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Introduction
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Sniffer
(Limited bandwidth)

 Passive Monitoring in Wireless Networks

• Capture network traffic to analyze the network conditions and performance.

• Network operations: resource management, network configuration, fault diagnosis, 

network intrusion detection

 Sniffer Channel Assignment (SCA)

Base Station

CH 1

.…

CH 2

CH n S
p

e
c
tr

u
m

 r
e
s
o
u
rc

e

Macrocell networks 

Broadband multi-channel 

wireless networks 

(Multi-Channels)



Sniffer Channel Assignment  in Small-cell Cognitive Radio
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 Small-cell Network Towards 5G

 New Challenges

• Multi-cell scenario and SCA subjects to physical constraints

• Time-varying spectrum resource at small-cell base station (SBSs) 

• Imperfect monitoring, unreliability of mmWave propagation 
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Contributions 
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 Sniffer Channel Assignment in Small-cell Cognitive Radio

• Multi-cell scenario with assignment constraints

• Time-varying spectrum resource

• Imperfect monitoring

• Redundant assignment

 Optimization-based Solution

• With statistical knowledge about imperfect monitoring

 Online Sniffer Channel Assignment using Bandit Learning

• Learn the knowledge about imperfect monitoring

• Contextual Combinatorial Multi-armed bandit



SCA Problem Formulation
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 Sniffer Channel Assignment
• Assign a set of sniffers  𝒮 = {1,2, … , 𝑆} to a set of channels ℋ𝑡

• Assignment decision 𝒂𝑡 ≔ 𝑎𝑠
𝑡
𝑠∈𝒮, 𝑎𝑠

𝑡 ∈ 𝒞𝑠
𝑡 ⊆ ℋ𝑡

 Utility Maximization
• Objective

- Utility maximization: 𝑢𝑡 𝒂𝑡; 𝒑𝑡 = σ𝑘∈ℋ𝑡𝑤𝑘𝜃𝑘
𝑡(𝒂𝑡; 𝒑𝑡)

• Importance of channel 𝑤𝑘 , 𝑘 ∈ ℋ𝑡

- Amount of traffics on the channel 

- Time occupied by licensed users and unlicensed users 

• Packet capture probability 𝜃𝑘
𝑡(𝒂𝑡; 𝒑𝑡)

- Assignment decision 𝒂𝑡 : number of sniffers assigned to channel 𝑘

- 𝒑𝑡 = 𝑝𝑠,𝑘
𝑡

𝑠∈𝒮,𝑘∈ℋ𝑡 denotes the performance of sniffer 𝑠 on channel 𝑘
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SCA Problem Formulation
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Sniffer 1 can capture 

packets of the user.

Sniffer 2 can capture 

packets of the user.

 Theory of Secrecy Channel Capacity 

𝑝𝑠,𝑘
𝑡 = Pr{SINRsniffer,𝑘

𝑡 ≥ SINRuser,𝑘
𝑡 } (Non-outage probability)

 Redundant Sniffer Assignment 

𝜃𝑘
𝑡(𝑎𝑡; 𝑝𝑡) = ൞

1 −ෑ
𝑠∈𝒮𝑘 𝒂𝑡

1 − 𝑝𝑠,𝑘
𝑡 , 𝑖𝑓 𝒮𝑘 𝒂𝑡 ≠ ∅

0, 𝑖𝑓 𝒮𝑘 𝒂𝑡 = ∅

Packet capture probability:

Sniffers assigned 

to channel 𝑘



 Oracle Solution

• Assuming the packet capture probability is known

- Solve in each time slot t :

• Result

- 𝒫1 is a Matroid-constrained Submodular Maximization (MCSM) problem.

- Greedy algorithm solves MCSM problem with ½ - approximation.

Sniffer Channel with Oracle Information
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𝒫1: max
𝒂𝑡

𝑢𝑡 𝒂𝑡; 𝒑𝑡 =෍
𝑘∈ℋ𝑡

𝑤𝑘𝜃𝑘
𝑡(𝒂𝑡; 𝒑𝑡) , s. t. 𝑎𝑠

𝑡 ∈ 𝒞𝑠
𝑡 ∪ {𝑛𝑢𝑙𝑙}

𝑢𝑡 𝒂∗,𝑡; 𝒑𝑡 ≥
1

2
𝑢𝑡(𝒂opt,𝑡; 𝒑𝑡)

