
Security of HPC Systems: From a Log-analyzing
Perspective
Zhengping Luo1,*, Zhe Qu1, Tung Thanh Nguyen2, Hui Zeng2, Zhuo Lu1

1Department of Electrical Engineering/Florida Center for Cybersecurity, University of South Florida, Tampa FL
33620, USA.
2Intelligent Automation Inc., Rockville MD 20855, USA.

Abstract

High Performance Computing (HPC) systems mainly focused on how to improve performances of the
computing. It has competitive processing capacity both in terms of calculation speed and available memory.
HPC infrastructures are valuable computing resources that need to be carefully guarded and avoid being
maliciously used. Thus, vulnerabilities are quintessential issues in HPC systems due to most of jobs and
resources run or stored usually are sensitive and high-profit information. In this survey, we comprehensively
review securities of HPC systems from a log-analyzing perspective, including well-known attacks and widely
used defenses, especially intruder detection methods. We found that log files are used for the security purposes
much less than what we expected. How to use all the available log files comprehensively and employ state-of-
the-art intrusion techniques to improve the robustness of HPC systems still lies for future research.

Received on 07 July 2019; accepted on 29 July 2019; published on 01 August 2019
Keywords: Security, high performance computing, attacks and defenses, intrusion detection, log file analysis
Copyright © 2019 Zhengping Luo et al., licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.19-8-2019.163134

1. Introduction
High performance computing, a widely used tech-

nology in fields such as aerospace, automotive, semi-
conductor design, energy explore, financial computing,
weather forecast and nuclear simulation etc., mainly
focused on how to improve the performance of the
computing from software development, parallel algo-
rithms and computer architecture etc. It has become
an important way to do scientific research. Clusters
and grids are the two dominant and distinct methods
of deploying HPC parallelism in both industrial and
academia nowadays [1].

As performances and capabilities of HPC infrastruc-
tures have continued to evolve, applications and soft-
ware that are running on HPC infrastructures have also
increased, especially with software applications of open
source frameworks. However, they also become increas-
ingly desirable targets to attackers [2]. HPC security,
which is one of the most concerned problems for both
users and HPC system maintainers, is not a significant
problem in the past. Because most of HPC systems
were built for private use by some dedicated users at
the beginning. Now it has been the main worries and

obstacles for the spreading of HPC systems as now they
are often shared by multiple users, especially with the
emerging of the idea of HPC-as-a-service.

The security of HPC systems has long been a research
focus to build reliable and accountable systems [3–
8], especially as log files being introduced to detect
malicious intruders and behaviors. Computing power,
as a resource, is required to be used only by those
approved users, or further, to prevent approved users
from performing unapproved behaviors. On the other
hand, legal users of computing resources want to
protect communications between users and resource
owners to be safe and keep their data away from
malicious attackers due to most of jobs and resources
run or stored in HPC systems usually are sensitive
and high-profit information. It might have serious
consequences when hacked. Other security problems
like denial-of-service are also a concern for HPC
systems that has a lot of access requests from users.

Traditional security vulnerabilities still exist in HPC
systems. For example, almost all HPC systems are
multiuser systems, which requires using password
to authenticate users. However, traditional security

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

∗Corresponding author. Email: Zhengpingluo@mail.usf.edu

http://creativecommons.org/licenses/by/3.0/

Z. Luo et al.

solutions are often not effective enough provided
characteristics of HPC systems [9]. Some HPC systems
tend to have very distinctive modes of operation and
be used for special purposes, notably mathematical
computations or economic modeling. Some HPC
systems run highly exotic hardware and software stacks
and are extremely "open" to users. These distinctiveness
of HPC infrastructure presents its vulnerabilities and
security challenges for both users and system managers.
Furthermore, the cooperation between users and
"security policy" (i.e., the balance between convenience
and security) is needed due to that "network security" is
highly relied on "host security" [10].

The specific vulnerabilities of HPC systems can be
traced back to the following three aspects [11]: (i)
High bandwidth connections As the practice of HPC-
as-a-service in industry, high bandwidth connecting
the HPC infrastructure and the users, allowing
steady interaction between users and systems have
been a necessary requirement. These high bandwidth
connections can be manipulated by hackers to launch
denial-of-service attacks. (ii) Extensive computational
power. The massive computing power, on one hand,
can be used by innocuous users to solve scientific
problems or other computing-extensive challenges. On
the other hand, it also might be manipulated by
malicious attackers to carry out brute-force attacks
and all kinds of illegal intentions. (iii) Massive storage
capacity. Almost all HPC systems include a large storage
capacity. But the large-capacity disk storage is an
attractive target for malicious attackers to store illegal
files, such as pornographic multimedia files.

In this survey, we research the problem of detecting
malicious users or behaviors in HPC systems based on
logs. The contributions can be listed as follows:

• We conduct a comprehensive review on the secu-
rity of HPC systems, including vulnerabilities, con-
sequences, and potential solution strategies.

• Well-known attacks and defense methods, especially
intrusion/anomaly detection methods, in HPC sys-
tems are identified.

• The process of log-based intrusion detection methods
is articulated and surveyed, which is an important
aspect of solutions for HPC security problems.

• We review defense mechanisms of HPC systems
based on logs, and found that as the widely
application of machine learning techniques, log files
can be utilized in a more complete way to improve
the security of HPC systems,

The remainder of this survey is organized as follows:
we review vulnerabilities, threats and common attack
examples in Section 2. The well-known defense mech-
anisms and intrusion detection methods are articulated

in Section 3. In Section 4, we comprehensively review
the log-based security solutions especially intrusion
detection methods. Machine learning techniques used
in solving anomaly detection problems in HPC systems
and the potential future work are reviewed in Section 5.
Conclusion is made in Section 6.

2. Attacks in HPC Systems
Attacks in HPC systems can lead to unauthorized
accesses to the high-performance system infrastructure
with malicious intents to steal, compromise or vandal-
ize HPC resources, e.g., hackers might vandalize the
system on purpose if they failed to extract any useful
information or exploit the system to launch a denial-of-
service attack [12].

