
Adversarial Deep Learning for Cognitive Radio
Security: Jamming Attack and Defense Strategies

Yi Shi∗, Yalin E. Sagduyu∗, Tugba Erpek∗, Kemal Davaslioglu∗, Zhuo Lu†, and Jason H. Li∗
∗Intelligent Automation, Inc., Rockville, MD 20855, USA, †University of South Florida, Tampa, FL 33620, USA

Email: {yshi, ysagduyu, terpek, kdavaslioglu}@i-a-i.com, zhuolu@usf.edu, jli@i-a-i.com

Abstract—This paper presents an adversarial machine learning
approach to launch jamming attacks on wireless communications
and introduces a defense strategy. In a cognitive radio network,
a transmitter senses channels, identifies spectrum opportunities,
and transmits data to its receiver in idle channels. On the
other hand, an attacker may also sense channels, identify busy
channels and aim to jam transmissions of legitimate users. In
a dynamic system with complex channel, traffic and interfer-
ence characteristics, the transmitter applies some pre-trained
machine learning algorithm to classify a channel as idle or
busy. This classifier is unknown to the attacker that senses a
channel, captures the transmitter’s decisions by tracking the
acknowledgments and applies deep learning (in form of an
exploratory attack, i.e., inference attack) to build a classifier
that is functionally equivalent to the one at the transmitter.
This approach is shown to support the attacker to reliably
predict successful transmissions based on the sensing results and
effectively jam these transmissions. Then, a defense scheme is
developed against adversarial deep learning by exploiting the
sensitivity of deep learning to training errors. The transmitter
deliberately takes a small number of wrong actions (in form
of a causative attack, i.e., poisoning attack, launched against
the attacker) when it accesses the spectrum. The objective is
to prevent the attacker from building a reliable classifier. For
that purpose, the attacker systematically selects when to take
wrong actions to balance the conflicting effects of deceiving the
attacker and making correct transmission decisions. This defense
scheme successfully fools the attacker into making prediction
errors and allows the transmitter to sustain its performance
against intelligent jamming attacks.

Index Terms—Adversarial machine learning; deep learning;
cognitive radio; exploratory attack; jamming attack; defense.

I. INTRODUCTION

Cognitive radios perform various detection, classification
and prediction tasks such as spectrum sensing and automatic
modulation recognition. These tasks can be accomplished by
machine learning that allows cognitive radios to perceive
and learn the spectrum environment and adapt to spectrum
dynamics [1]–[4]. Examples of applying machine learning to
cognitive radio tasks include modulation classification (e.g.,
with convolutional neural network (CNN) [5]) and spectrum
sensing (e.g., with CNN [6] or generative adversarial network
(GAN) [7]).

The success of machine learning in information systems
raises security concerns, as machine learning itself may be-
come subject to various exploits and attacks that expose

This effort is supported by the U.S. Army Research Office. The content of
the information does not necessarily reflect the position or the policy of the
U.S. Government, and no official endorsement should be inferred.

the underlying tasks to threats. Adversarial machine learning
studies learning in the presence of an adversary and aims to
enable safe adoption of machine learning to the emerging
applications. There are three broad categories of adversarial
machine learning:

• exploratory attacks or inference attacks [8]–[11] that
aim to understand how the underlying machine learning
works for an application (e.g., inferring sensitive and/or
proprietary information);

• evasion attacks [12], [13], where the adversary attempts
to fool the machine learning algorithm into making a
wrong decision (e.g., fooling a security algorithm into
accepting an adversary as legitimate); and

• causative attacks or poisoning attacks [14], [15], where
the adversary provides incorrect information (e.g., train-
ing data in supervised learning) to a machine learning
based application.

These attacks can be launched separately or combined, e.g.,
causative and evasion attacks can be launched building upon
the inference results of an exploratory attack [16].

Due to the open broadcast nature, wireless medium is sus-
ceptible to adversaries such as jammers. Therefore, it is critical
to understand the security implications of machine learning
in wireless communications. However, the vulnerabilities of
cognitive radio systems using machine learning are not well
understood yet. In this paper, we apply adversarial deep
learning to launch an exploratory attack on the cognitive radio
as a preliminary step before jamming. We consider a canonical
wireless communication scenario with a transmitter, a receiver,
an attacker, and some other background traffic. The transmitter
senses the channel and transmits data to a receiver if the chan-
nel is found idle. While traditional algorithms for predicting
idle channels may be as simple as comparing sensing results
with some threshold (i.e., energy detector), more advanced
techniques may be needed in a dynamic wireless environ-
ment with complex channel and transmitter characteristics. To
identify idle channels, the transmitter applies some pre-trained
machine learning classifier, which takes a number of features
(recent sensing results) as input and classifies the channel as
“idle” or “busy”.