Optimal actionsAction obtained by

greedy algorithm



Sniffer Channel Assignment via Online Learning
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 Necessity of learning 

• Non-outage probability 𝒑𝑡 is unknown in practice

• Algorithm: Online Sniffer Channel Assignment (OSA)

- Solve a long-term problem in a time horizon 1,2,..,T :

• Learning while optimizing 

- Task1: Learning the non-outage probabilities ෝ𝒑𝑡 over time

- Task2: Maximize the utility based on the learned knowledge

- Trade-off  between two purposes, balanced by Multi-armed bandit

max
𝒂1,𝒂2,…𝒂𝑇

෍
𝑡=1

𝑇

෍
𝑘∈ℋ𝑡

𝑤𝑘𝜃𝑘
𝑡(𝒂𝑡; ෝ𝒑𝑡) ,

s. t. 𝑎𝑠
𝑡 ∈ 𝒞𝑠

𝑡 ∪ 𝑛𝑢𝑙𝑙 , ∀𝑡



Online Learning via Multi-armed Bandit
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 Multi-armed Bandit Problem (MAB)

• Learn the reward of arms

- Arm/Action: sniffer-channel pairs

- Rewards to be learned: non-outage probability

• Objective

- Maximize the collected rewards

• Exploration-Exploitation Tradeoff

- Exploration: pull an arm to learn the its reward

- Exploitation: pull an arm that yielded highest reward 

according to past experience

 Limitations

• Pull one arm each time slot 

- Assign one sniffer at a time

• Learn general rewards

- Not aware of available side-information (context)

𝑡 = 1 𝑡 = 2 𝑡 = 3

Pull an arm

Observe 

reward

𝑟1 ∼ 𝜙1 𝑟2 ∼ 𝜙3

Update 

estimation

Explore? Exploit?

.…

True reward 

distribution

(Unknown)

Arms

Learned reward 

distribution

Arm 1 Arm 2 Arm 3

𝜙1 𝜙2 𝜙3

෠𝜙1 ෠𝜙2 ෠𝜙3.…

.…



10

Contextual Combinatorial MAB (CCMAB)

 Utilize Context Information

• Context: SINR of Sniffers

- Recall 𝑝𝑠,𝑘
𝑡 = Pr 𝑆𝐼𝑁𝑅𝑠,𝑘

𝑡 ≥ 𝑆𝐼𝑁𝑅𝑢,𝑘
𝑡

- 𝑆𝐼𝑁𝑅𝑢,𝑘
𝑡 of users is unknown yet 𝑆𝐼𝑁𝑅s,k

t of sniffers is observable (denoted by 𝜙𝑠,𝑘
𝑡 ∈ Φ)

• Context-parameterized non-outage probability 

- 𝑝𝑠,𝑘
𝑡 ∼ 𝑝𝑠,𝑛(𝜙𝑠,𝑘

𝑡 ) from unknown distribution parameterized by 𝜙𝑠,𝑘
𝑡

- 𝜇𝑠,𝑛 𝜙𝑠,𝑘
𝑡 ≔ 𝔼[𝑝𝑠,𝑛(𝜙𝑠,𝑘

𝑡 )]

• Estimation of non-outage probability 

- Collect historical data for each context ℰ ∼ 𝑝𝑠,𝑛(𝜙𝑠,𝑘
𝑡 )

- Estimate the expected value ℰ → Ƹ𝜇𝑠,𝑛 𝜙𝑠,𝑘
𝑡

• Context partitioning 

- Continuous context Φ ≔ [0,1] → discrete context intervals ℒ𝑇
- Similarity assumption: Similar context → Similar non-outage probability

Sniffer s SBS n 0 1

ൗ1 𝛽𝑇



 Counter and Experience

• Counter 𝐶𝑠,𝑛(𝑙) and Experience ℰ𝑠,𝑛(𝑙)

- Counter 𝐶𝑠,𝑛 𝑙 records amount of collected data

- ℰ𝑠,𝑛(𝑙) stores the observed non-outage probabilities 

- Estimated non-outage probability Ƹ𝜇𝑠,𝑛
𝑡 𝑙 =

1

𝐶𝑠,𝑛
𝑡 (𝑙)

σ𝑝∈ℰ𝑠,𝑛(𝑙)
𝑝

Online Learning via Multi-armed Bandit
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Sniffer s

