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Abstract

In this paper, we study the stochastic contextual combinatorial multi-armed ban-
dit (CC-MAB) framework that is tailored for volatile arms and submodular reward
functions. CC-MAB inherits properties from both contextual bandit and combina-
torial bandit: it aims to select a set of arms in each round based on the side infor-
mation (a.k.a. context) associated with the arms. By “volatile arms”, we mean that
the available arms to select from in each round may change; and by “submodular
rewards”, we mean that the total reward achieved by selected arms is not a simple
sum of individual rewards but demonstrates a feature of diminishing returns de-
termined by the relations between selected arms (e.g. relevance and redundancy).
Volatile arms and submodular rewards are often seen in many real-world applica-
tions, e.g. recommender systems and crowdsourcing, in which multi-armed bandit
(MAB) based strategies are extensively applied. Although there exist works that
investigate these issues separately based on standard MAB, jointly considering all
these issues in a single MAB problem requires very different algorithm design
and regret analysis. Our algorithm CC-MAB provides an online decision-making
policy in a contextual and combinatorial bandit setting and effectively addresses
the issues raised by volatile arms and submodular reward functions. The proposed

algorithm is proved to achieve O(cT
2α+D
3α+D log(T )) regret after a span of T rounds.

The performance of CC-MAB is evaluated by experiments conducted on a real-
world crowdsourcing dataset, and the result shows that our algorithm outperforms
the prior art.

1 Introduction

Multi-armed bandit (MAB) problems are among the most fundamental sequential decision problems
with an exploration vs. exploitation trade-off. In such problems, a decision maker chooses one of
several “arms”, and observes a realization from an unknown reward distribution. Each decision
is made based on past decisions and observed rewards. The objective is to maximize expected
cumulative reward [4] over some time horizon by balancing exploration (to learn the average reward
of different arms) and exploiting (to select arms that have yielded high reward in the past). The
performance of a decision policy is measured by the expected regret, defined as the gap between the
expected reward achieved by the algorithm and that achieved by an oracle algorithm always selecting
the best arm. Contextual bandit [1] is an extension of the standard MAB framework where there is
some side information (also called context) associated with each arm that determines the reward
distribution. Contextual bandit also aims to maximize the cumulative reward by selecting one arm
in each round, but now the contexts can be leveraged to predict the expected reward of arms.
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However, in many real-world scenarios, e.g. recommender systems [20] and crowdsourcing [21], a
decision maker needs to select multiple arms (e.g., recommended items and crowdsourcing workers)
in each time slot. Such MAB problems fall into the category of combinatorial bandit where a set
of arms rather than one individual arm are chosen in each round. What is more complicated is that
the total reward of selected arms is often not a simple sum of the reward of individual arms in the
set. For example, in a recommender system, recommending a diverse set of items increases the
chance that a user would like at least one item. As such, recommending multiple redundant items
would produce little benefit. This notion of diminishing returns due to redundancy is often captured
formally using submodularity [14].

Another thorny issue in applying standard MAB frameworks in practice is the assumption on a
constant set of arms that are available indefinitely. However, due to the inherent dynamic nature of
many real-world applications, the arms available in each round may change dynamically over time.
For example, potential crowdsourcing workers vary depending on specific tasks, location, and time.
The variation of the arm set over time has been considered by MAB variants known as sleeping
bandit [11] and volatile bandit [3] where arms can become available or unavailable in each round.
However, these works are developed on the standard MAB framework and little effort has been made
to extend volatile arms to the contextual or combinatorial MAB setting.

In this paper, we develop a novel online decision-making approach based on contextual and combina-
torial bandit to address various challenges caused by volatile arms and submodular reward functions.
Although our algorithm inherits concepts from some existing MAB problems, jointly considering
these issues in one MAB framework requires very different algorithm design and regret analysis.
The main contribution of this paper is summarized as follows: (i) We propose a contextual combi-
natorial multi-armed bandit algorithm (CC-MAB) framework that is compatible with submodular
reward functions and volatile arms. (ii) We rigorously prove the performance guarantee of the pro-

posed CC-MAB, which shows a O(cT
2α+D
3α+D log(T )) regret upper bound after playing T rounds. (iii)

We evaluate the proposed algorithm on a real-world dataset as a crowdsourcing problem. The result
shows that our approach significantly outperforms other existing MAB algorithms.

1.1 Difference from Existing MAB Frameworks

Contextual bandit: Contextual bandit considers the scenario where decision makers can observe the
context of arms and infer the rewards of other unseen arms. In general, the contextual bandit frame-
work is more applicable than the non-contextual variants, as it is rare that no context is available
[15]. Various contextual bandit algorithms have been proposed, e.g. LinUCB [16], Epoch-Greedy
[15] for the stochastic setting and EXP4, EXP4.P [2] for the adversarial setting. However, most of
these algorithms only allow the decision makers to pull one single arm in each round. Incorporating
combinatorial bandit into a context-aware setting is still an under-studied topic.