In the general setting of an exploratory attack, the attacker
aims to build a classifier that is functionally equivalent to the
target classifier under the attack, i.e., provides the same output
as the target classifier for the same given input. The attack

considered in this paper shares this main idea but the input and
the output in classifiers are different for the target (namely, the
transmitter) and the attacker.

1) The input (sensing results) is different since the attacker
and the transmitter have different sensing results at the
same instance (i.e., on the same channel for the same
time), since their locations and channel gains that they
perceive are different.

2) An attacker does not need to distinguish idle channels
or transmissions that are likely to fail. Instead, the at-
tacker should predict whether there will be a successful
transmission (i.e., whether the transmitter will decide to
transmit and the signal-to-interference-plus-noise ratio
(SINR) will exceed a threshold) so that it jams a
transmission that would succeed without jamming.

The classifier built at the attacker is functionally equivalent
to the one at the transmitter only in the sense that the attacker’s
classifier will decide to jam if and only if it predicts that there
will be a successful transmission (in the absence of jamming)
for the same instance. If the receiver successfully receives
a packet, it sends an ACK as feedback to the transmitter,
otherwise there is no feedback. During the learning period, the
attacker senses the channel to distinguish whether there is an
ACK or not, i.e., ACK signal plus noise vs. noise. The attacker
needs to jam only if there is an ACK. Thus, the attacker
builds a deep learning classifier (i.e., trains a deep neural
network) with two labels (“ACK” or “no feedback”) by using
the most recent sensing results (received signal strengths) as
the features. The attacker has two objectives: minimize the
misdetection probability (for effective jamming) and minimize
the false alarm probability (to save energy or avoid being
caught). Thus, the attacker only jams if it predicts there will be
an ACK and aims to minimize the maximum of misdetection
and false alarm probabilities of its prediction.

We show that this adversarial deep learning approach is very
effective, i.e., for the scenario studied in numerical results, it
reduces the transmitter’s throughput from 0.304 packet/slot
to 0.012 packet/slot. However, random jamming is not as
effective since the transmitter can still sustain throughput of
0.212 packet/slot. We observe the same trend for success ratio.

Next, we design a defense scheme for the transmitter. The
basic idea is to make the transmitter’s behavior unpredictable,
which can be done by the transmitter taking some deliber-
ately wrong actions (i.e., transmitting on a busy channel or
not transmitting on an idle channel) in some selected time
slots. This corresponds to a causative attack launched by the
transmitter back at the attacker. A very small number of wrong
decisions cannot fool the attacker but a high number would
prevent the transmitter from sensing the spectrum reliably and
reduce the performance significantly even in the absence of
the jammer. To maximize the impact of a small number of
wrong actions, the transmitter uses the classification scores
(an intermediate result) that are determined by the machine
learning algorithm for spectrum sensing. Such a score is within
[0, 1] and compared with a threshold to classify channels.

If this score is far away from the threshold (i.e., close to
0 or 1), the confidence of classification is high and the
corresponding time instance should be selected to take the
wrong action, since it can more successfully deceive the
attacker that aims to mimic the transmitter’s behavior. There
is a balance on how many wrong actions to take. We show
that by taking a small number of wrong actions on carefully
selected time instances, the transmitter can fool the attacker
into making a significant number of prediction errors. Thus the
transmitter’s performance can be improved significantly from
0.012 packet/slot to 0.206 packet/slot.

The rest of the paper is organized as follows. Section II
describes the system model. Section III describes the trans-
mitter’s algorithm and shows the performance when there is
no jamming. Section IV describes the attacker’s algorithm
and shows the performance under deep learning and random
attacks. Section V presents a defense mechanism and shows
how the performance improves. Section VI discusses the
extension of network setting. Section VII concludes the paper.

