Entrapment for Wireless Eavesdroppers

Song Fang^{*}, Tao Wang[†], Yao Liu[†], Shangqing Zhao[†], **Zhuo Lu**[†]

> *University of Oklahoma *University of South Florida

Content

- Background
- System Design
 - Randomization Channel Design
 - Placing the Trap
- Experimental Evaluation
- Conclusion

Wireless Eavesdropping

Open nature of wireless medium

- Traditional Anti-Eavesdropping Methods
 - 1. Cryptography
 - 2. Friendly jamming
 - 3. Proximity isolation

(1) Cryptography

(2) Friendly Jamming

(3) Proximity Isolation

Eavesdroppers cannot get close

Weak signal Strength

As a result,

Entrapment

- Intuition: a dog chases prey by following its scent
- Method: provide an eavesdropper with attractive signals to lead her to move towards the trap region

Content

- Background
- System Design
 - Randomization Channel Design
 - Placing the Trap
- Experimental Evaluation
- Conclusion

System Structure

Utilize multiple antennas to concurrently transmit precoded signals

Why not Traditional MU-MIMO

- Simply using MU-MIMO without considering security does not prevent eavesdropping
 - An eavesdropper can still access to the message intended for the receiver if she happens to be close to the receiver
- Instead, we aim to provide secure communication as well as entrap eavesdroppers by
 - Constructing a specified channel between the transmitter and the receiver
 - Pre-coding the transmit signals based on the entrapment deployment

Trapping an Eavesdropper

Placing multiple traps:

OFDM Preliminary

> The *i*-th received subcarrier signal:

$$y_i(t) = h_i \cdot x_i(t) + n(t)$$

 \downarrow
Chanel noise

Construction of a Specified Channel

Goal: enable the receiver to estimate a channel specified by the transmitter

Training signal

The received signal $\mathbf{s}_{i}(t) = [s_{i_{1}}(t), s_{i_{2}}(t)]^{T} \qquad \qquad \mathbf{y}_{i}(t) = h_{i_{1r}} s_{i_{1}}(t) + h_{i_{2r}} s_{i_{2}}(t) + n(t)$ $=(H_i)s_i(t) + n(t)$

Real channel effect emulation

Calculation the Coefficients

> After multiplication, the received signal

$$y_i(t) = \begin{bmatrix} h_{i_{1r}} & h_{i_{2r}} \end{bmatrix} \begin{bmatrix} w_{i_1} & 0 \\ 0 & w_{i_2} \end{bmatrix} \begin{bmatrix} s_{i_1}(t) \\ s_{i_2}(t) \end{bmatrix} = \mathbf{H}_i \mathbf{W}_i \mathbf{s}_i(t)$$

> The receiver obtains the specified channel $\mathbf{H}_{vi} = [h_{i_v}, h_{i_v}]$

$$\mathbf{H}_{i}\mathbf{W}_{i} \mathbf{s}_{i}(t) = \mathbf{H}_{vi} \mathbf{s}_{i}(t)$$

$$\bigcup$$

$$\mathbf{W}_{i} = \begin{bmatrix} h_{i_{1r}}^{-1}h_{i_{v}} & 0\\ 0 & h_{i_{2r}}^{-1}h_{i_{v}} \end{bmatrix}$$

After the Specified Channel is Created

> Original transmit signal $\mathbf{x}_i(t) = [x_{i_1}(t), x_{i_2}(t)]^T$

$$\begin{array}{c} \textbf{Receiver} \qquad y_i(t) = \textbf{H}_{vi} \textbf{x}_i(t) = \left[\begin{array}{c} h_{i_v} & h_{i_v}\end{array}\right] \left[\begin{array}{c} x_{i_1}(t) \\ x_{i_2}(t) \end{array}\right] \\ x_{i_1}(t) + x_{i_2}(t) = r(t) + x(t) - r(t) = x(t) \\ \textbf{VS} \end{array} \\ \hline \textbf{VS} \\ \hline \textbf{Eavesdropper} \qquad y_{ie}(t) = \left[\begin{array}{c} h_{i_{1e}} & h_{i_{2e}}\end{array}\right] \left[\begin{array}{c} w_{i_1} & 0 \\ 0 & w_{i_2} \end{array}\right] \left[\begin{array}{c} x_{i_1}(t) \\ x_{i_2}(t) \end{array}\right] \\ \hline \textbf{Unable to} \\ \textbf{decode} \end{array}$$

Encoding Original Signals

- A lucky eavesdropper may successfully guess the specified channel
- Defense: generate one-time, non-repeated random signals for every transmission and add them to original signals

Trapping an Eavesdropper (Cont'd)

Adjusting SNR: control the decoding quality at trap locations by adding disturbance signals to the original transmit signal

Adversarial Indistinguishability

What happens if the presence of trap strategy is disclosed and an eavesdropper knows *N* trap locations set up to catch her?

- The two areas should have the same size
- An eavesdropper should have the same SNR observation when entering either of them

Strategies

I. The transmitter also deploys a trap area centered at the receiver's location

- II. The transmitter randomly alternates between the following modes:
 - Trapping mode: set a trap area centered at a selected trap location; send secret messages to the receiver
 - Disturbing mode: set a trap area centered at the receiver's location; dismantle the trap area set during the trapping mode

Content

- Background
- System Design
 - Randomization Channel Design
 - Placing the Trap
- Experimental Evaluation
- Conclusion

Experimental Floorplan

- Tx: Transmitter (Five USRPs + Ethernet switch + a PC)
- Rx/Ex: Receiver/ Eavesdropper (a USRP + a PC)
- VERT2450 and VERT400 antennas
- 4 neighboring trap locations

Evaluation Metrics

> $SNR = \frac{power of a signal of interest}{power of disburbance plus channel noise signals}$

> $PER = \frac{\# \text{ of packets that are unsuccessfully}}{\# \text{ of totally received packets}}$

> BER = $\frac{\text{# of incorrectly received bits}}{\text{# of totally received bits}}$

Concealment of the Specified Channel

Without specified channel

When Ex reaches the exact location of Rx, PER is less than 0.025 with a probability of 98.5%

With specified randomized channel, the PER observed by the eavesdropper is always close to 100%

search for other locations

Launching the Entrapment

After establishing a specified channel, Tx begins to sned true messages to Rx, and meanwhile fake messages to trapping locations

Move Ex to Location 1 and record SNR, and then gradually increase the distance between Ex and the trap location at a step of 0.25m

BER Analysis

- Both Rx and Ex at the trap location can obtain low BERs below 0.06 with a probability of 90%
- The BER observed by Ex increases as Ex moves away from the trap location

Deployment of Multiple Traps

The eavesdropper will be eventually guided to Location 1 if she searches for pictures of high quality

Content

- Background
- System Design
 - Randomization Channel Design
 - Placing the Trap
- Experimental Evaluation
- Conclusion

Conclusion

- > Design an entrapment wireless system:
 - attracting an eavesdropper to a specified trap location
 - utilizing multiple antennas to generate a large trap area
- Create techniques enabling a transmitter to establish a secure communication channel with the desired receiver
- Perform real-world evaluation to validate the performance of the proposed scheme

Thank you! Any questions?