

As we discussed, the input data of training/testing includes a set of WiFi APs along with their RSSI.
Each data record w is a set of WiFi APs shown as {mac1, rssi1,mac2, rssi2, . . . ,macn, rssin}. However,
this format of the data record cannot be directly used as the input of the WiFi positioning algorithm.
We need to first query the central database and transfer each MAC address information to longitude and
latitude pair.

In addition, the longitude and latitude system is a global system which is very sensitive in a minor
change. It is not good to build up a machine learning model using a sensitive input that has very little
change. Therefore, we need to convert the longitude/latitude to (x,y) coordinates. The input records are
therefore converted to the Cartesian coordinate system using this formula.

x = R× cos(lat)× cos(lon)

y = R× cos(lat)× sin(lon)
R is the radius of the Earth, we use the approximate value 6378137 meters. The result (x,y) usually is

very big for most longitude/latitude pairs. Therefore, we select an original point as (0,0) and normalize
all the points to this coordinate by subtracting the coordinate of this original point. Finally, the record
of input data is shown as {x1, y1, rssi1, x2, y2, rssi2, . . . , xn, yn, rssin}.

3.3 Positioning Modeling

Weighted Linear Regression Model As we discussed before, the input data is a set of WiFi APs and
their RSSI. After preprocessing, each record contains a set of coordinates and RSSI. The input data X
therefore can be presented by a n× 3 matrix where there are 3 columns of features of longitude, latitude,
and RSSI.

X =


r1 × x1 r1 × y1 r1
r2 × x2 r2 × y2 r2
· · · · · · · · ·

rn × xn rn × yn rn


The outcome data y′ = [x, y, z] is GPS coordinates with accuracy of the measurement. A weighted
multivariate linear regression model can be represented as (1) here.

y′ = [x, y, z] =
[
β1 β2 · · · βn

]
×


r1 × x1 r1 × y1 r1
r2 × x2 r2 × y2 r2
· · · · · · · · ·

rn × xn rn × yn rn

+ [b1, b2, b3] (1)

From the dimension of y′ and X, we could know the parameter vector is a 1× n vector.

Neural Network Model The Weighted Linear Regression Model (1) assumes a simple model that each
input element will be multiplied by one parameter βi. But this assumption may not help us get the most
accurate model. Therefore, we implement a fully connected Neural Network Model for our dataset and
set the number of parameters as flexible.

Here we define a m× 3n hidden layer weight matrix θ.

θ =


a1
a2
· · ·
am

 =


w11 w12 w13 · · · w13n

w21 w22 w23 · · · w23n

· · · · · · · · · · · · · · ·
wm1 wm2 wm3 · · · wm3n
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And we flat our input matrix as a 1× 3n vector. Thus, the output of first layer can be represented as (2).

h(1) = g




w11 w12 w13 · · · w13n

w21 w22 w23 · · · w23n

· · · · · · · · · · · · · · ·
wm1 wm2 wm3 · · · wm3n

×



x1
y1
r1
x2
y2
r2
· · ·
xn
yn
rn


+


b1
b2
· · ·
bm




(2)

Here g is an activation Relu function that we choose. The output of this layer h(1) is a 1×m vector.
We can therefore add the next layer after this layer using a l ×m weight matrix to get a 1 × l vector.
And so on we can add more layers as (3).

h(n) = [g (Σmθnm [· · · [g (Σjθkj [g(Σiθji · xi + bi)] + bk)] · · · ] + bn)] (3)

4 Attack Overview

4.1 Goal of the attacker

Here, we explore a novel attack against a smartphone positioning system by altering WiFi signals. The
attack can be realized for two specific types. Static Attack. In a static attack, the attacker aims to spoof
the smartphone positioning system to get a false position that is different from the real-world position.
During this attack, the positioning result suggests a wrong location which is very far away from the user.
Dynamic Attack. The attacker aims to send a false route data and the smartphone positioning system
reports a false moving behavior of the current device. This may cause the malfunction of map applications
and the user cannot go to the correct destination.