2.1. Vulnerabilities and threats
The security in HPC facilities is similar with those
in typical IT context. They are connected to networks
just like other computer systems, and often run on
the Linux-based systems. Thus, many of the attack
styles in typical IT context can also be applied in
HPC facilities [11]. However, HPC systems also have
their own vulnerabilities, because they usually run
exotic hardware and software systems, and have highly
different purposes and modes of use compared with
typical IT systems.

Probes, scans, brute-force login attempts, and buffer
overflow vulnerabilities are the common issues that
trouble HPC facilities. Common vulnerabilities of HPC
facilities can be listed as follows[2]:

• Intrusion attacks, which can lead to data leakage or
other consequences. It is because HPC facilities are
extremely "open" to users around the world, thus
make them an easy target for attackers.

• Alteration of code or data.

• Misuse of computing cycles, i.e., using the HPC
facilities to perform activities other than granted
behaviors such as crypto-currency mining.

• Availability related threats, including disruption or
denial-of-service attacks against HPC facilities.

Threats confronted by HPC systems can be classified
into three well-known types: confidentiality (e.g., data
leakages), integrity (e.g., alteration of data or code) and
availability (e.g., disruption/denial-of-service attacks
against HPC systems or networks that connect them)
[13]. The cause of these attacks can be insiders or
outsiders of the HPC system. There are two kinds of
attacks that are most favored by the outsiders: the
brute-force attack against the password system and
man-in-the-middle attacks [14].

2 EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

Security of HPC Systems: From a Log-analyzing Perspective

“Insiders” often have special advantages in terms
of HPC security because they can access HPC
infrastructure. Thus, it is much easier for insiders to
launch attacks than others [11, 15], e.g., malicious users
can change or modify the data stored in the system, or
it can manipulate the system to do some illegal things
such as spreading the rumors or viruses on the Internet.
Even more, they can manipulate the system to run
harmful programs to consuming the system resources.

HPC systems usually can be decoupled into 4 layers
[16, 17]: application layer, middleware layer (including
MPI,PVM, etc.), operating system layer and network
layer. Each layer is well-instrumented for the sake of
health monitoring. HPC log files have been widely
used as the paramount dataset sources to analyze the
performance and security of HPC systems. Extensive
studies have shown the hidden structured patterns
exhibited in HPC log files. Through monitoring log
files of HPC systems, we can identify applications run
on HPC systems and the resource allocation among
nodes cluster. Thus, system administrators can verify
whether the jobs are approved, or the system are used
aggressively or maliciously by running jobs [18].

2.2. Commonly known attacks
Given the vulnerabilities and characteristics of HPC
facilities, we list four representative attacks in Linux
cluster-based HPC facilities, which can be launched
against an HPC cluster architecture:

Daemon process-based attack [12] A daemon
process is an application that does not need interaction
with a terminal and running in background. It can be
launched by any other process, and it can be applied
to take over system resources even when the parent
process has terminated execution. This sort of attack
can be very powerful in MPI environment since when a
daemon process is created, the MPI scheduler will lose
track of it [12]. The daemon process can take over any
kind of CPU usage or other computing resources.

To emulate this type of attacks, one need to insert
a Trojan into a trusted application appropriately to
avoid being found by the HPC administrator. Example
of Daemon process-based attacks include daemon
memory allocation attack (running a daemon process
to take over the memory resources) and daemon file
attack (running a daemon process to take over the
storage, memory, and computational resources of HPC
facilities). An example of the daemon process-based
attack template is shown as in Listing 1:

1 void main () {
2 i n t pid ;
3 void *pointerMemory ;
4

5 pid = fork () ;
6 i f (pid < 0)

7 e x i t (EXIT_FAILURE) ;
8 i f (pid > 0)
9 e x i t (EXIT_SUCCESS) ;

10 s e t s i d () ;
11 s i g n a l (SIGHUP, SIG_IGN) ;
12 umask (0) ;
13 chdir (" / ") ;
14 pid = fork () ;
15 i f (pid < 0)
16 e x i t (EXIT_FAILURE) ;
17 i f (pid > 0)
18 e x i t (EXIT_SUCCESS) ;
19 s i g n a l (SIGPIPE , SIG_IGN) ;
20 openlog (" helloworld daemon" ,LOG_PID,LOG_DAEMON) ;
21 i n t i = 1 ;
22 while (i < 100000000) {
23 /* the a t tack method i s put here */
24 pointerMemory = (char *) malloc (SIZE) ;
25 sys log (LOG_NOTICE, "memory i s a l l o c a t e d ! ") ;
26 i ++;
27 s leep (DURATION_SEC) ;
28 }
29 sys log (LOG_NOTICE, " Terminated ! ") ;
30 c l o s e l o g () ;
31 }

Listing 1: Daemon process-based attack example [12].

We run the code on Linux systems, the comparison
of CPU and memory utilization between running the
attack method in the example and without running the
attack is shown in Fig. 1, from which we can observe
that when the system keeps allocating memory pointer,
the CPU time increased from 14.1 µs to 17.2 µs, while
CPU time proportion for the user increased from 14.7%
to 27.3% and memory usage increased from 0.0% to
34.4%. It demonstrates the attack power of a daemon
process-based attack.

(a) Daemon process based attack

(b) Normal daemon process

Figure 1. Comparison of CPU and memory usage (a) when
running a daemon-process attack and (b) when running normal
daemon process.

Interposition library attack[12] It is an attack by
intercepting function calls that an application makes to
the stack of share libraries, and then modify the called
function to add malicious functionality to it. In Linux
systems, interposition is "the process of placing a new
or different library function between the application
and its reference to a library function" [19]. Example
interposition library attacks include attacking the libc

3 EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

library and attacking the MPI library. An example of
the interposition library attack is shown in listing 2.

