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Abstract—The security of smart grid is a major challenge
in grid modernization. While many existing solutions rely on
human-defined features to develop machine learning (ML) based
attack detectors against prominent exploits, such features are
becoming more expensive and less effective in the smart grid.
To supplement more high-quality features for ML-based threat
monitoring, this paper proposed a stacked autoencoder (SAE)
based deep learning framework to develop machine-learned fea-
tures against transmission SCADA attacks. Compared with the
state-of-the-art ML detectors, the proposed framework leverages
the automaticity of unsupervised feature learning to reduce the
reliance on system models and human expertise in complex
security scenarios. Simulations with data collected from a high-
fidelity smart grid testbed demonstrated that the machine-learned
features effectively enabled more accurate discrimination against
SCADA exploits in power transmission systems.

I. INTRODUCTION

The electrical power grid infrastructure in North America is
evolving into a transcontinental network of cyber-physical sys-
tems, integrating power and energy systems with information
and communication technologies for more efficiency, reliabil-
ity, and sustainability. This ongoing cyber-physical integration,
however, exposes a ubiquitous attack surface through which
informed exploits may inflict major disruptions or damages to
critical systems and processes [1]. As highlighted by multiple
federal agencies and utility committees [2] [3], there is a
high demand for advanced situational awareness (SA) to
provide early warnings and protect electric utilities against
adversaries from the cyberspace. The applicable SA solutions
need to: (1) accurately capture traces of potential exploits from
massive data streams in real-time; (2) automatically assess the
situation and activate corresponding responses; and (3) adapt
to variations of attack threats as well as system dynamics.

Data-driven detectors based on machine learning (ML) have
stood out as a promising solution to such tasks due to their
accuracy, automaticity, and adaptability in dynamical, time-
varying, and uncertain environments [4]–[7]. Meanwhile, for
these ML-based detectors, the quality of features, i.e., the
attributes acquired from the data to describe the real-time
status of a system-of-interest (SoI), is pivotal to their success-
ful application in the smart grid. To promptly and precisely
determine if a SoI is in normal operation, under faults, or being
attacked, ideal features need to be sufficiently discriminative,
which requires explicit physical models and refined human
expertise. For the smart grid, however, such requirements

are becoming increasingly challenging and expensive, as the
cyber-physical integration creates coupled systems and pat-
terns where we may not be able to explicitly specify the most
effective features [8].

Recent advancements in deep learning (DL), a subfield
of ML that leverages artificial neural networks in depth to
directly extract features from raw data, provides a promising
alternative for the data-driven detectors. Using a technique
termed feature learning, DL approaches such as autoencoders
[9] are capable of extracting novel features in an unsupervised,
self-guided manner. Given a set of data samples with raw
features as the input, DL creates and refines a set of generative
features to reproduce the same dataset at the output. The
raw features may consist of original measurements from field
sensors as well as event logs from deployed recorders; the
generative features are tuned by feature learning techniques
to minimize the input-output differences so the original data
can be recovered directly from the generative features. While
their explicit physical meaning may not be available, these new
features are alternative representations of system states learned
by machines instead of being defined by humans. And despite
its recency, the integration of feature learning has attributed to
numerous successes of DL in challenging tasks, from Google’s
AlphaGo that beat world champions in the Go game [10], to
accurate French-English natural language translation [11] and
context-aware image understanding [12], paving the way for
self-driving cars, data-driven disease diagnosis, and others.

In the smart grid, however, the utility of DL remains to be
explored and exploited [13], [14]. Spatial-temporal patterns in
a dynamic power grid are different and more complicated than
those in images or videos taken in more predictable scenarios.
Traces of the attacks are embedded in multi-modality data
streams where there is limited knowledge on what features can
better pinpoint footprints left by a malicious attack. To further
tackle these challenges and advance the knowledge on how
DL can benefit the safety-critical smart grid, the paper has
proposed a detection framework using unsupervised feature
learning to acquire and leverage machine learned-features
from raw measurements. The attacks under investigation are
informed exploits of transmission supervisory control and data
acquisition (SCADA) systems that may lead to false alarms
or unreported faults. Measurements collected from a high-
fidelity, real-time digital simulator-based testbed will be used
to validate the effectiveness of the proposed framework.



Fig. 1. Stacked autoencoders: (a) traditional autoencoder; (b) layer-wise
unsupervised pre-training; and (c) supervised fine-tuning.

The major contributions of the paper to smart grid security
will be two-fold:

1) An unsupervised feature learning framework was pro-
posed for automatic and adaptive attack detection in
transmission SCADA systems. The new design supple-
ments machine-learned features to improve the detection
accuracy with reduced reliance of system models and
human expertise [15].