4.2 Attack details

Data collection: The static positioning data of other cities such as Paris, London are collected from the
Wireless Geographic Logging Engine (WiGLE https://wigle.net/) website database through its public
API. To collect the dynamic route data, an Android phone with WiFiManager API [17] is used for
scanning WiFi SSIDs along a planned route B. The WiFiManager collects all the essential information
about the SSIDs it discovers, such as RSSI, MAC, GPS positioning coordinates, timestamps, etc. The
attacker collects the WiFi SSIDs by driving through the route B and record the SSIDs. Among these
data, RSSI and MACs are mainly used for the attack. The GPS positioning coordinates are used as the
ground truth of the current position when observing certain SSIDs.
We collected four sets of static positioning data with each has 100 WiFi APs from WiGLE. For the
dynamic attack data, we repeatedly collect the driving route 10 times using an Android phone while
driving a car. This route contains both WiFi dense and sparse areas with an average number of 42.3
WiFi APs in each location of this route. The average driving time for this route is 3 minutes and 32
seconds. There are a total of 8967 WiFi APs in this dataset. Each WiFi AP record has corresponse RSSI,
MAC, and GPS positioning information related to its SSID.

Beacon frame packet design: We use specifically designed beacon frame packets as the attack
signal to represent the spoofing WiFi APs. As shown in Figure 3, the beacon frame packet we designed
is a 51-bytes concise packet without any optional parameters (e.g. DS Parameter Set, CF Parameter
Set, IBSS Parameter Set). We also use only a null byte for SSID information therefore the WiFi SSID
is hidden and will not be reported by the smartphone if the user is searching for nearby available WiFi
networks. Thus, timestamp, source address, and BSSID field are the only 3 fields that need to be changed.
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During the attack, the MAC information of each spoofing WiFi AP is written in the source address and
the BSSID field of the beacon frame packet, and the timestamp is updated according to the system timer.
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Fig. (3) The Structure of Spoofing Beacon Frame Packet.

GPS signal jamming: Since GPS signal is primarily used for the positioning system, the legitimate
GPS signal will affect the positioning system, which makes the system trust GPS location. The attacker
first needs to block legitimate GPS signals. A GPS signal jammer is deployed for blocking legitimate GPS
signals. The attacker uses a Universal Software Radio Peripheral (USRP) X300 for broadcasting the noise
signal. The attacker uses a Gaussian noise signal to jam the GPS signal at 1575.42 MHz, which is the
central frequency of Coarse/Acquisition (C/A) code of GPS information for civilian use.

Device set up: The attack is set up as shown in Figure 4. The attacker first hides the GPS jammer
(shown in Figure 4 left part) in the car. Before launching the attack, the attacker places these portable
ESP8266 devices around the victim and hides them (shown in Figure 4 middle part). A typical attack
scenario is to hide the device in the car as shown in Figure 4 right part. A USB 5 V power is required for
these devices, which can be easily set up by a portable USB charger. Firstly, the attacker uses his laptop
to synchronize the timer of the attacker’s devices using a synchronize algorithm as shown in algorithm 1.
After getting the same system timer, the attacker starts to broadcast the attack signals according to the
location sequence as we mentioned above.

A ruler

(For size reference)

Portable USB 

charger

ESP8266

ESP8266 spooferGPS Jammer Victim phoneCar back seat

(Trunk side)

USRP

(GPS Jammer)

Power supply

Fig. (4) The experiment setups for GPS jammer and ESP8266 spoofer

4.3 Attack Algorithm Design

The attack algorithm contains two key components: time synchronization for multiple spoofing devices
and attack signal deploying. For multiple spoofing devices to work at the same pace, we design a time
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synchronization algorithm for multiple spoofing devices to send a part of the spoofing signal. After time
synchronization, we send the attack signal through each ESP8266 device.

In our attack model, we use multiple ESP8266 devices to send out APs along with each point of the
route. Each device sends a part of APs at each point. So every device will mimic a full route for the
dynamic spoofing attack. To construct a dynamic route, we consider a WiFi AP set W is the total WiFi
APs for the dynamic route. The full setW can be divided into a sequence of setW1,W2, . . . ,Wn according
to the time sequence of WiFi APs. Thus, every subset is all the WiFi APs the device detect at one specific
moment. In order to allocate all the WiFi APs to m available devices during an attack, we further divide
each subset to m sets. Therefore, at time point 1, W1 will be divided into W11,W12, . . . ,W1m. Device 1
then sends WiFi beacon frames of W11; Device 2 sends WiFi beacon frames of W12 and so on. So at the
next time point, Device 1 will send W21 and so on. To achieve this, every device needs to synchronize the
time point to reconstruct the subsets W1,W2, . . . ,Wn.