Combinatorial bandit and submodular reward function: Efforts have been made to generalize the
classical MAB problems to combinatorial bandit [6, 8] which allows the decision makers to pull a
set of arms in each round. However, most of these works are developed on standard bandit problems
and neglect the available context of arms. Moreover, the submodular reward is a special issue often
encountered in combinatorial bandit since the total reward of multiple selected arms may depend
on the relations between individual arms. There exist works that consider submodular function
in combinatorial bandit [9, 21] but they are for the non-contextual setting. Authors in [5] use a
bandit framework to learn the submodular utility function. The most related work is probably [18],
which investigates contextual combinatorial bandit with submodular reward. However, it considers
a special submodular reward function that depends on a linear combination of individual rewards
and assumes a constant set of arms which is very different from the volatile arms in our work.

Volatile bandit and Sleeping bandit: The key idea of volatile bandit [3] and sleeping bandit [11] is
that the arms may “appear” or “disappear” in each round. Volatile and sleeping bandit are benefi-
cial extensions of standard MAB problems and fit many practical applications where the available
arms vary over time. While these works only consider volatile arms for standard MAB, our paper
considers volatile arms in the contextual combinatorial MAB with submodular rewards. In addition,
although volatile and sleeping bandit allow available arms to change over time, they still assume that
the arms appear in each round come from an already-known finite arm set. By contrast, we allow
infinitely many arms in CC-MAB by taking advantage of the Hölder (Lipschitz) condition on the
context space, which also is the basis of works on Lipschitz bandit [12] in continuum bandit [13].
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The rest of paper is organized as follows: Section 2 formulates a contextual combinatorial MAB
problem (CC-MAB) with volatile arms and submodular functions. Section 3 introduces the algo-
rithm design and analyzes the regret of CC-MAB. Section 4 evaluates the performance of CC-MAB
on a real-world crowdsourcing problem, followed by the conclusion in Section 5.

2 Preliminaries and Problem Formulation

We consider a sequential decision-making process for a horizon of T time slots (rounds) and for-
mulate it as a contextual combinatorial multi-armed bandit problem. Let Mt = {1, . . . ,M t} be
the set of arms arrived/available in time slot t. Notice that this formulation captures the volatile
arms: arm setsMt, ∀ 0 < t ≤ T (and their size) in different time slots can be different from each

other. For each arrived arm m ∈ Mt, its context (side information) xt
m ∈ X , [0, 1]D can be ob-

served, where D is the dimension of observed context vector and X is a bounded context space. Let
xt = {xt

m}m∈Mt be the context set that collects the contexts of all arms in time slot t. The quality
(i.e., the reward of choosing an arm individually) of arm m is a random variable drawn from an
unknown distribution parametrized by its context xt

m and we denote this random quality by r(xt
m)

and its expected value by µ(xt
m) = E[r(xt

m)]. Let rt = {r(xt
m)}m∈Mt collect the qualities of arms

arrived in time slot t and µt = {µ(xt
m)}m∈Mt collect their expected values. Given the available

armsMt to choose from in each time slot, our objective is to pick a subset of arms St ⊆ Mt to
maximize the total reward. Usually, a decision maker will have a budget B that limits the maximum
number of arms that can be selected, i.e., |St| ≤ B, ∀t. We assume this budget is a constant across
time slots. Nevertheless, our formulation can be easily extended to work with time-varying budgets.

As aforementioned, many reward/payoff functions we encounter in real-world applications are sub-

modular. Therefore, we define a submodular reward function u : 2M
t

→ R
+ to measure the reward

achieved by an arm set. Let u(rt,St) be the reward of selecting the arm set St, its value is jointly
determined by the qualities of individual arms {r(xt

m)}m∈St and the relations between arms that
create submodularity. The considered submodular reward function is general, and is featured by the
diminishing returns property: given the available arm setM and the corresponding quality r in an
arbitrary time slot, for all possible arm subsets S ⊆ B ⊆M and any arm m /∈ B, we have

u(r, {m} ∪ S) − u(r,S) ≥ u(r, {m} ∪ B)− u(r,B). (1)