2) The design has been tested on datasets collected from
a high-fidelity smart grid testbed in real time digital
simulator (RTDS) [16]. Simulation results have validated
that the design achieved higher detection accuracy in
normal and attack cases with variations from load stress
and measurement noises.

The rest of this paper is organized as follows: Section II
introduces the deep autoencoder for unsupervised fault feature
extraction. Section III reports the experimental results, includ-
ing benchmark dataset introduction, extracted fault feature
visualization, and comparative detection and classification
results. Section IV draws the conclusions with future work.

II. DEEP LEARNING-AIDED ATTACK DETECTION AND
CLASSIFICATION

A. Deep Autoencoder for Feature Extraction

In recent works [17], deep networks have been applied to
learn features over multiple modalities. Multi-modality learn-
ing involves correlated information from multiple sources,
which motivates us to explore the inherent connections among
various system measurements. Here in this paper, we use un-
supervised feature learning techniques to automatically learn
highly represented attack features from different raw SCADA
data. Specifically, stacked autoencoders (SAE) based on tra-
ditional autoencoders (AE) will be used and introduced as
follows.

Autoencoder: A typical autoencoder is a three-layer neural
network that is trained to attempt to copy its input to its output.
By doing this, the hidden layer h that describes a code can
be used to represent the input. The whole network can be
viewed as consisting of two parts: an encoder function and a
decoder function, as shown in Fig. 1 (a). The encoder function
is represented as:

h = f(x, θf ) = σ(W1x + b1) (1)

Fig. 2. Overall structure of the proposed framework for power grid security
monitoring for attack detection and classification. The historical data is
used for the attack feature learning and classification models training. The
measurements from the SCADA system are feed into the trained models for
online monitoring.

where θf = [W1,b1] is the parameter set containing a
weight matrix W1 and a bias vector b1. Typically, a sigmoid
function σ(x) = 1/(1 + exp(−x)) is used for the nonlinear
deterministic mapping. The hidden layer code h can be viewed
as a compression of input data with some loss when number
of hidden units is less than the number of input units. It can
capture the main variations in high-dimensional input data
and eliminate less important information through dimension
reduction.

Then, the hidden representation h is mapped back to a
reconstruction output x̂ through the decoder as:

x̂ = g(h, θg) = σ(W2h + b2) (2)

where θg = [W2,b2]. The training process of autoencoder is
to find both optimal parameter sets θf and θg by minimizing
the squared reconstruction error between x and x̂ as follows:

L(x, x̃) =
NT∑
i=1

‖xi − x̂i‖2 (3)

where NT is the number of input training data, and the
learned features are embedded in the weight matrix, such as
W1. Once trained, the new input data can be fed into the
encoder to perform a nonlinear transformation and obtain the
corresponding hidden representation h for subsequent tasks,
such as classification and regression.

The idea of autoencoders has been part of the historical
landscape of neural networks for decades [18]. Traditionally,
autoencoders were used for dimensionality reduction or feature
learning. Recently, theoretical connections between autoen-
coders and latent variable models have brought autoencoders
to the forefront of generative modeling [19]. Autoencoders
may be thought of as being a special case of feed forward
networks, and may be trained with all of the same techniques,
typically mini batch gradient descent following gradients com-
puted by back-propagation.

Stacked autoencoders: A stacked autoencoder is composed
of multiple AEs, in which they are treated as individual build-
ing blocks stacked in the deep architecture, with the aim of
finding highly nonlinear and complex patterns in the data [9],
[20]. In general, the whole training process of SAE includes



multiple unsupervised pre-training steps and supervised fine-
tuning step, as shown in Fig. 1 (b) and (c). Given a set of
training data, the learning of SAE is started with a greedy
layer-wise pre-training procedure, which learns a stack of AEs
in the encoder network. The key concept in the greedy layer-
wise learning is to train one layer each time before starting
to train its successive layer. As shown in Fig. 1 (b), the
bottom layer AE is firstly trained with the raw data to obtain
its hidden representations h1, and then the obtained hidden
representations are used as the input data for training the
higher-level AE, and so on. This pre-training process is task-
free and focuses on the hierarchical representation learning
from unlabeled data in a unsupervised manner.

After the layer-wise pre-training, all hidden representation
layers are stacked and a logistic regression layer is added on
top of the stacked autoencoders, creating a deep architecture as
shown in Fig. 1 (c). The parameters of the whole deep network
are first initialized by the corresponding parameters learned in
the pre-training phase, and then are fine-tuned with labeled
information using back propagation algorithm. Specifically,
in order to speed up the learning speed, the batch stochastic
gradient descent (SGD) method with momentum can be used
to update the weights. In this way, the learned representations
can capture more discriminative features in the explicit raw
SCADA measurements.