In order to synchronize the time for each device so that every device can send the data from the same
point, we send the current epoch time number to ESP8266s from a laptop as described in Algorithm 1.
At first, the device is marked as not received and not synchronized. The attacker first broadcasts the
current time e to every ESP8266. If the status of the device is not received and not synchronized, the
device will first record the e and then compute the base time b that the device is turned on by e minus
the time elapsed since the device turned on. This is because the ESP8266 has a built-in time counter
that can count how long has the device turned on. Therefore, the device can always use a base time to
synchronize its step with other devices.

Algorithm 1 External signal attack algorithm

Input: e: Start epoch time from a laptop
W: Attack data set
n: Attack time length

Output: The current time of each device

1: Broadcasting e to each attacker’s device
2: For each one of m devices do
3: m ← device number
4: If Not received
5: Read e from laptop broadcasting
6: received = True
7: End If
8: If Not synchronized and received
9: c← time elapsed since the device turned on.
10: b← e− c
11: synchronized = True.
12: End If
13: While synchronized is True
14: t← b + time elapsed since the device turned on
15: If b > n
16: Break While
17: End If
18: send out Wtm

19: End While
20: End For
21: Return b + time elapsed since the device turned on

With the above synchronizing algorithm, the attacker may launch the attack by using several ESP8266s.
As we mentioned, the attacker collects the spoofing dataset by real-world driving or directly from the
WiGLE database. To successfully attack the smartphone, the attacker needs the verification from the



Smartphone Location Spoofing Attack in Wireless Networks 9

reverse-engineering model to make sure the victim’s device will get the desire positioning result. There-
fore, for a list of attacking data A, we design an attack signal deploying algorithm to verify each part of
the data and broadcast the verified data as shown in Algorithm 2. When the attacking data A is loaded,
the attacker first checks each part of A and goes through the reverse-engineering model to verify the
positioning result. If the positioning result is correct, the signal will be sent. Otherwise, that part of the
data will be dropped. The attack can use this method to avoid some abnormal positioning results and
being blocked by some defense mechanisms.

Algorithm 2 Attack Signal Deploying

Input: A, a sequence of collected WiFi APs
Output: Confirmed positioning location result

1: Pointer pt = start of A
2: While pt not meet the end of A
3: location result lr = ReverseEng(pt− > aps)
4: If lr == collected gps position
5: deploy pt− > aps through ESP8266 according to the timestamp
6: else
7: drop current lr and aps
8: End If
9: pt = pt->next
10: End While

5 Attack Evaluation

Next, we evaluate the external signal attack on a smartphone-based setup on real-world data.
Attack scenarios. We evaluate our attack by the following attack scenarios.

– Static external signal attack. This is the basic external signal attack. We want to spoof the positioning
system of the smartphone to get another location that is different from the current position. In this
case, we evaluate the relationship between the distance between the ground truth position and the
spoofed location with the error of the positioning result.

– Dynamic external signal attack. This attack tries to spoof the smartphone and let it believe it is
moving along a designed route while the smartphone is not following the route in the real world. In
this attack scenario, we evaluate how well the smartphone following the designed route by the error
of each designed point with the real positioning result.

Evaluation metrics. The Wireless external signal attack aims to spoof the positioning system of the
smartphone without raising an alert. The abnormal positioning result usually shows as a big error of
positioning result and/or an impossible real-world location (e.g. A car is driving in the river). Therefore,
how accurate the positioning result could be is an important metric to evaluate whether the attack can
bypass the defense mechanism. We use the following metrics to evaluate the attack performance: (1)
Truth-designed distance. This is the distance between the ground truth location and the designed attack
location. This is shown as the red arrow in Figure 5. The ground truth location is the real-world location
of the smartphone. The designed attack location is the position that the attacker wants the smartphone
to believe it is at. (2) Designed-result distance. This is the distance between the designed attack location
and the positioning result. This is shown as the yellow arrow in figure 5. (3) Positioning result standard
error. This is the standard error reported by the positioning system for each result.