We denote the marginal reward of an arm m to a set S by ∆(r,m|S) , u(r, {m} ∪ S) − u(r,S).
Moreover, we also require the reward function to be monotone: for all S ⊆ B, it holds that u(r,S) ≤
u(r,B). It is assumed that the reward function is revealed at the beginning of each time slot when
observing the arrived arms. For example, in the spatial crowdsourcing application [19], the reward
function can be determined by the overlapped sensing area of workers (arms); and in diversified
information retrieval [22], the reward function can be determined by the topic of articles (arms).
Our goal is selecting a subset of arms St ⊆ Mt in each time slot t to maximize the expected
cumulative reward up to a finite time horizon T :

max
S1,...,ST

∑T

t=1
E
[
u(rt,St)

]
(2a)

s.t. |St| ≤ B, St ⊆Mt, ∀t (2b)

Obviously, the above problem can be decoupled into T subproblems, one for each time slot t as fol-
low: maxSt∈Mt,|St|≤B E [u(rt,St)]. Let us for now assume that for an arbitrary arm with context

x ∈ X , its expected quality µ(x) = E [r(x)] is known a priori. Since the relations among arms are
observed upon their arrival, E [u(rt,St)] can be written as u(E [rt] ,St) = u(µt,St). Now, in each
time slot t, we need to select a subset S∗,t(xt) that satisfies:

S∗,t(xt) = argmax
S⊆Mt,|S|≤B

u(µt,S) (3)

Clearly, if |Mt| ≤ B, then we simply select all arms in Mt. Since S∗,t(xt) is obtained by an
omniscient oracle that knows the expected quality of all arrived arms, we call {S∗,t(xt)}Tt=1 the
oracle solution. However, maximizing a submodular function with cardinality constraint in (3) is
NP-hard. Fortunately, the greedy algorithm [17] (in Algorithm 1) offers a polynomial-time solution
and guarantees to achieve no less than (1− 1/e) of the optimum as stated in the following Lemma:
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Algorithm 1 Greedy Algorithm

1: Input: arm setMt, reward vector rt, submodular reward function u, budget B.
2: Initialization: S0 ← ∅, τ ← 0;
3: while k ≤ B do:
4: k = k + 1;
5: Depend on the expected reward µt, select mk = argmaxmk∈Mt\Sk−1

∆(µt, {mk}|Sk−1);

6: Sk = Sk−1 ∪ {mk}

7: Return: St = Sk

Lemma 1. In an arbitrary time slot t, let St be the arm set selected by greedy algorithm and S∗,t

be the optimal arm set for the problem in (3), we will have u(µt,St) ≥ (1− 1
e )u(µ

t,S∗,t).

The proof for Lemma 1 is omitted here, see [17] for detail. Since there is no polynomial time
algorithm that achieves a better approximation in general for submodular function maximization
than the greedy algorithm [7], we use it to solve the submodular function maximization problem
for each per-slot subproblem in (3) and define the regret of an algorithm up to slot T against this
benchmark as follows:

R(T ) = (1 −
1

e
) ·

∑T

t=1
E
[
u(rt,S∗,t)

]
−
∑T

t=1
E
[
u(rt,St)

]
(4)

Here, the expectation is taken with respect to the choices made by a learning algorithm and the
distributions of qualities.

3 Contextual Combinatorial MAB

In practice, the expected quality of an arm is unknown a priori. In this case, the per-slot subproblem
cannot be solved as described previously. Therefore, we have to learn the expected qualities of arms
over time using a MAB framework. However, learning the quality for volatile arms faces special
challenges especially when a universal arm set U (i.e., Mt ⊆ U holds true for all t) is not well-
defined. Let us consider an extreme case that the arms arrived in every slot are completely new (i.e.,
the universal arm set is infinitely large), then the decision maker is unable to play an arm several
times to learn the expected quality as in standard MAB algorithms and it is meaningless to do that
since the arm will not appear again. To tailor our CC-MAB for a general case of volatile arms,
we resort to the contextual bandit with similarity information. Basically, we divide the arms into
different groups based on their context information and learn the expected quality for each group
of arms by assuming that arms with similar context information will have similar qualities. This
idea is also used by Lipschitz bandit [12] in continuum bandit to deal with the infinite number of
arms. CC-MAB is carefully designed to properly group the volatile arms and define a control policy
that makes a good trade-off between exploration (i.e., to learn the expected qualities of arms) and
exploitation (i.e., to use the learned qualities to guide the future arm selection) to achieve a sublinear
regret.

3.1 Algorithm Structure

The pseudo-code of CC-MAB is presented in Algorithm 2. Given the time horizon T , CC-MAB
first creates a partition PT which splits the context space X into (hT )

D hypercubes of identical size
1
hT
× · · · × 1

hT
. These hypercubes correspond to possible arm groups whose expected qualities

needs to be estimated. The parameter hT is a critical variable that determines the performance of
CC-MAB. Its value design will be discussed in detail later. Each hypercube p ∈ PT keeps (i) a
counter Ct(p) to record the number of times that an arm with x ∈ p is chosen and (ii) a collection of
observed qualities Et(p) realized by selected arms with context from hypercube p. Then, the quality
of arms with context x ∈ p can be estimated by the sample mean r̂t(p) = 1

Ct(p)

∑

r∈Et(p) r. Note

that the collection Et(p) does not appear in the algorithm, since r̂t(p) can be computed based on
r̂t−1(p), Ct−1(p), and realized qualities of selected arms in current slot t.