B. Supervised Classifier Training and Online Application

In this section, we summarize the threat monitoring frame-
work based on deep structured feature learning by SCADA
measurements in the transmission system, as shown in Fig.
2. In the horizontal axis, there are three main steps: (i)
historical or online data acquisition; (ii) unsupervised feature
learning based on deep networks; and (iii) supervised event
classification. In the vertical axis, there are two main phases:
(i) off-line feature learner and classifier training based on
historical data. The goal of the off-line training phase is to
learn robust and discriminative representations and train a deep
neural network classifier; and (ii) on-line threat monitoring
based on real time measurements. The detailed procedure is
summarized as follows:

Off-line training phase: Step 1: Collect historical data from
different system operating conditions as the training data set;
Step 2: Perform automatic representation learning from the
raw dataset using the deep network structure in a unsupervised
learning manner, and obtain robust and high-order feature
representations; and Step 3: Stack all representation layers and
add a classifier layer on the final representation layer to form
a deep neural network model, and train it by using parametric
learning algorithm, such as back propagation, to fine tune all
parameters in a supervised manner.

Online monitoring phase: Step 4: Acquire online mea-
surements from SCADA in the transmission system; and
Step 5: Input these measurements to trained feature learner
and classifier, and obtain the results for further advanced
applications, such as situation awareness.

Fig. 3. Overview of the benchmark testbed: a physical layer with simulated
power grid using RTDS and a cyber layer with implemented industry-standard
data communication, processing, and storage.

III. EXPERIMENTAL RESULTS

A. Benchmark System

The benchmark system in consideration is adopted
from [16] and shown in Fig. 3. It is a high-fidelity security
testbed built on the WSCC 9-Bus test system with extended
modules representing the cyber-physical systems and pro-
cesses in a smart grid. The RTDS environment simulates four
phase measurement units (PMU) and relay-equipped substa-
tions, which are operating on commercial control and monitor-
ing devices, hardware, software, as well as industry-standard
communication networks and protocols. Heterogeneous sensor
data are collected from the testbed and labelled to train the
SAE and test its performance. The dataset contains two classes
of events, i.e., normal operations with load variation and cyber
attacks with control responses, which both have 128 features
composed of measurements and event logs collected from the
testbed.

Physical power grid: The physical power system is sim-
ulated using a RTDS, which is able to emulate electrical
machines, controllers, transmission system components, and
system load accurately and also provides a hardware-in-the-
loop (HIL) simulation environment. The integration of virtual,
simulated, and actual hardware components in HIL can capture
the essence of the entire power system operation. One of
the most important physical components of the testbed is
the PMUs approximating an effective wide area measurement
system (WAMS). The testbed also consists of hardware relays.
The PMU and relays are hardwired from the RTDS back
plane. Also, three physical over current and distance protection
relays are incorporated in the system. The remaining required
relays are modeled as software relays. In addition, the testbed



consists of a hardware Phasor Data Concentrator (PDC) and
all PMUs are configured to stream data to the PDC.

Cyber communication system: The communication infras-
tructure in the benchmark testbed includes a physical network,
communication protocols used for transporting measurements
and control signals from device to device and between control
centers and substations. The RTDS, PMUs, PDC, relays,
Corporate PDC, attacker PC, and historian are connected
via a network switch which supports copper and fiber optic
connections. The RTDS and other substation devices such
as relays and PMU communicate using various network
protocols. The main communication protocol used for wide
area based monitoring system is IEEE C37.118. The relays,
PMUs, and PDC setting are configured and monitored using
software packages from General Electric (GE) and Schweitzer
Engineering Laboratories (SEL). The PMUs are configured to
stream synchrophasor data to a GE P30 PDC with configurable
data rates up to 120 samples per second. At the substation
level, local control is employed using a HIL configuration
using relays. Over current and distance protection relays are
employed to control the breakers to protect the system from
faults. Hence, the testbed incorporates centralized and local
controls with industry standard software and hardware to
model power system behavior, collect measurements, collect
device status from field devices, forward operator commands
to field devices, and manage historic data.

B. Feature Visualization

With features learned from the data, we first evaluated
their quality for our purpose, which is whether the learned
features provided more discriminative information for the two
classes. The t-Distributed Stochastic Neighbor Embedding (t-
SNE) [21], a well-developed tool for feature visualization,
has been employed for this task. The quality of features is
evaluated by the density and separability of data points from
different classes when samples are mapped by t-SNE onto
a lower-dimensional space. With 56 normal and 56 attacked
samples, Fig. 4 shows the normalized t-SNE mapping of the
original 128 features, 64 learned features, and 32 learned
features, respectively. Each normal and attack samples are
mapped into red circles and black crosses, respectively, with
an initial number of dimension of 50 and a perplexity of 30.