Performance of the static external signal attack: We conduct the static external signal attack
using the spoofing signal collected from the WiGLE database. The attack is performed in a parking lot,
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Fig. (5) Evaluation metrics: Truth-designed distance and Designed-result distance

the victim’s smartphone is the author’s phone and we place the attack devices in the author’s car. As
shown in Figure 6, the smartphone positioning system is spoofed through our designed attack system and
the user receives the false location results of other cities such as New York, Paris, London, and Berlin.
The performance of the static external signal attack is shown in the left of Figure 7. The y axis shows
the designed-result distance and the error bar represents the positioning result standard error. As we can
see the designed-result distance and positioning result standard error slightly increases when the truth-
designed distance significantly increases (e.g. One country to another country). Compared to the control
normal positioning error shown in the right of Figure 6, both designed-result distance (mean 6.91 meters)
and positioning result standard error (mean 3.23 meters) is within range of smartphone positioning result
standard error control data (4.82 ± 5.93) meters in 95% confidence interval which indicates the attack
does not raise abnormal positioning result even when the attacker tries to spoof the smartphone to a very
far location. Therefore, our study reveals the vulnerability that current smartphone apps will provide
false location results to the user during the static external signal attack.

Fig. (6) Static external signal attack

Performance of the dynamic external signal attack: In this attack, we collect the attack data
as described in section III. The attack data contains all the WiFi APs in a 3 minutes 32 seconds length
driving route as shown in Figure 8 (A). Similar to the static attack environment, the attack is performed
in the author’s car. We choose a route with both WiFi dense and sparse areas. The average number of
WiFi APs per location is 42.3 with a range from 6 to 100 as shown in the left of Figure 9. We use four
ESP8266s to synchronize this attack according to the algorithm 1. In this attack, an attacker is staying



Smartphone Location Spoofing Attack in Wireless Networks 11

10
2

10
4

10
6

10
8

Truth-designed distance(m)

0

5

10

15

D
e

s
ig

n
e

d
-r

e
s

u
lt

 d
is

ta
n

c
e

(m
)

Normal Positioning

0

5

10

15

E
rr

o
r(

m
)

Fig. (7) Static external signal attack evaluation

in the car at the start point without driving. The attacker blocks the GPS signal through GPS Jammer.
He then uses the spoofing devices to broadcast the data of the route as shown in Figure 8 (A).

During the attack, although the victim’s smartphone is not moving, we can observe the positioning
result shows the smartphone is moving according to the designed route of the attacker. In addition, to
make sure the attack is successful, the spoofing WiFi signal RSSI is higher than the data we collected
in the real world. This result can be observed from an RSSI histogram in Figure 8 (B) and (C). We can
observe a significant left shift of the RSSI peak, which indicates an increase of RSSI during the attack.
Next, we want to evaluate the Designed-result distance, we notice that in the dynamic attack the number
of WiFi spoofing signals is always changing and is highly related to the performance of the attack. We
plot the number of WiFi APs with the Designed-result distance in the left of Figure 9. Our result shows a
Designed-result distance in (3.35 ± 1.16) meters in the 95% confidence interval. To evaluate this metric,
we choose the normal driving data without attack to compare with the result as shown in the middle and
right of Figure 9. Since normal driving data has no designed-result distance, we set the designed-result
distance as 0 and compute the confidence interval from the positioning error. The normal driving data
could be represented as (0 ± 15.23) meters in the 95% confidence interval. The t-test of these two groups
shows t = 1.639, df = 414, p = 0.102, which indicates the two groups are not statistically significant. This
result indicates attackers successfully spoof the smartphone positioning system and the positioning result
is close to the attacker’s designed location.

Next, in order to evaluate the positioning result standard error during a dynamic attack, we check the
relation between WiFi spoofing signals and the positioning error. As shown in the left of Figure 10, the
positioning result standard error is inversely correlated with the number of WiFi APs used in the attack.
The positioning result standard error is (9.26 ± 8.53) in 95% confidence interval, which is not significantly
different with the normal control driving data (8.74 ± 6.44) meters t = 1.074, df = 414, p = 0.2834 in the
middle of Figure 9. In addition, the CDF of dynamic attack data in the middle of Figure 10 is similar to
the normal control driving data in the right of Figure 9. More than 90% of errors are below 15 meters.
This indicates during the attack, most positioning error is considered normal and the smartphone defense
system may not notice that there is an attack. If we plot the error with the number of WiFi APs, the
pattern suggests a logarithmic regression as shown in the right of Figure 10. This result suggests that
the attacker needs more WiFi APs to reduce the standard error of positioning results and achieve an
accurate attack result.

