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Abstract—Network transmissions are vulnerable to Man-In-
The-Middle (MITM) attacks. Through decoding intercepted data,
attackers may infer victims’ sensitive activities or even steal
their private information (e.g., password). Though transmitted
data can be encrypted against eavesdropping, attackers can still
infer user activities via traffic analysis. Nevertheless, previous
inference methods usually have the limitation that they can only
achieve a relatively high accuracy in a specific domain (e.g., app
usages, spoken phrases, motion and behaviors). In this research,
we propose a smart traffic analysis strategy to overcome this
limitation. By developing a fusion deep neural network, our
design can infer a user’s activities of multiple domains with a
higher accuracy. We also implement a prototype tool on top of
this design to conduct experiments. The preliminary evaluation
results show our strategy works effectively in activity inference
on encrypted data, with an accuracy rate as high as 99.17%.

I. INTRODUCTION

Through providing a convenient and express way to connect
to the world, smart devices (e.g., computers, smart phones,
IoT devices, etc) nowadays are ubiquitous in our daily life.
But their connections via wired or wireless networks are
potentially vulnerable to Man-In-The-Middle (MITM) attacks
[1]–[3]. Once the transmitted data is obtained by an attacker,
it can further decode the message to infer the user’s sensitive
activities (e.g., voice or video chatting) or even steal the user’s
private information (e.g., password and personal information),
which is carried in the eavesdropped data.

A simple yet efficient method to prevent such information
leakage is to encrypt the transmitted data [4], such that it is
difficult for the eavesdropper to decode useful information.
Multiple encryption schemes have been proposed to preserve
the confidentiality of the data traffic during transmission,
including WPA2, HTTPS, PGP, MSP and etc. However, data
encryption does not stop the attacker from exploring new ways
to spy on users. Through traffic analysis [5] on patterns or
statistic of side-channel information, attackers can successfully
infer user activities on encrypted data.

Nevertheless, these attacks usually only utilized the statistic
results of features from a specific domain to perform activity
inference. Consequently, they can only achieve a relatively
high accuracy in a corresponding domain. In this research, we
aim to overcome this limitation by proposing a smart traffic
analysis strategy. The core idea is two-fold: 1) besides the
statistic results, encoding the encrypted data to improve the
data representativeness. In this way, our design can capture
the characteristics concealed in the data payload, which are

ignored by previous methods. 2) developing a fusion Deep
Neural Network (DNN) model which integrates multiple tra-
ditional neural networks to improve learning abilities.

In particular, we utilize Convolutional Neural Network
(CNN) to learn the spatial dependencies among the encoded
data; and then adopt the Long Short-Term Memory (LSTM)
to learn the temporal dependencies on the results from the first
step. Finally, we combine the spatial-temporal features from
previous steps with the flow features directly extracted from
network traffic to improve the classification accuracy. With
this proposed architecture, our preliminary evaluation results
[6] show that we can achieve a classification accuracy rate as
high as 99.17% when identifying a user’s real-world activities.

In the future, we will collect more real-world datasets
to validate the proposed smart traffic analysis strategy and
therefore to further refine our design. In addition, we will build
an efficient and effective traffic analysis system and conduct
a comprehensive experiment evaluation.

II. SYSTEM DESIGN

A. Overview

Different network activities (e.g., chatting, streaming) in-
dicate different behaviors in the level of traffic flows, rather
than the behaviors of single packets. Usually, a traffic flow
is composed of multiple data packets in transmission. As
Figure 1 shows, there is a connection between Entity 1 and
Entity 2, a traffic flow is transmitted through the connection.
We consider an MITM attacker that can intercept data packets
of different connections. According to the TCP/IP protocol,
the intercepted packets will be then aggregated and grouped
into traffic flows of different connections. We further assume
the transmitted data is encrypted to ensure the attacker cannot
infer user activities by directly decoding the intercepted traffic.
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Fig. 1. Network traffic flow.

In this research, we develop a smart traffic analysis strategy
to infer user activities from encrypted data. The core idea is to
infer activities on top of a deep learning based traffic classifier,



which is a fusion DNN model. As Figure 2 shows, our design
integrates both the internal layers of CNN and LSTM, such
that it can capture not only spatial dependencies for the
data in each packet, but also temporal dependencies among
different packets. Finally, it makes the classification based
on the combination of spatial-temporal vector and directly
extracted flow feature vector.
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Fig. 2. System design of SS-Infer.

B. Learning Spatial-temporal Features

1) Encrypted Data Encoding: Though encrypted, the data
payload in a packet still contains information indicating a
user’s activities. In particular, the spatial and temporal correla-
tion relationships among different packets can both contribute
to the classification for different activities. We adopt One-Hot
Encoding (OHE) to represent the encrypted data, and we only
take into consideration of packets with data payload larger
than 300 bytes. The OHE vector is the binary code of each
byte, i.e., an 8-dimensional vector.

2) Learning Spatial Dependencies through CNN: CNN is
designed with the ability to learn the spatial dependencies.
Here, we adopt internal layers of CNN to extract the spatial
dependencies from each packet as the intermediate vector. This
vector is the inputs of LSTM. Assume filter w works with a
window size of s, mi is the i-th generated feature, ci is the
i-th column of the data encoding matrix, b is a bias, and f is
ReLUs. We get:

mi = f(w � ci:i+s−1 + b), (1)

Then, a max-over-time pooling is applied to feature map m =
[m1,m2, ...,m300−h+1] to get the intermediate vector:

m̂ = max{m}. (2)

3) Learning Temporal Dependencies through LSTM:
LSTM is suitable for learning temporal features, especially
for the long-term temporal dependencies. We apply internal
layers of LSTM after the convolution layers to learn the
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Fig. 3. Classification performance.

spatial-temporal dependencies. It takes the intermediate vector
of each packet in order as inputs. Assume there are p valid
packets in a flow, the input sequence is therefore denoted as
{m̂1, m̂2, ..., m̂p}. Through a series of transitions by a set of
adaptive multiplicative gates in these internal layers, we get the
output {ŷ1, ŷ2, ..., ŷp}, which is the spatial-temporal vector.

III. EVALUATION

In our experiments, we use a high-performance workstation
with four NVIDIA GeForce RTX 2080 GPUs to perform traffic
classification on top of TensorFlow. UNB ISCX Network
Traffic Dataset [7] is used for evaluation. It is captured from
real world networks and the traffic flows are labeled manually
as ground truth. Meanwhile, the dataset also contains the
original encrypted data. We consider three models: Model1
is a neural network only using the spatial-temporal features
for classification; Model2 only using the flow features for
classification, and Model3 combines the spatial-temporal fea-
tures and the flow features, which is adopted in our design.
Figure 3 shows the evaluation results. We can see that when
only using spatial-temporal features or flow features to infer a
user’s activities, the accuracy rates are 93.63% and 85.26% for
Model1 and Model2, respectively. Though the accuracy rate is
already relatively high for activity inference, our design (i.e.
Model3) can achieve a more accurate result, with an accuracy
rate being as high as 99.17%.
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