1 s t a t i c i n t DoProf i le = TRUE;
2 FILE * fopen (const char * filename , const char *mode)

{
3 typedef FILE * (* funct ion_type) (const char * filename

, const char *mode) ;
4 s t a t i c funct ion_type funct ion = NULL;
5 s t a t i c char * function_name = " fopen " ;
6 FILE * r e t v a l ;
7 i f (! funct ion) {
8 funct ion = (funct ion_type) dlsym (RTLD_NEXT,

function_name) ;
9 }

10 i f (DoProf i le) {
11 DoProfi le = FALSE ;
12 r e t v a l = (* funct ion) (filename , mode) ;
13 DoProfi le = TRUE;
14 }
15 e l s e
16 r e t v a l = ((* funct ion) (filename , mode)) ;
17 s y s _ c a l l _ t a b l e [SYS_open] = orig_open ;
18 }

Listing 2: Interposition library-based attack example
[12].

Probe-based login attack [20, 21] It is similar with
brute-force login attack, when the username of the HPC
facilities are known to the attacker, they can create
a dictionary of all potential passwords to launch the
password guessing campaign as HPC facilities usually
are "open" to users all around the network.

Intrusion attack[8, 22–25] Given all the security
issues in HPC systems, we found that intrusion attack
is probably one of the most discussed attacks. Because
for any malicious user to launch an effective attack, the
primary obstacle is how to access the targeted system.
Thus, many problems of security for HPC systems are
centered around intrusion attacks and detection.

Some commonly known intrusion attacks include
attempts to copy the password file frequently, a lot
of unreliable remote procedure call requests in a very
short time and attempts to connect to non-exist "bait"
hosts frequently [24].

Besides attack examples listed above, there are many
other attack methods in HPC systems [2, 11, 25]. Based
on all these various attacks, how to guard the HPC
system against these attacks becomes a challenging
task. To the best of our knowledge, different defenses
have been proposed to defend against a set of attacks,
while there are no universal solutions.

When a server or cluster comes under attacks or
once the attacker lands on the system, owners of
user accounts often have no idea of the reality that
they have been hacked. Most of the time, it is the
activities of attackers expose or alert security officers
of the HPC infrastructure. Behaviors of hackers tend
to fall into some modes that are obviously different
from the true owner of the account and can be easily

identified. For example, the sudden burst of network
activities, high CPU utilization, longer network latency
or unauthorized jobs bypassing the job scheduler etc.
Hence monitoring is an important part of the HPC
system management, which is a main task for many
defense mechanisms.

3. Defense Mechanisms
In this section, we give the background and defense
strategies in HPC systems. We especially reviewed
intrusion detection methods due to the importance in
HPC security.

3.1. Background
Early studies on the security of HPC systems focused
on the programming level. A software infrastructure
is designed in [3] to ensure the integrity and
confidentiality of communications and to authenticate
approved users and resource owners. The developed
security-enhanced communication library, named as
Nexus, can be used to provide secure versions of
popular communication libraries, such as Message
Passing Interface (MPI), and offered a fine degree
of control over what, when and where security
mechanisms can be employed in HPC systems.

Traditionally, many physical measures and human-
oriented rules have been suggested to ensure the secu-
rity of HPC systems. For example, Korambath et al.
in [11] listed strategies of protecting passwords and
how to safeguard computing resources in an HPC envi-
ronment. Common methods of preventing passwords
from hacking include encrypting information exchange
between users and resource owners, urging users to
employ complicated passwords and changing the pass-
words routinely, monitoring activities of each user to
identify possible attackers and limiting the access rights
of each user according to their priority and so on.

Protocols like telnet and ftp are widely used in
the 1990s in which clear text format information
is transferred between remote computers. Anybody
with reasonable expertise of the domain knowledge
can launch such an attack, intercepting and reading
the content. Now none of HPC sites will run these
kinds of protocols. Besides that, a lot of solutions to
malicious user detection and security risk reduction
have been proposed. The approach used by most of
nowadays HPC systems can be summarized as divide-
and-conquer. i.e., the security techniques are deployed
separately and independently to address the HPC
security vulnerabilities [11].

3.2. Defense strategies
What to look for and where to identify the malicious
attacker are a complicated cybersecurity problem. Not

4

Z. Luo et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

a single HPC suit, especially within the field of open
science, has any solution to identifying and reducing
all risks associated with attacks against the system
infrastructure. Given the sophistication of attackers and
the rapidly changing pace in computational systems
and networking, how to develop defense mechanisms
becomes a difficult obstacle to tackle with.

When HPC systems are under attacks, the attack
activities often have two parts: the initial attack and the
follow-up behaviors taken if local access is obtained.
The initial attack can come from almost anytime and
anyplace. Although we have firewalls in place, there
is nothing the firewall can do once the attacker has
already landed on the system. However, as of the
attack property, the attacker’s behavior tends to be
somehow well-defined and can be identified easily.
From the system administrators’ perspective, what to
look for and where to identify the malicious attackers
are probably one of the most complex cybersecurity
problems in nowadays HPC environment [8].

One the other hand, security issues in HPC
systems differ from those in traditional platforms due
to their distinctive program structures, computing
environments and performance requirements. Unlike
widely used client-server structure in traditional
distributed systems, the communications in HPC
systems mainly depend on two-sided message passing,
streaming protocols, multicast and so on [3].

Existing technologies used to secure HPC infrastruc-
tures can be broadly categorized into four classes, i.e.,
they try to defend HPC systems from the following four
aspects[10]: (i) basic OS hardening, (ii) authentication,
(iii) network and host security and (iv) patching and
auditing, in which OS hardening techniques can go
deeper to be classified into different sub-classes. The
detailed category information is shown in Fig.2. From
which, password complexity enforcement can be done
through enforcing strict well-defined security policies,
for example, requiring users to change password peri-
odically; Monitoring HPC facilities for abnormal status
[26] can be one example of defenses under authentica-
tion category; As HPC facilities are usually used for dis-
tinctive purposes such as mathematical computations,
they tend to have a much more regular and predictable
mode of operations, which can be utilized to detect
irregular and potential malicious attacks [25].