Channel 
Index k

Normalized 
SINR

2 0.82

3 0.26

6 0.58

7 0.27

8 0.51

SBS 1

SBS 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝑙𝑠,3
𝑡 𝑙𝑠,2

𝑡

𝑙𝑠,7
𝑡 𝑙𝑠,6

𝑡𝑙𝑠,8
𝑡

Assignment: 𝑎𝑠
𝑡 = 2 𝐶𝑠,1 𝑙𝑠,2

𝑡 + 1

ℰ𝑠,1 𝑙𝑠,2
𝑡 ∪ {0.82, 𝑝𝑠,2

𝑡 }

Counter/Experience update:



Online Learning via Multi-armed Bandit
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 Online Sniffer Channel Assignment with CCMAB

• Context observation

- Each sniffer s senses SINRs 𝜙𝑠,𝑘
𝑡 on accessible channels 𝑘 ∈ 𝒞𝑠, 

- Find 𝑙𝑠,𝑘
𝑡 such that 𝜙𝑠,𝑘

𝑡 ∈ 𝑙𝑠,𝑘
𝑡

- Under-explored channels for sniffer s 𝒞s
ue,𝑡 ≔ 𝑘 ∈ 𝒞𝑠

𝑡 𝐶𝑠,𝑛 𝑙𝑠,𝑘
𝑡 < 𝑄(𝑡)}

• Exploration

- 𝒮ue,𝑡 = 𝑠 ∈ 𝒮 𝒞s
𝑢𝑒,𝑡 ≠ ∅}, randomly assign sniffer 𝑠 ∈ 𝒮ue,𝑡 to a channel in 𝒞s

ue,𝑡

• Exploitation

- 𝒮ed,𝑡 = 𝑠 ∈ 𝒮 𝒞s
𝑢𝑒,𝑡 = ∅}

max
𝒂𝑡

෍
𝑘∈ℋ𝑡

𝑤𝑘𝜃𝑘
𝑡(𝒂𝑡; ෝ𝒑𝑡)

s. t. 𝑎𝑠
𝑡 ∈ 𝒞𝑠

𝑡 ∪ 𝑛𝑢𝑙𝑙 , ∀𝑠 ∈ 𝒮ed,𝑡

𝑎𝑠
𝑡 = 𝑛𝑢𝑙𝑙, ∀𝑠 ∈ 𝒮ue,𝑡

Determine whether the 

estimation is accurate



 Performance Analysis

• Regret

• Regret Upper Bound

- The regret upper bound is sublinear ⇒ Asymptotically optimal 

Online Learning via Multi-armed Bandit
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Optimal actions Decision of OSA 

𝑅 𝑇 = σ𝑡=1
𝑇 𝑢(𝒂opt,𝑡; 𝒑𝑡) - σ𝑡=1

𝑇 𝑢(𝒂𝑡; 𝒑𝑡)

Theorem. Let Q 𝑡 = 𝑡
2𝛼

3𝛼+1 log(𝑡) and 𝛽𝑇 = 𝑇
1

3𝛼+1 , the upper bound of 𝔼[𝑅(𝑇)] is

𝑂(𝑁𝑆2𝑤𝑚𝑎𝑥𝑇
2𝛼+1

3𝛼+1 log 𝑇)



Simulations
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 Setup

• 8 SBSs (blue tringles) in 1200m×1200m area

• 25 sniffers (red squares) with grid layout

• Randomly deployed Users (yellow dots)

• Background color is the user density

 Factors affects SINR

• Pathloss (distance and random shadowing)

• Interferences (# of nearby users)

Fig. Simulation model



Simulations
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 Benchmarks

• Oracle: knowns the non-outage probability

when making the SCA decision

• UCB: a classic MAB algorithm, non-contextual

and non-combinatorial

• LinUCB: a variant of UCB and assumes the

reward is a linear function of context

• Random: takes random assignment decisions

 Cumulative rewards

• OSA achieves close-to-oracle performance

 Regret

• OSA achieves sublinear regret

Fig. Comparison of cumulative rewards

Fig. Comparison of regrets



Simulations

16

 OSA Variants

• OSA with Assumed Perfect Monitoring (OSA-APM)

• OSA with Non-Redundant Assignments (OSA-NRA)

 Rewards and Regret 

• Considering imperfect monitoring and redundant 

assignment is beneficial 

• Considering redundant assignment provides 

greater improvement

Fig. Comparison of cumulative rewards

Fig. Comparison of regret
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Thank You!

Questions?

E-mail: lx.chen@miami.edu


