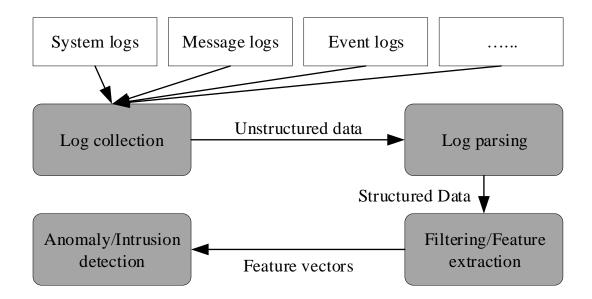

Log Analytics in HPC: A Data-driven Reinforcement Learning Framework

Zhengping Luo†, Tao Hou†, Tung Thanh Nguyen‡, Hui Zeng‡ and Zhuo Lu† † University of South Florida, Tampa, FL, USA, {zhengpingluo@mail., taohou@mail., zhuolu@}usf.edu ‡ Intelligent Automation Inc., Rockville, MD, USA, {tnguyen@, hzeng@}i-a-i.com



High Performance Computing

UNIVERSITY of SOUTH FLORIDA

General log processing framework

Message Passing Interface

JTH FLORIDA

- A communication protocol for parallel computing.
- Dominant model used in HPC (Sur et al. 2017).
- Popular implementation includes MPICH, Open MPI, etc.

Example MPI log file

```
MPI_Init entering at walltime 11201704.951285540, cputime 0.007714346 seconds in thread 0. int argc=3
```

```
string argv[3]=["../../skampi", "-i", "countlisend_recv.ski"]
```

MPI_Init returning at walltime 11201704.951286681, cputime 0.007715944 seconds in thread 0.

MPI_Comm_rank entering at walltime 11201704.951827833, cputime 0.007973521 seconds in thread 0.
MPI Comm comm=2 (MPI COMM WORLD)

int rank=0

MPI_Comm_rank returning at walltime 11201704.951828922, cputime 0.007974872 seconds in thread 0. MPI_Comm_size entering at walltime 11201704.951855949, cputime 0.008001787 seconds in thread 0. MPI_Comm comm=2 (MPI_COMM_WORLD)

int size=2

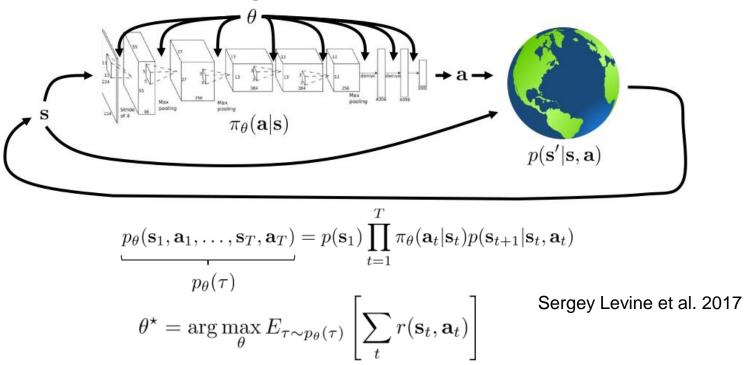
MPI_Comm_size returning at walltime 11201704.951856793, cputime 0.008002713 seconds in thread 0. MPI_Comm_dup entering at walltime 11201704.951865849, cputime 0.008011692 seconds in thread 0. MPI_Comm oldcomm=2 (MPI_COMM_WORLD)

MPI_Comm newcomm=4 (user-defined-comm)

MPI_Comm_dup returning at walltime 11201704.951985484, cputime 0.008131085 seconds in thread 0. MPI_Comm_get_attr entering at walltime 11201704.952071611, cputime 0.008217294 seconds in thread 0. MPI_Comm comm=2 (MPI_COMM_WORLD)

int keyval=2 (MPI_IO)

int flag=1

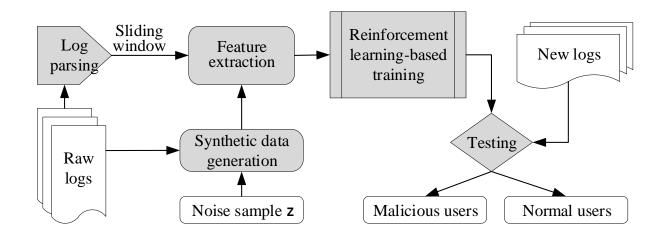

MPI commands

Sending	MPI_Send, MPI_Rsend, MPI_Isend			
Receiving	MPI_Recv, MPI_Irecv			
Collective	MPI_Allgatherv, MPI_Allreduce, MPI_Alltoallv MPI_Barrier, MPI_Bcast, MPI_Gather			
	MPI_Gatherv, MPI_Reduce, MPI_Testall			
	MPI_Waitall, MPI_Waitany			
Other	MPI_Iprobe, MPI_Test, MPI_Barrier			