3.3. Intrusion detection
Intrusion detection is a well-known defense in HPC
systems to counter malicious attacks [22]. To address
the problem of where, when, what and how to identify
the suspicious intruders, National Energy Research
Scientific Computing Center (NERSC) [8] follows a
methodology of data gathering and measurements,
repeatable testing and careful analysis in designing the

intrusion detection mechanism. The detailed steps of
the method can be summarized as follows:

• Collecting as much raw data as possible, especially
those data in high yield areas, and designing patterns
that can be based on to evaluate the suspiciousness of
user behaviors. The raw data can be accessed through
accounting data or SSHD data from each host, batch
scheduler logs from inter-systems or network data
and DNS logs from cross-site.

• Cleaning, organizing and normalizing the collected
data for the following analysis, which aim to process
and reduce the volume of the collected data. The
abstracted data can be further canonicalized to
transform it into a normal form such that it can be
suitable for machine processing use techniques such
as machine learning algorithms.

• Employing appropriate tools or methods to analyze
data processed in step 2 and comparing with
expected or normal data. In this step, local site
security policies can be used to evaluate the
standardized data.

Based on the above methodology, NERSC introduced
the Bro intrusion detection system [8]. To address
the invisibility problem of activities happened on the
multi-user HPC infrastructure, NERSC introduced an
instrumentation layer into the OpenSSH application
and then connected the resulted dataset into a real time
analysis using Bro IDS.

To address various security issues at different
layers of the cluster architecture, from threats of
network to vulnerabilities of applications, another
intrusion detection mechanism is proposed in [17].
In the mechanism, there exists an instrumented node
to help gathering raw data and understanding the
communications between clustering nodes in HPC
infrastructure at various layers (i.e., applications layer,
middleware layer, operating system layer and network
layer). The collected data will be audited and analyzed
to identify suspicious communications or behaviors.

Unlike the intrusion detection techniques listed
above, which focus on detecting anomalies from
behaviors or running statistics after the intruder has
succeed partially in compromising the targeted system.
User authentication is another effective method to
prevent intruders or malicious attackers from landing
the system at the beginning, which is an intuitive and
straightforward method to stop intruders. However,
this method usually has limited capabilities in keeping
safe of HPC systems as many attackers can find paths
to walk around the authentication gate [27, 28]. More
existing literature of user authentication techniques
and mechanisms used in distributed HPC systems can
be found in [5, 15, 29].

5

Security of HPC Systems: From a Log-analyzing Perspective

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

HPC security

Basic OS

hardening
Authentication

Network and Host

Security

Patching and

Auditing

Password

complexity

enforcement

Password

expiration and

account aging

Event logging

and auditing

capabilities

Removing

unwanted

package/

application

File permission
File integrity

monitoring/IDS

Figure 2. Strategies to secure HPC systems [10].

As machine learning has been widely spread into
different domains, a more direct and effective strategy
has come into people’s mind to defend HPC systems,
log file-based defense [25, 30, 31], which is a behavior
detection method based on log files generated from
running jobs. Using log files has many advantages
than previous methods, as log files are a detailed
record of the running process of the applications. Log
files generated at different layers of the HPC systems
often contains the fully operation and resource balance
process. We give more information on log file-based
intrusion detection in the following section.

4. Log-based Security Analysis in HPC Systems
In this section, we give the detailed information about
the log file-based security analysis in HPC systems.

4.1. Background and related works
Log files can be found on almost all computer systems
universally, which are text files recording behaviors,
system status and other running statistics of the jobs
active in HPC systems such that administrators can look
back to debug system problems or track the running
process to find vulnerabilities [32, 33]. Therefore, it can
be used as the first and direct information source to
monitor and detect intruders in HPC systems [25, 34].

Based on the collected information, the intrusiveness
can be downgraded at each level of HPC systems and
can even stop monitoring for the sake of efficiency
and performance. For example, we can employ two
phases in the instrumentation [25, 34]: fully monitoring
and adaptive monitoring. Fully monitoring is usually
employed at the beginning, in which everything is
monitored to build the profile of an application or a
user. It is costly in terms of computing resources; thus,
it usually only runs a short of time. While adaptive
monitoring can adaptively monitor the resources or

variables according to the load of the instrumentation
node. It can focus on some critical areas while have little
impact on the overall system performance.

HPC systems usually can be decoupled into 4 layers
[16, 17]: application layer, middleware layer (MPI
and PVM, etc.), operating system layer and network
layer. The high performance is achieved through the
cooperation of each layer. Many of HPC systems
are based on Linux-like systems. In Linux systems,
user behaviors and operating system’s activities are
logged such that it can be processed and analyzed by
administrators to monitor the system.

When the related raw data are collected by the
dedicated instrumented node, all layers of HPC systems
are instrumented heavily to evaluate the possibility of
existence of intruders[18]:

• Application layer: Collect general variables of moni-
tored processes, e.g., percentage of CPU time, mem-
ory used, I/O time and so on, to analyze statistics of
applications run on HPC systems.

• Middleware layer: Audit the calls of messaging passing
information, such as MPI calling statements and
other middleware related communications.

• Operating system and network layer: Audit and monitor
access to the file system and related network
interfaces, such that the global communications or
the local resource access information can be utilized
and evaluated.

The general workflow of using log files to detect
intruders in existing literature can be summarized
and shown in Fig.3. Usually we have four steps: log
collection, log parsing, filtering/feature extraction and
anomaly/intrusion detection, to conduct log file-based
analysis in defending HPC systems against intrusions
or other malicious behaviors [18, 23, 25, 26, 35].

6

Z. Luo et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

Log collection Log parsing
Filtering/Feature

extraction

Anomaly/Intrusion

detection

System logs

Event logs Transaction logs

Message logs

Unstructured

data

Structured

Data

Figure 3. General workflow of using logs to detect intruders [18, 23, 25, 26, 35].