The current positioning system usually enables a position prediction model to predict the possible
legit positioning result based on current position and speed. Therefore, we use a time-series long-short
memory(LSTM) model to predict the legit position and compare it with the attacking result as described
in [18]. The result is shown in figure 11. Here, the y-axis shows the distance travelled in prediction or
the ground truth, which is based on the previous speed. The ground truth matches the attack predicted
with only an average error of 0.34m. This error is much less than the threshold (5-10) m defined by GPS
accuracy.

6 Discussion and Defense Solutions

Our paper demonstrates the initial feasibility of manipulating the road navigation system through an
external beacon frame spoofing attack. Based on our study, the threat becomes realistic as some users
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Fig. (9) Designed-result distance during attack and control normal driving positioning error

may not notice the navigation system when the user is not familiar with the current environment. Since
the current smartphone navigation system is vulnerable to this external signal attack, it is important to
explore the current smartphone system and find out an effective solution to this type of attack.

The main advantages of our proposed attack are the feasibility and the low-cost of the external dynamic
signal attack. Our proposed attack requires only four ESP8266s as the WiFi signal source, which only
cost $2 each. Since the Skylift project already performed this attack in a static way, we further extend
this attack in a dynamic way that can attack victims on a moving vehicle [13]. Thus, the attack can
mimic both static and dynamic scenarios. Our attack uses WiFi AP beacon frames as the attack signal
which can be very similar to legitimate signals. The current defense mechanism can hardly detect our
attack. Thus our attack is also highly efficient. The main limitation of our attack is that we need to
block the legitimate GPS signals. The legitimate GPS signals can alert the victim’s device that there is
a positioning attack. Our current attack uses a separated USRP to block the GPS signals. Yet, there are
some more portable ways to perform this job using other devices such as HackRF One Software Defined
Radio (SDR) [10]. Thus, future studies should find a more convenient way to perform the attack and block
the legitimate signals. Another limitation of this study is that we use much stronger WiFi signals from
the ESP8266 to overwhelm other legitimate WiFi signals. This is a low-cost way to perform the attack
and it assumes that sources of legitimate WiFi signals are much far away from the attacker’s ESP8266s.
This is correct under our attack thereat model because the attacker hides ESP8266s around the victim.
In order to fully eliminate the effect of other WiFi beacons, we can block most WiFi channels and only
use one channel to attack the victim’s phone. But this method will significantly increase the cost of the
attack.

Recently, the Decimeter-level localization techniques including the angle of arrival (AoA), angle of
departure (AoD), and relative time of flight (rToF) begin to apply to WiFi localization system [19].
However, during our experiments, we find that the Android smartphone has not applied these techniques
and uses the Google geolocation API that is mainly based on the RSSI. Although there are many technical
difficulties to spoof these systems, it is still possible that the attacker can extend our attack to these
designed systems by carefully positioned the ESP8266s in different directions around the victims. Thus,
further research to prove the feasibility of this attack to the AoA/AoD/rToF WiFi localization systems
is needed.
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Fig. (11) The predicted position compared to the ground truth

The traditional defense mechanism focus on abnormal result detection. However, the state-of-art
defense solution now enables the signal checking such as WiFi-hotspot tags [20]. The straightforward
defense solution is to verify each WiFi AP and make sure it is a legitimate signal. This requires a
legitimate signal filter installed on the smartphone. A device signal fingerprint can be used for verification.
The fingerprint can include the frequency pattern of the WiFi AP based on the manufacturer shown in the
MAC address in the WiFi packet, the historical WiFi AP beacon frame packet recorded in the database,
and/or other physical information of the WiFi signal. However, the attacker may collect the real-world
signal and try to mimic the fingerprint information and bypass this approach. In addition, the smartphone
system may cross-check the data of the inertial measurement unit (IMU) sensors to confirm the actual
movement of the smartphone and compare it with the geolocation data of the smartphone positioning
system [10]. This defense method in general suffers from accumulative IMU sensor errors and becomes
ineffective as the time drifts. Also, [21] has demonstrated that IMU sensors are not sufficient to defend
against location spoofing attacks under different scenarios.

7 Conclusion

In this paper, we explore the feasibility of external WiFi signal spoofing attacks the smartphone position-
ing systems. Real-world attack tests confirmed the attack effectiveness and vulnerability of the current
smartphone system. We further discuss some possible defense solutions. We hope that our results can
help in designing defense mechanisms for the current positioning system to the potential external WiFi
signal spoofing attacks.
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