II. SYSTEM MODEL

We consider a wireless communication scenario with one
transmitter T , one receiver R, and one attacker A. This setting
is instrumental in studying the fundamentals of jamming and
defense strategies in wireless access [17]. The implications
of extending the network setting are discussed in Section VI.
The developed algorithms can be easily extended to multiple
transmitters and receivers, while a single attacker alone can
jam nodes within its transmission range. A general operation
model for transmitter, receiver, and attacker is as follows.

• Transmitter operation: There may be transmissions from
some unobserved transmitters (i.e., background traffic)
and thus the channel status may be busy even when T
and A do not transmit. The time is divided in slots. In
each slot, the short initial period of time is allocated for T
to sense the channel, run its spectrum sensing algorithm
and detect the channel (idle/busy) status. If the channel
is detected as idle, T can transmit data to R.

• Receiver operation: The transmission is successful if the
SINR at R is larger than some threshold β. The short
ending period of a time slot is allocated for R to send
feedback (ACK) to T .

• Attacker operation: The attacker A also senses the spec-
trum and predicts whether there will be a successful
transmission (with feedback ACK), or not (without a
feedback) in a time slot. If A predicts that there will
be a successful transmission, it jams this transmission in
this time slot.

The general operation mode does not specify a particular
algorithm to make transmission or jamming decisions. We
consider the case that both T and A apply machine learning
algorithms (unknown to each other) to make their decisions.
Denote sensing results (noise power or noise plus interference
power) at time t as sT (t) and sA(t) for T and A, respectively.
Note that due to different locations of T and A, their sensing
results may be different, i.e., sT (t) 6= sA(t) in general.

Fig. 1. The system model for attacker’s learning.

• Transmitter T has a classifier CT that is pre-trained by
some machine learning algorithm, which identifies the
current time slot t as idle or busy based on recent K
sensing results (sT (t−K + 1), · · · , sT (t− 1), sT (t)).

• Attacker A does not know classifier CT and needs to
build a classifier CA by training a deep learning clas-
sifier, which predicts whether there will be a successful
transmission, or not, in time slot t based on recent L
sensing results (sA(t− L+ 1), · · · , sA(t− 1), sA(t)).

The system model is shown in Fig. 1. Transmitter T
transmits with power PT if the sensed channel is determined
as idle. The SINR at R is gTRPT

N0+IR
, if channel is busy, or

gTRPT

N0
, if channel is idle, where IR is the interference from

some unobserved transmitters to R and N0 is a Gaussian noise
with its mean value normalized as unit power. A transmission
is successful if this SINR is greater than some threshold β.
Without loss of generality, we assume that only one packet is
transmitted in a time slot. We measure T ’s performance by
throughput and success ratio.

• Throughput: the number of received packets at R during a
period divided by the number of time slots in this period.

• Success ratio: the percentage of successful transmissions
by T over all transmissions.

Attacker A jams with power PA if it predicts that there
will be a successful transmission in the absence of jamming.
If a transmission is jammed, the SINR at R is reduced to

gTRPT

N0+IR+gARPA
(if channel is busy) or gTRPT

N0+gARPA
(if channel

is idle). Receiver R still sends ACK to confirm that a trans-
mission is successful under jamming by comparing its SINR
with threshold β. To evaluate the accuracy of A’s classifier,
we define two types of errors:

• Misdetection: T ’s transmission is successful but A does
not decide to jam.

TABLE I
SUMMARY OF NOTATION USED IN THE PAPER.

Symbol Description
T transmitter
R receiver
A attacker
si(t) sensing result by node i at time t
CT transmitter’s algorithm to detect channel status
CA attacker’s algorithm to predict transmission feedback
gij channel gain from node i to node j
dij distance from node i to node j
N0 noise
Ii interference at node i
PA transmitter’s transmit power
PT attacker’s transmit power
β SINR threshold

• False alarm: T does not transmit or T ’s transmission fails
(even without jamming) but A decides to jam.

We set up the channel busy/idle status to define the back-
ground traffic as follows. There is an unobserved transmitter
whose transmission behavior is not known by either T and
A. In particular, we assume random packet arrivals at the
unobserved transmitter. If the unobserved transmitter is not
transmitting, it becomes active with certain probability when
its queue is not empty. Once activated, it will keep transmitting
until its queue is empty. Such a transmission behavior is
random and is also time correlated. Therefore, both T and
A need to observe the recent channel status (over several time
slots) to predict the current channel status. Table I summarizes
the notation used in this paper.