4.2. Log collection
Logs record the history of everything happened in HPC
systems. In Linux systems, log files are stored in text
form and usually under the directory of /var/log and its
subdirectories. They include various information such
as system, kernel, access control, package managers and
many others. These log files can be roughly classified
into four categories: application logs, event logs, service
logs and system logs.

Large scale HPC systems generate various types of log
files during running procedure of the jobs. For instance,
the history of application run on the platform, resources
allocated for them, sizes of each job, user information
of each application and exit statuses are all logged
in log files. Reliability, availability and serviceability
(RAS) system logs are capable of extracting and logging
data from various sensors both hardware and software,
such as processor utilization, temperature sensors and
memory errors [36]. Other log files like network system
logs, input/output and storage system procedure logs
can collect and record network bandwidth, congestion,
and resource consuming information of jobs. The
performance and running information inspection can
rely on different log file (s) with respect to requirements
of monitoring.

These log files provide a direct way for system
managers to evaluate the system status. In HPC
systems, log files can also be collected and analyzed to
detect malicious jobs or users. For example, message
log files in Linux systems show general messages
and information regarding the system. It logs all
activities throughout the global system. Secure logs
keep authentication information of both successful and
failed logins, and the authentication processes. Other
logs can also be used to detect attacks and evaluate the
system vulnerability.

Log collection is the first step in log analysis-
based intrusion or anomaly detection of HPC systems.
Distributed systems can continuously generate all kinds
of log files to record system states and runtime
statistics. This information is vital in examining
system condition or debug especially when failures are
encountered [37]. In log collection stage, it is important

to collect right logs from the system as much as possible
to pave way for the following analysis. When machine
learning techniques are used to analyze the logs, the
volume of the data is critical in learning the patterns
of both normal behaviors and abnormal behaviors.

4.3. Log parsing
Log files are usually unstructured data, and their
format and semantics might be different from each
other, Thus, it is a difficult and complicated problem
to design a mechanism that can diagnose abnormal or
malicious intruders, especially when log files generated
is in huge amount [38–41]. On the other hand, each
log file might contain a lot of information that is not
related to the security of HPC systems, thus how to
filter valuable information from raw log files is also a
challenging problem. It usually requires a lot of domain
knowledge to design rule-based detectors [42–44]. For
example, using the CPU time as a resource utilization
measure, using IP address to parse a log into different
entities and so on.

Log parsing is the second step of log analysis, which
aims to get the unstructured, free-format and semantics
text file into a structured representation. There have a
substantial research and literature on the parsing of log
files, in which representative methods can be listed as
follows:

• Du et al. [45] provided an online streaming method
to parse log files, which utilizes the longest common
subsequence method, i.e., the longest common
subsequence in logs are used as the sign to parse
log files into structured files. The proposed method
achieves linear time complexity for each log entry.

• Beschastnikh et al. [6] gave a method using regular
expressions to determine which log lines will be
parsed and which log lines will be ignored. It is a
set of channel definitions that corresponds each line
of the log files into a vector timestamp, or other
channels.

• Xu et al. [46] offered a method leveraging the source
code to parse log files, in which we need to first get all

7

Security of HPC Systems: From a Log-analyzing Perspective

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

possible log message template strings from the source
code and then match it to log files to parse them into
structured files.

• Methods in [47, 48] provided solutions to parse log
files purely based on log characteristics using data
mining approaches. They usually do not rely on
other information except log files, which is usually
more straightforward but might not be as precise
as those rule-based log parse methods, and they
usually require machine learning algorithms to learn
patterns.

After parsing log files obtained from HPC systems,
intrusion/anomaly detection methods can be applied to
distinguish out suspicious activities or users.

4.4. Log file-based intrusion/anomaly detection
There are various methods and mechanisms have been
proposed to address the intrusion/anomaly detection
problem utilizing log files form HPC systems. In
this subsection, we first overview two representative
types of log file-based defenses used in HPC systems.
They both offered an experiment-proved mechanism to
detect intrusions or anomalies:

The first perspective is to take log files as a language
model, and then build relationships between log files
and normal/abnormal behaviors. Log files, in essence,
are existed in text format. Therefore, it can intuitively
be modeled as a natural language sequence model,
further it can employ techniques from natural language
processing to analyze log files.

Inspired by the observation that log file entries are a
sequence of events extracted from the structed source
code execution process, Du et al. [25] proposed a
deep neural network model employing Long Short-
Term Memory (LSTM) to detect anomaly behaviors and
potential malicious users through taking log files as
structured language sequence. Based on the proposed
model, which is named as DeepLog, log patterns of
normal execution can be learned continuously from
the historical data. Abnormal patterns resulted from
intrusions, which are often deviates from patterns of
log files from normal execution, can be distinguished
by the learned model in monitoring process. DeepLog
was designed in an incremental learning style, thus it
can adapt to different patterns in the running process.

From a mathematical perspective, DeepLog builds a
non-linear and high dimensional relationship between
log entries and normal/abnormal execution applica-
tions. It categorizes log files into various sequences, thus
a workflow model can be constructed for each separate
task, and also offers a feedback mechanism, such that a
wrongly classified log file can be used to adjust weights
of the trained model to make it adaptively fit into its
dynamic changing environment.

The second perspective is to build relationships
between log files and source codes. Many works
proposed to address security problems based on log
files cannot identify code’s behaviors. Inspired by the
puzzle of whether the source code of an application or
job are unique enough, such that it can be identified
from the performance logs generated by the system,
DeMasi et al. [18] employed and modified the rule
ensemble method to predict what source code was
running based on the generated performance log files.
The Integrated Performance Monitoring (IPM) logs
used in the paper are collected from a broad set of
applications at the NERSC facilities.

Extensive works have shown various structured
patterns in performance logs of HPC systems. Orianna
et al. [18] proposed a method using the Rule Ensemble
method to identify a code by its performance logs based
on supervised machine learning. Through interpreting
the resulting rule model, it can tell users which
components of a code are the most distinctive and
useful for identification. The proposed method can
monitor the performance of applications running on
HPC resources. Thus, the unapproved code or jobs or
unintended usages of HPC systems can be detected.