Note that the t-SNE mappings are used for feature evaluation
only; no classification was performed on these mapped data.
More details of t-SNE can be found in [21].

From Fig. 4, we can see that the extracted features are
able to provide better distinction between normal and attacked
samples. A significant amount of normal samples are over-
lapped with attacked ones in Fig. 4 (a); these overlaps are
removed after 32 machine-learned features are introduced in
Fig. 4 (b) and the separation is enhanced with 64 machine-
learned features in Fig. 4 (c). Numerically, the cost value of
t-SNE, which is the sum of Kullback-Leibler divergences to be
minimized, was reduced from 0.1463 with the original features
to 0.0728 with 32 learned features (50.2% improvement)
and 0.0359 with 64 learned features (75.5% improvement),
respectively.

C. Comparative Results

One multiclass dataset consisting of 4966 samples is sepa-
rated into 36 individual datasets corresponding to the sub-types
in [16]. These 36 datasets are balanced against no-event data,
each set then being fed into a SAE with encoded data from
each layer being fed into a multilayer perceptron (MLP) for
binary classification. The classification accuracy of each sub-
type then is combined by computing the weighted average in
order to obtain results corresponding to the accuracy of each
event grouping below. The results are then compared against
the accuracy obtaining by training the MLP for classification
on all 128 features.

Event groups:
• Natural Events – Short circuit fault within the power lines

occurring anywhere in the system.
• Data Injection – Data corresponding to the short circuit

fault in natural events is fed into the system.
• Remote Tripping Command Injection – Commands in-

duce tripping of breakers in the system.
• Relay Setting Change – Relay parameters are altered to

prevent tripping in the case of valid commands or faults.
Table I summarizes the accuracy of the methods in compar-

ison. The introduction of feature learning achieves over 96%
in accuracy against three different types of attacks, outper-
forming the supervised detectors by a small margin [15]. This
competitive performance would be beneficial as less details of
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Fig. 4. Visualization of (a) 128 original features, (b) 32 learned features, and (c) 64 learned features, where 112 samples of two classes (56 each) are mapped
into two-dimensional space using parametric t-SNE, respectively. The learned features provide better separation of normal and attacked samples.



TABLE I
COMPARISON OF ACCURACY FOR DYNAMIC ATTACK CLASSIFICATION BY USING DIFFERENT DIMENSION OF FEATURES

Event ID Event Type Original 128 Features With 64 Features With 32 Features Results Reported in [15]

1 Normal operation with load variation 99.71% 99.72% 99.89% Around 96.00%
2 Data Injection 98.77% 99.75% 98.94%
3 Remote Tripping Command Injection 94.91% 96.79% 97.34%
4 Relay Setting Change 98.59% 98.48% 98.53%

system model or human expertise is required in constructing
the effective detector. Also, comparing with the cases where
feature learning were not applied, we observe that feature
learning improves performance more significantly on Event 3,
the remote tripping command injection attacks, than the other
three events. The competitive results are favorable in real-
world implementations as a reduced number of features will
decrease number of inputs and the computational complexity
of attack detectors and classifiers.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a novel framework for attack detection
and classification in the smart grid. Using PMU data and event
logs collected in a high-fidelity WAMS benchmark, machine-
learned features were created and refined with unsupervised
feature learning for transmission SCADA attack detection and
classification. Stacked autoencoder-based unsupervised feature
learning were proposed for shared representation learning.
This automatic process can capture useful and rich patterns
hidden in the data to identify the attacks, achieving com-
petitive results compared with detectors relying on detailed
system models and human expertise. The preliminary results
demonstrated that the proposed framework has the potential to
provide adaptive and automatic threat monitoring in complex
smart grid applications.

In practice, the proposed framework can be implemented as
a secondary defense line for supplementary threat monitoring.
However, it is notable that the smart grid has multiple sources
of uncertainty and variation from subsystems like renewable
energies, electric vehicles, which will result in a wide range
of system operation points. This could cause insufficient or
imbalanced training samples and degrade the online detection
performance. In addition, the framework can be improved to
not only detect the event but also locate the event to each
line. The machine-learned features can also be combined with
human-defined features in a more complex setting to combine
the knowledge acquired by both humans and machines for
accurate, automatic, and adaptive attack detection in the smart
grid.
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