III. TRANSMITTER ALGORITHM

Transmitter T applies a deep learning algorithm to de-
termine the channel status. Note that T could also use a
simpler machine learning algorithm at the expense of potential
performance loss, while attacker A’s algorithm is oblivious
to T ’s algorithm. T senses the channel and records the most
recent results (received signal strengths). Each result is either
a Gaussian noise N0 with normalized unit power (when the
channel is idle) or noise plus the transmit power from the
unobserved transmitter received at T , i.e., N0 + IT (when the
channel is busy), where IT is the interference received at T .
T uses the most recent 10 sensing results as features (i.e.,
K = 10) and uses the current channel busy/idle status as a
label to build one sample. After observing a certain period
of time, T collects a number of samples as training data to
build a deep learning classifier, where two labels are “idle”
and “busy” (namely, the channel is idle or busy).

We implemented a feedforward neural network as the deep
learning algorithm for T by using Microsoft CNTK [18]. 1000
samples are collected by T and split by half to build its training
and test data. We optimize hyperparameters of the deep neural
network to minimize the maximum of misdetection and false
alarm errors. The optimized hyperparameters are given as
follows. The deep learning network consists of two hidden

layers, each with 50 neurons. Backpropagation is used to
train the neural network using the cross entropy loss function.
The output layer uses softmax activation. Hidden layers are
activated using the sigmoid function and all weights and biases
are initialized to random values in [−1.0, 1.0]. In the first
training pass, input values are unit normalized. The minibatch
size is taken as 25, the dropout rate is taken as 0.9, and 10
epochs per time slot are considered.

After training the deep neural network with these hyperpa-
rameters, we run T ’s classifier over 500 time slots to evaluate
its performance. We assume that the channel gain gij from i
to j has the Gaussian distribution with mean value d−2

ij , where
dij is the distance from i to j (note dij is normalized by the
free space reference distance d0). More complicated channel
models or real measurements from radios can be applied here
to determine gij . We set P = 1000N0, β = 3, dTR = 10,
dAR = 10, and dTA = 10

√
2 for numerical results. Then, we

find that T makes 206 transmissions and 152 transmissions of
them are successful. Thus, the throughput is 152/500 = 0.304
packet/slot and the success ratio is 152/206 = 73.79%.

IV. ATTACKER ALGORITHM

In [11], we designed the mechanism to steal a machine
learning (including deep learning) classifier via the exploratory
attack applied to text classification. The basic idea was to poll
the target classifier for labels of a number of samples and then
train a functionally equivalent classifier using deep learning.
Two classifiers are functionally equivalent if they provide the
same labels for the same sample. However, this approach
cannot be applied to the setting in this paper. Due to different
locations of T and A, random channel gain and random noise,
the sensing results at T and A will be different. That is, when
the channel is idle, both T and A sense a Gaussian noise N0

but the value can be different due to different realizations.
When the channel is busy, T will sense N0 + IT and A will
sense N0 + IA. Thus, in addition to different realization of
N0, the values of IT and IA are different due to different
channel gains to T and A, as well as their different realizations.
Thus, even if A has a functionally equivalent classifier (e.g.,
T ’s algorithm), A cannot use it to obtain the same channel
status as the one predicted by T due to different sensing
results (or features computed for deep learning). Moreover,
A does not aim to predict whether the channel is idle or busy.
Instead, its goal is to predict whether there will be a successful
transmission of T , or not. There are four cases for the channel
status and T ’s behavior:

1) channel is idle and T is transmitting,
2) channel is busy and T is not transmitting,
3) channel is idle and T is not transmitting, and
4) channel is busy and T is transmitting.

Ideally, the last two cases should be rare cases, since they
refer to wrong sensing decisions by T . We assume that A
can hear ACKs for T ’s successful transmissions. Then, A
can use the most recent 10 sensing results as features (i.e.,
L = 10) and the current feedback (ACK or no confirmation)
as a label to build one sample. A aims to jam successful

transmissions (with received ACK feedback) only. Thus, A
defines two labels as “a successful transmission” (ACK) and
“no successful transmission” (no confirmation), i.e., the labels
at A are also different from T . In summary, for T ’s classifier,

• the features for deep learning are T ’s sensing results and
• the predicted labels are “idle” and “busy”,

while for A’s classifier,
• the features are A’s sensing results and
• the predicted labels are “a successful transmission by T ”

and “no successful transmission by T ”.
After observing a certain period of time, A collects a number
of samples to be used as training data and trains a deep
learning classifier. Once a classifier is built, A uses it to predict
whether there will be a successful transmission and if yes, A
transmits to jam the channel.