5. Machine Learning in HPC and Future Work
In this section, we review the application of machine
learning techniques used in HPC systems and potential
future work is detailed.

5.1. Machine learning and HPC security
Besides the aforementioned intrusion detection meth-
ods, there proposed various advanced frameworks in
recent years to mitigate security risks, especially as
machine learning techniques are widely used in HPC
systems.

For data centers like NERSC, there are hundreds,
or thousands of jobs running concurrently on each of
their four computing systems, i.e., Cori, Edison, PDSF
and Genepool every day. Inspecting and analyzing each
job manually is practically infeasible given the vast
amount of log files generated simultaneously by each of
the systems and the corresponding file systems. Given
the huge volumes of log files, a mechanism named as
Priolog is designed in [49] to narrow down the volume
to comparatively small volumes of most related logs,
thus increases the process efficiency.

Besides reducing the volumes of logs, another idea
is to design scalable HPC system data analytics
framework. [36] designed a scalable mechanism to
analyze system logs, further, to distinguish unwanted
or malicious jobs running on HPC systems. Based on the
framework, users are able to navigate spatial-temporal
event space that overlaps with specific system resource
allocation, events, errors and identify persistent user

8

Z. Luo et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

behavior patterns etc. Further, users can distinguish
performance anomalies and gain valuable insights
about the impact brought up by various system jobs.
Ultimately all above methods lead to machine learning
techniques. Given the often huge amount of log files
generated during the running stage (we say it "huge"
because log files is usually generated continuously
from various layers of the systems) [50], traditional
data analysis tools and techniques often fall short
of the capability of processing them efficiently and
effectively. Machine learning techniques, such as deep
neural networks, can offer exactly what traditional data
analysis techniques fall short of. It can process large
dataset of log files in a batch-processing style and can
extract valuable information from them.

In log analysis, machine learning techniques have
their unique advantages in dealing with large volumes
of streaming data. Processing streaming data generated
from HPC systems is challenging as a result of the large
volumes and generating speed. An online supervised
learning method is proposed in [51] to operate with
live streamed data; Another online anomaly detection
method using autoencoder is provided in [52]. To
better support streaming logs analysis, a visual analytic
framework is proposed in [53], which consists of data
management, analysis and interactive visualization.
It can automatically identify pattern changes and
provide a coherent view of the changes and patterns
of the performance data. [54] also builds a scalable
visualization tool named as MELA to study event log
data.

Other applications of machine learning in log file
analysis can be found in [30, 55–58]. The application of
machine learning techniques in log file analysis brings
revolutionary to the intrusion/anomaly detection in
HPC systems. Anomaly user detection is an important
application of deep learning techniques for user
behavior analysis. A comprehensive review of how
the machine learning techniques are used in detecting
anomaly users is given in [26].

5.2. Future work

The security of HPC systems will experience more
challenges in the future especially as the widely
applications of machine learning techniques, both in
terms of attacks and defenses. Here we give several
potential research topics as future work:

• There are various methodologies proposed to defend
intrusion attacks in HPC systems based on log files.
Through reviewing many of these methods, we found
that most of the methods are focused on a small
part of the log files, i.e., there still lacks a strategy
that can utilize all the available logs that employing
state-of-the-art machine learning techniques to study

the security problem. We believe this would be a
promising research frontier.

• Deep learning techniques are widely used in log file
analytics to classify different types of users by their
application behaviors. It is worth noting that different
platforms will have different user behaviors and
data types, thus lead to different feature extraction
methods. The efficient and effective feature vector
extraction methods are at the core of applying deep
learning techniques in future work.

• If we look beyond security problems in HPC
systems, we observed that the problem faced by
other distributed systems, such as cloud computing,
cluster computing and grid computing, are similar
with the problems we faced in HPC systems. This
is because they all have similar architectures and
utilities. Security solutions in cloud computing,
cluster computing, grid computing and many other
distributed computing models [13, 28] can be
transferred to the HPC systems due to their inner
similarities and this will be a promising future
research topic.

The security of HPC systems has drawn emerging
attentions from both academia and industry. With
the rapid growing of HPC systems in terms of both
scale and complexity, machine learning based security
inspection, evaluation and malicious behavior detection
will play a more practical role in improving the
usability and security of HPC systems.

6. Conclusion
We comprehensively reviewed the security problem
in HPC systems from a log-analyzing perspective
in this survey, including both the attacks and
defense methods, especially the log file-based intrusion
detection methods. We found that existing detection
methods have focused only on a very small number
of logs to detect malicious attacks. To improve the
detection performance, we believe a more advanced
machine learning, especially natural language-based
processing techniques should be used in analyzing
various logs of HPC systems. We also give the future
research directions. How to build a framework that
utilizes all the available log files from each level of HPC
systems to evaluate the security will be one of the main
future works.

References
[1] Pellerin, D., Ballantyne, D. and Boeglin, A. (2015)

An introduction to high performance computing on aws.
Amazon Whitepaper .

[2] Peisert, S. (2017) Security in high-performance comput-
ing environments. Communications of the ACM 60(9): 72–
80.

9

Security of HPC Systems: From a Log-analyzing Perspective

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

[3] Foster, I., Karonis, N.T., Kesselman, C. and Tuecke,

S. (1998) Managing security in high-performance
distributed computations. Cluster Computing 1: 95–107.

[4] Ballew, J.D., Davidson, S.V. and Richoux, A.N. (2015),
System and method for cluster management based on
hpc architecture. US Patent 9,178,784.

[5] Barnell, M., Raymond, C., Capraro, C., Isereau, D.,
Cicotta, C. and Stokes, N. (2018) High-performance
computing (hpc) and machine learning demonstrated in
flight using agile condor®. In 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC) (IEEE): 1–4.

[6] Beschastnikh, I., Brun, Y., Ernst, M.D. and Krishna-

murthy, A. (2014) Inferring models of concurrent sys-
tems from logs of their behavior with csight. In Pro-
ceedings of the 36th International Conference on Software
Engineering (ACM): 468–479.