The MPI commands that were commonly used [DeMasi et al. 2013].

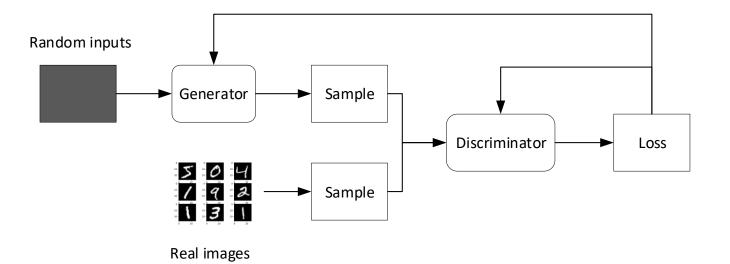
Malicious detection

Reinforcement learning

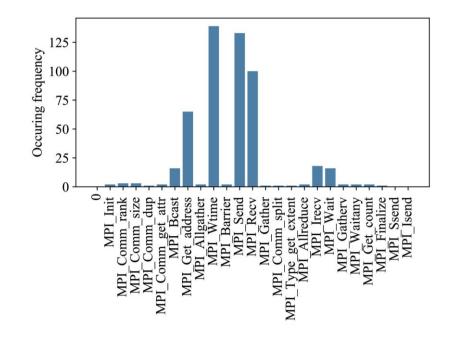


Log analytics using Reinforcement learning

ReLog framework

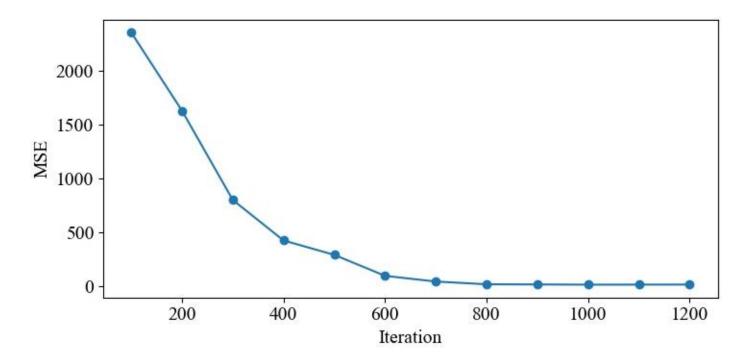

UNIVERSITY of

SOUTH FLORIDA



Training data generation

Generative adversarial networks



Occurring frequency of MPI commands

Training loss of ReLog

UNIVERSITY of SOUTH FLORIDA

Detection performance

TABLE I RELATIONSHIP BETWEEN SLIDING WINDOW SIZE AND DETECTION ACCURACY.

Window size	100		140				220
Detection accuracy	0.36	0.42	0.54	0.78	0.93	0.93	0.93

TABLE II COMPARISON OF RELOG WITH OTHER EXISTING METHODS

Detection methods	Time cost (seconds)	Detection accuracy
DeepLog [5]	56	0.91
SVM [9]	13	0.86
ReLog	107	0.93

SOUTH FLORIDA

References

- DeMasi, Orianna, Taghrid Samak, and David H. Bailey. "Identifying HPC codes via performance logs and machine learning." In *Proceedings of the first workshop on Changing landscapes in HPC security*, pp. 23-30. 2013.
- <u>https://sites.google.com/view/icml17deeprl</u>
- Sur, Sayantan; Koop, Matthew J.; Panda, Dhabaleswar K. (4 August 2017). "MPI and communication---High-performance and scalable MPI over Infini Band with reduced memory usage". *High-performance and Scalable MPI over InfiniBand with Reduced Memory Usage: An In-depth Performance Analysis. ACM*. p. 105.

Thank you all for your time