We use 1000 samples collected by A and split them by
half as training and test data to build a deep learning algo-
rithm based on FNN for A. We optimize hyperparameters
to minimize the maximum of misdetection and false alarm
probabilities. We obtain a deep learning network with two
hidden layers, each with 60 neurons. Backpropagation is used
to train the neural network using cross entropy loss function.
The output layer uses softmax activation. Hidden layers are
activated using the sigmoid function and all weights and biases
are initialized to random values in [−4.0, 4.0]. In the first
training pass, input values are unit normalized. The minibatch
size is taken as 25, the dropout rate is taken as 0.9, and 9
epochs per time slot are considered.

After training the deep neural network with these hyperpa-
rameters, we run classifiers of A and T over 500 time slots to
evaluate the attack performance. In these time slots, if there
is no attack, T will have 152 successful transmissions. Under
A’s attack, the number of misdetections is 6, i.e., misdetection
probability is 6/152 = 3.95% (almost all successful trans-
missions are jammed), and the number of false alarms is 63,
i.e., false alarm probability is 63/(500 − 152) = 18.10%.
The impact of this attack is significant. The throughput of
T is reduced from 0.304 packet/slot to 6/500 = 0.012
packet/slot and the success ratio of T is reduced from 73.79%
to 6/206 = 2.91%.

For comparison purposes, we consider an alternative attack
scheme for A. One option for A is to apply a sensing-
based scheme, i.e., it jams if the received signal strength
is greater than some threshold. However, this scheme does
not work because A cannot have the same sensing results as
receiver R. Moreover, it is not possible for A to learn the
channel gain between T and R and thus a suitable threshold
for sensing cannot be determined. Therefore, we consider
a random jamming attack in which A jams the channel in
some randomly selected instances. Such an attack scheme
does not require A to learn the outcome of T ’s transmissions.
The misdetection probability is 69.60% and the false alarm
probability is 30.40% for A. Since these error probabilities
are not small, the impact of this attack is not significant.
The throughput can be only reduced from 0.304 packet/slot

TABLE II
EFFECTS OF DIFFERENT ATTACK TYPES ON THE TRANSMITTER’S

PERFORMANCE.

Attack type Throughput Success ratio
No attack 0.304 73.79%

Adversarial deep learning 0.012 2.91%
Random attack 0.212 51.36%

to 0.212 packet/slot and the success ratio can be only reduced
from 73.79% to 51.36%. Thus, to perform effective attacks,
it is necessary to build a deep learning classifier and jam in
the carefully selected time slots instead of launching random
attacks. The results are summarized in Table II.

V. DEFENSE STRATEGY

We present a defense strategy where the transmitter changes
the labels for some samples such that the attacker cannot build
a reliable classifier in an exploratory attack. This corresponds
to a causative attack of T back at A as a defense mechanism,
since T poisons the training process of A by providing wrong
training data. Against the jamming attack, T needs to change
the labels for “a successful transmission” and “no successful
transmission”. This can be done by flipping labels, i.e., by

• not transmitting even if channel is detected as idle, and
• transmitting even if channel is detected as busy.

It is clear that T wants to limit the extent of defense operations
such that the overhead for defense (i.e., the increased classifi-
cation error) can be minimized. Otherwise, T would start mak-
ing a large number of transmission errors and could not sustain
a good throughput even without jammer in presence. For this
purpose, T needs to carefully select on which time slots to
perform defense operations by examining the output of its deep
learning algorithm. In fact, a deep learning based classifier
provides not only labels, but also a score for classification. In
particular, there is a classification score in [0,1], namely the
likelihood of whether a channel is idle. If this score is less
than a threshold, a time slot is classified as idle, otherwise it
is classified as busy. Moreover, if this score is far away from
the threshold, then such a classification has a high confidence,
otherwise the confidence is low. Therefore, to maximize the
impact on A, T should perform defense operations in time
slots when the scores close to 0 or 1 are obtained, since
they correspond to time slots when T ’s transmission decisions
are more predictable. As a consequence of this defense, A
builds different classifiers with different hyperparameters (see
Table III) compared to the previous case of no defense in
Section IV. Note that when the number of layers is one, the
deep learning network reduces to a standard neural network.