[7] Blanc, M., Briffaut, J., Gros, D. and Toinard, C.

(2011) Piga-hips: Protection of a shared hpc cluster.
International Journal on Advances in Security Volume 4,
Number 1 & 2, 2011 .

[8] Campbell, S. and Mellander, J. (2011) Experiences with
intrusion detection in high performance computing.
Proceedings of the Cray User Group (CUG) .

[9] Apostal, D., Foerster, K., Chatterjee, A. and Desell,

T. (2012) Password recovery using mpi and cuda. In
2012 19th International Conference on High Performance
Computing (IEEE): 1–9.

[10] Bulusu, R., Jain, P., Pawar, P., Afzal, M. and
Wandhekar, S. (2018) Addressing security aspects for
hpc infrastructure. In 2018 International Conference on
Information and Computer Technologies (ICICT) (IEEE):
27–30.

[11] Korambath, P. (2014) Cyber security in high-
performance computing environment. Institute for
Digital Research and Education .

[12] Torres, M., Vaughn, R., Bridges, S., Florez, G. and
Liu, Z. (2003) Attacking a high performance computer
cluster. In Proceedings of the 15th Annual Canadian
Information Technology Security Symposium, Ottawa,
Canada.

[13] Sabahi, F. (2011) Cloud computing security threats
and responses. In Communication Software and Networks
(ICCSN), 2011 IEEE 3rd International Conference on
(IEEE): 245–249.

[14] Markowsky, G. and Markowsky, L. (2007) Survey of
supercomputer cluster security issues. In Security and
Management: 474–480.

[15] Schroeder, B. and Gibson, G. (2009) A large-scale study
of failures in high-performance computing systems.
IEEE transactions on Dependable and Secure Computing
7(4): 337–350.

[16] Braby, R.L., Garlick, J.E. and Goldstone, R.J. (2003)
Achieving order through chaos: the llnl hpc linux cluster
experience. Tech. rep., Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States).

[17] Gadaud, F., Blanc, M. and Combeau, F. (2005) An
adaptive instrumented node for efficient anomalies and
misuse detections in hpc environment. In CCGrid 2005.
IEEE International Symposium on Cluster Computing and
the Grid, 2005. (IEEE), 1: 140–145.

[18] DeMasi, O., Samak, T. and Bailey, D.H. (2013)
Identifying hpc codes via performance logs and machine
learning. In Proceedings of the first workshop on Changing
landscapes in HPC security (ACM): 23–30.

[19] Curry, T.W. et al. (1994) Profiling and tracing dynamic
library usage via interposition. In USENIX Summer: 267–
278.

[20] Lee, J.K., Kim, S.J. and Hong, T. (2016) Brute-force
attacks analysis against ssh in hpc multi-user service
environment. Indian Journal of Science and Technology
9(24).

[21] Cantu, M., Kim, J. and Zhang, X. (2017) Finding hash
collisions using mpi on hpc clusters. In 2017 IEEE Long
Island Systems, Applications and Technology Conference
(LISAT) (IEEE): 1–6.

[22] Kumar, M. and Hanumanthappa, M. (2013) Scalable
intrusion detection systems log analysis using cloud
computing infrastructure. In 2013 IEEE International
Conference on Computational Intelligence and Computing
Research (IEEE): 1–4.

[23] Ma, P. (2003) Log analysis-based intrusion detection
via unsupervised learning. Master of Science, School of
Informatics, University of Edinburgh .

[24] Mishra, B.K., Sahu, M. and Das, S.N. (2014) Intrusion
detection systems for high performance computing
environment. In 2014 International Conference on High
Performance Computing and Applications (ICHPCA)
(IEEE): 1–6.

[25] Du, M., Li, F., Zheng, G. and Srikumar, V. (2017)
Deeplog: Anomaly detection and diagnosis from system
logs through deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security (ACM): 1285–1298.

[26] He, S., Zhu, J., He, P. and Lyu, M.R. (2016) Experience
report: system log analysis for anomaly detection. In
2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE) (IEEE): 207–218.

[27] Prout, A., Arcand, W., Bestor, D., Byun, C., Bergeron,
B., Hubbell, M., Kepner, J. et al. (2012) Scalable
cryptographic authentication for high performance
computing. In 2012 IEEE Conference on High Performance
Extreme Computing (IEEE): 1–2.

[28] Pourzandi, M., Gordon, D., Yurcik, W. and Koenig,

G.A. (2005) Clusters and security: distributed security
for distributed systems. In CCGrid 2005. IEEE Interna-
tional Symposium on Cluster Computing and the Grid,
2005. (IEEE), 1: 96–104.

[29] Prabhakar, R., Patrick, C. and Kandemir, M. (2009)
Mpisec i/o: Providing data confidentiality in mpi-i/o. In
2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid (IEEE): 388–395.

[30] Gainaru, A., Cappello, F., Trausan-Matu, S. and
Kramer, B. (2011) Event log mining tool for large scale
hpc systems. In European Conference on Parallel Processing
(Springer): 52–64.

[31] Park, B.H., Hui, Y., Boehm, S., Ashraf, R.A., Layton,

C. and Engelmann, C. (2018) A big data analytics
framework for hpc log data: Three case studies using
the titan supercomputer log. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER) (IEEE):
571–579.

10

Z. Luo et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

[32] Oliner, A. and Stearley, J. (2007) What supercomputers
say: A study of five system logs. In 37th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07) (IEEE): 575–584.

[33] Oliner, A., Ganapathi, A. and Xu, W. (2012) Advances
and challenges in log analysis. Communications of the
ACM 55(2): 55–61.

[34] Chuah, E., Kuo, S.h., Hiew, P., Tjhi, W.C., Lee,

G., Hammond, J., Michalewicz, M.T. et al. (2010)
Diagnosing the root-causes of failures from cluster
log files. In 2010 International Conference on High
Performance Computing (IEEE): 1–10.