Table IV shows the results when T performs different
number of defense operations. We can see that even when
T makes deliberately wrong decisions only over 10% of all
time slots, A’s error probabilities increase significantly, i.e.,
misdirection probability increases from 3.95% to 20.79% and
false alarm probability increases from 18.10% to 25.16%.
We also calculate the performance of T when A performs a

TABLE III
OPTIMIZED HYPERPARAMETER VALUES OF THE ATTACKER UNDER

DIFFERENT LEVELS OF DEFENSE STRATEGY.

Ratio of samples with # hidden # neurons activation
defense operations layers per layer function
0% (no defense) 2 60 sigmoid

10% 2 90 ReLU
20% 2 100 ReLU
30% 1 70 ReLU
40% 1 60 ReLU
50% 2 40 ReLU

jamming attack in any time slot when T can have a successful
transmission if not jammed. With more defense operations
(i.e., more labels flipped), T can increase its throughput and
success ratio. However, if T takes too many (e.g., 50%)
defense operations, its performance starts dropping as its
spectrum sensing decisions become more unreliable and its
transmission becomes less likely to succeed even in the
absence of jamming.

Table V shows the results under random jamming. We can
see that jamming channels randomly is not effective (with
larger error probabilities) compared to jamming based on
adversarial deep learning. The defense actions do not have
much impact on the success ratio but can increase throughput,
since the original transmitter algorithm is not perfect (with
misdetection of transmission opportunities). The defense ac-
tions, in fact, make the transmitter more aggressive to transmit
and thus increase its throughput.

VI. EXTENSION IN NETWORK SETTING

The network scenario has only one transmitter, one receiver,
and one attacker. The developed solution can be extended for
multiple transmitters and receivers, while interference from
non-intended transmitters is sensed as additional interference
term by receivers. A transmitter still aims to predict whether
the signal strengths at its receiver (if it decides to transmit)
will be good or not based on past signal strengths. That is, the
only change in the transmitter algorithm is the training data,
which includes interference from non-intended transmitters.

We would still consider one attacker. Since each attacker can
jam a neighboring area, attackers can be deployed sparsely and
each attacker can perform jamming independently. Note that
an attacker only needs to predict whether there will be some
successful transmissions, i.e., there is no need to figure out
corresponding transmitters. Thus, an attacker does not need
to build a classifier for each transmitter. Instead, an attacker
aims to predict whether there will be successful transmissions.
The only change in the attacker algorithm is the training
data, which includes superimposed signals received from all
transmitters and uses ACK from all receivers.

Moreover, both transmitter and attacker algorithms can be
readily applied in mobile wireless networks. Although we
focused on a static network instance, we do not customize our
algorithm to explore the static topology. In the training data,
features are derived from sensing results and labels are derived

TABLE IV
RESULTS FOR DEFENSE STRATEGY AGAINST JAMMING ATTACK BASED ON ADVERSARIAL DEEP LEARNING.

of defense operations Attacker error probabilities Transmitter performance
/# of all samples Misdetection False alarm Throughput Success ratio
0% (no defense) 3.95% 18.10% 0.012 2.91%

10% 20.79% 25.16% 0.074 17.13%
20% 33.88% 40.69% 0.124 28.84%
30% 40.09% 44.79% 0.170 35.42%
40% 45.18% 43.75% 0.206 41.53%
50% 41.63% 45.10% 0.204 39.23%

TABLE V
RESULTS FOR DEFENSE STRATEGY AGAINST RANDOM JAMMING ATTACK.

of defense operations Attacker error probabilities Transmitter performance
/# of all samples Misdetection False alarm Throughput Success ratio
0% (no defense) 69.60% 30.40% 0.212 51.36%

10% 64.40% 35.60% 0.229 53.07%
20% 63.40% 36.60% 0.232 53.96%
30% 57.60% 42.40% 0.244 50.88%
40% 54.40% 45.60% 0.248 50.01%
50% 51.00% 49.00% 0.250 48.06%

from ACKs, which do not depend on topology. As a result,
the same algorithms can be applied if network is mobile.