[35] He, P., Zhu, J., He, S., Li, J. and Lyu, M.R. (2017) Towards
automated log parsing for large-scale log data analysis.
IEEE Transactions on Dependable and Secure Computing
15(6): 931–944.

[36] Park, B.H., Hukerikar, S., Adamson, R. and Engelmann,

C. (2017) Big data meets hpc log analytics: Scalable
approach to understanding systems at extreme scale. In
2017 IEEE International Conference on Cluster Computing
(CLUSTER) (IEEE): 758–765.

[37] Tang, L., Li, T. and Perng, C.S. (2011) Logsig:
Generating system events from raw textual logs. In
Proceedings of the 20th ACM international conference on
Information and knowledge management (ACM): 785–794.

[38] Tan, J., Kavulya, S., Gandhi, R. and Narasimhan, P.

(2010) Visual, log-based causal tracing for performance
debugging of mapreduce systems. In 2010 IEEE
30th International Conference on Distributed Computing
Systems (IEEE): 795–806.

[39] Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan,

R., Fahringer, T. and Epema, D. (2011) Performance
analysis of cloud computing services for many-tasks
scientific computing. IEEE Transactions on Parallel and
Distributed systems 22(6): 931–945.

[40] Cinque, M., Cotroneo, D., Natella, R. and Pecchia,

A. (2010) Assessing and improving the effectiveness
of logs for the analysis of software faults. In 2010
IEEE/IFIP International Conference on Dependable Systems
& Networks (DSN) (IEEE): 457–466.

[41] Ghiasvand, S., Ciorba, F.M., Tschüter, R. and Nagel,

W.E. (2015) Analysis of node failures in high per-
formance computers based on system logs. In 28th
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2015)
(University_of_Basel).

[42] Nakka, N., Agrawal, A. and Choudhary, A. (2011)
Predicting node failure in high performance computing
systems from failure and usage logs. In 2011 IEEE
International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IEEE): 1557–1566.

[43] Lin, X., Wang, P. and Wu, B. (2013) Log analysis in cloud
computing environment with hadoop and spark. In 2013
5th IEEE International Conference on Broadband Network
& Multimedia Technology (IEEE): 273–276.

[44] Taerat, N., Naksinehaboon, N., Chandler, C., Elliott,
J., Leangsuksun, C., Ostrouchov, G., Scott, S.L.

et al. (2009) Blue gene/l log analysis and time to
interrupt estimation. In 2009 International Conference on

Availability, Reliability and Security (IEEE): 173–180.
[45] Du, M. and Li, F. (2016) Spell: Streaming parsing of

system event logs. In 2016 IEEE 16th International
Conference on Data Mining (ICDM) (IEEE): 859–864.

[46] Xu, W., Huang, L., Fox, A., Patterson, D. and Jordan,

M.I. (2009) Detecting large-scale system problems by
mining console logs. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (ACM):
117–132.

[47] Fu, Q., Lou, J.G., Wang, Y. and Li, J. (2009) Execu-
tion anomaly detection in distributed systems through
unstructured log analysis. In 2009 ninth IEEE interna-
tional conference on data mining (IEEE): 149–158.

[48] Makanju, A.A., Zincir-Heywood, A.N. and Milios, E.E.

(2009) Clustering event logs using iterative partitioning.
In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining (ACM):
1255–1264.

[49] Tak, B., Park, S. and Kudva, P. (2019) Priolog: Mining
important logs via temporal analysis and prioritization.
Sustainability 11(22): 6306.

[50] Sîrbu, A. and Babaoglu, O. (2015) A holistic approach
to log data analysis in high-performance computing
systems: The case of ibm blue gene/q. In European
Conference on Parallel Processing (Springer): 631–643.

[51] Netti, A., Kiziltan, Z., Babaoglu, O., Sîrbu, A.,
Bartolini, A. and Borghesi, A. (2019) Online fault
classification in hpc systems through machine learning.
In European Conference on Parallel Processing (Springer):
3–16.

[52] Borghesi, A., Libri, A., Benini, L. and Bartolini, A.

(2019) Online anomaly detection in hpc systems. In 2019
IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS) (IEEE): 229–233.

[53] Kesavan, S.P., Fujiwara, T., Li, J.K., Ross, C., Mubarak,

M., Carothers, C.D., Ross, R.B. et al. (2020) A
visual analytics framework for reviewing streaming
performance data. arXiv preprint arXiv:2001.09399 .

[54] Shilpika, F., Lusch, B., Emani, M., Vishwanath, V.,
Papka, M.E. and Ma, K.L. (2019) Mela: A visual analytics
tool for studying multifidelity hpc system logs. In
2019 IEEE/ACM Industry/University Joint International
Workshop on Data-center Automation, Analytics, and
Control (DAAC) (IEEE): 13–18.

[55] Chen, Y.T.W.Y., Kuo, W.C. and Wang, Y.T. (2009)
Building ids log analysis system on novel grid
computing architecture. National Center for High-
Performance Computing .

[56] Ghoshal, D. and Plale, B. (2013) Provenance from
log files: a bigdata problem. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops (ACM): 290–297.

[57] He, P., Zhu, J., He, S., Li, J. and Lyu, M.R. (2016) An
evaluation study on log parsing and its use in log mining.
In 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (IEEE): 654–
661.

[58] Hu, W., Li, Y., Srihari, V. and Yemeni, R. (2013), High-
performance log-based processing. US Patent 8,566,326.

11

Security of HPC Systems: From a Log-analyzing Perspective

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e5

	1 Introduction
	2 Attacks in HPC Systems
	2.1 Vulnerabilities and threats
	2.2 Commonly known attacks

	3 Defense Mechanisms
	3.1 Background
	3.2 Defense strategies
	3.3 Intrusion detection

	4 Log-based Security Analysis in HPC Systems
	4.1 Background and related works
	4.2 Log collection
	4.3 Log parsing
	4.4 Log file-based intrusion/anomaly detection

	5 Machine Learning in HPC and Future Work
	5.1 Machine learning and HPC security
	5.2 Future work

	6 Conclusion