VII. CONCLUSION

We applied adversarial machine learning to design an in-
telligent jamming attack on cognitive radio transmissions and
presented a defense strategy against this attack. We considered
a wireless communication scenario with one transmitter, one
receiver, one attacker, and some background traffic. We dis-
cussed the extension of our algorithms for multiple transmit-
ters and receivers in a mobile network with complex channels.
The transmitter senses the channel, applies a pre-trained ma-
chine learning algorithm to detect idle channel instances for
transmission. The attacker does not have any knowledge of
transmitter’s algorithm. Instead, it senses the channel, detects
the transmission feedback (if available), applies a deep learn-
ing algorithm to predict a successful transmission, and jams
such a transmission. We showed that this attack is effective
in reducing the transmitter’s throughput and success ratio.
Finally, we designed a defense mechanism for the transmitter
that intentionally takes wrong actions in selected time slots to
mislead the attacker. We showed that even a small percentage
of wrong actions in systematically selected time slots can
significantly increase the errors in attacker’s decisions and
prevent major losses in the performance of the transmitter.

REFERENCES

[1] C. Clancy, H. J. Stuntebeck, and T. O’Shea, “Applications of machine
learning to cognitive radio networks,” IEEE Wireless Communications,
vol. 14, no. 4, pp. 47-52, 2007.

[2] K. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine Learning
Techniques for Cooperative Spectrum Sensing in Cognitive Radio Net-
works,” IEEE Journal on Selected Areas in Communications, vol. 31,
no. 11, pp. 2209-2221, 2013.

[3] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine
Learning for Wireless Networks with Artificial Intelligence: A Tutorial
on Neural Networks,” arXiv preprint arXiv:1710.02913, 2017.

[4] M. Alsheikh, S. Lin, D. Niyato, H. Tan, “Machine learning in wireless
sensor networks: Algorithms, strategies, and applications,” IEEE Com-
munications Surveys & Tutorials, 16(4):1996-2018, Apr. 2014

[5] T. O’Shea, J. Corgan, and C. Clancy, “Convolutional radio modulation
recognition networks,” International Conference on Engineering Appli-
cations of Neural Networks, 2016.

[6] W. Lee, M. Kim, D. Cho, and R. Schober, “Deep Sensing: Cooperative
Spectrum Sensing Based on Convolutional Neural Networks,” arXiv
preprint arXiv:1705.08164, 2017.

[7] K. Davaslioglu and Y. E. Sagduyu, “Generative Adversarial Learning for
Spectrum Sensing,” IEEE International Conference on Communications
(ICC), 2018.

[8] G. Ateniese, L. Mancini, A. Spognardi, A. Villani, D. Vitali, and G.
Felici, “Hacking Smart Machines with Smarter Ones: How to Extract
Meaningful Data from Machine Learning Classifiers,” International
Journal of Security and Networks, 10(3):137-150, 2015.

[9] F. Tramer, F. Zhang, A. Juels, M. Reiter, and T. Ristenpart, “Stealing
Machine Learning Models via Prediction APIs,” USENIX Security, 2016.

[10] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures,” ACM
SIGSAC Conference on Computer and Communications Security, 2015.

[11] Y. Shi, Y. E. Sagduyu, and A. Grushin, “How to Steal a Machine Learn-
ing Classifier with Deep Learning,” IEEE Symposium on Technologies
for Homeland Security, May 2017.

[12] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G.
Giacinto, and F. Roli, “Evasion Attacks Against Machine Learning at
Test Time,” ECML PKDD, 2013.

[13] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial Examples in the
Physical World,” arXiv preprint arXiv:1607.02533, 2016.

[14] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. Celik, and A.
Swami, “The Limitations of Deep Learning in Adversarial Settings,”
IEEE European Symposium on Security and Privacy, 2016.

[15] L. Pi, Z. Lu, Y. Sagduyu, and S. Chen, “Defending Active Learning
against Adversarial Inputs in Automated Document Classification,”
IEEE Global Conference on Signal and Information Processing (Glob-
alSIP), 2016.

[16] Y. Shi and Y. E Sagduyu, “Evasion and Causative Attacks with Ad-
versarial Deep Learning,” IEEE Military Communications Conference,
2017.

[17] Y. E. Sagduyu, R. Berry, and A. Ephremides, “Jamming Games in
Wireless Networks with Incomplete Information,” IEEE Communica-
tions Magazine, vol. 49, no. 8, Aug. 2011.

[18] Microsoft Cognitive Toolkit (CNTK), https://docs.microsoft.com/en-
us/cognitive-toolkit