In each time slot t, CC-MAB performs the following steps: the context of arrived arms xt =
{xt

m}m∈Mt is observed. For each contextxt
m, the algorithm determines a hypercube ptm ∈ PT , such
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Algorithm 2 CC-MAB

1: Input: T , hT , K(t), X .
2: Initialization: context partition PT ; set C0(p) = 0, r̂(p) = 0, ∀p ∈ PT ;
3: for t = 1, . . . , T do:
4: Observe arrived armsMt and their contexts xt = (xt

m)m∈Mt ;
5: Find pt = (ptm)m∈Mt such that xt

m ∈ ptm, ptm ∈ PT ,m ∈ Mt;
6: Identify under-explored hypercubes Pue,t and the arm setMue,t; let q = |Mue,t|;
7: if Pue,t 6= ∅ then: ⊲ Exploration
8: if q ≥ B then : St ← randomly pick B arms fromMue,t;
9: else: St ← pick q arms inMue,t and other (B − q) as in (6);

10: else: St ← pick B arms as in (7); ⊲ Exploitation

11: for each arm m ∈ St do:
12: Observe the quality rm of arm m;

13: Update reward estimation: r̂(ptm) =
r̂(pt

m)C(pt
m)+rm

C(pt
m)+1 ;

14: Update counters: C(ptm) = C(ptm) + 1;

that xt
m ∈ ptm holds. The collection of these hypercubes in slot t is denoted by pt = {ptm}m∈Mt .

Then the algorithm checks if there exist hypercubes p ∈ pt that have not been explored sufficiently
often. For this purpose, we define the under-explored hypercubes in slot t as:

Pue,t
T ,

{
p ∈ PT | ∃m ∈ M

t, xt
m ∈ p, Ct(p) ≤ K(t)

}
(5)

where K(t) is a deterministic, monotonically increasing control function that needs to be designed

by CC-MAB. In addition, we collect the arms that fall in the under-explored hypercubes inMue,t ,

{m ∈ Mt | ptm ∈ P
ue,t
T }. Depending on the under-explored armsMue,t in time slot t, CC-MAB

can either be in an exploration phase or exploitation phase.

If the set of under-explored arms is non-empty, i.e. Mue,t 6= ∅, the algorithm enters an exploration
phase. Let q = |Mue,t| be the size of under-explored arms. If the set of under-explored arms
contains at least B arms, i.e. q ≥ B, then CC-MAB randomly selects B arms fromMue,t. If the
under-explored arm set contains less than B elements, i.e., q < B, then CC-MAB selects all q arms
fromMue,t. Since the budget B is not fully utilized, the rest (B − q) additional arms are selected
sequentially using the greedy algorithm by exploiting the estimated qualities r̂t as follows:

mk = argmax
mk∈Mt\{Mue,t∪Sk−1}

∆(r̂t, {mk}|{Sk−1 ∪M
ue,t}), k = 1, . . . , (B − q) (6)

where Sk−1 = {mi}
k−1
i=1 . If the arm defined by (6) in not unique, ties are broken arbitrarily. Note

that by this procedure, even in exploration phases, the algorithm exploits whenever the number of
under-explored arms is smaller than the budget.

If the set of under-explored arms is empty, i.e., Mue,t = ∅, the algorithm enters an exploitation
phase. It selects all B arms based on estimated qualities using the greedy algorithm:

mk = argmax
mk∈Mt\Sk−1

∆(r̂t, {mk}|Sk−1), k = 1, . . . , B (7)

After selecting the arm set, CC-MAB observes the qualities realized by selected arms and then
updates the estimated quality and the counter of each hypercube in pt.

It remains to design the input parameter hT and the control policy K(t) in order to achieve a sublin-
ear regret in the time horizon T , i.e., R(T ) = O(T γ) with γ < 1, such that CC-MAB guarantees an
asymptotically optimal performance since limT→∞ R(T )/T = 0 holds.

3.2 Parameter Design and Regret Analysis

In this section, we design the algorithm parameters hT and K(t) and give a corresponding upper
bound for the regret incurred by CC-MAB. The regret analysis is carried out based on the natu-
ral assumption that the expected qualities of arms are similar if they have similar contexts. This
assumption is formalized by the Hölder condition as follows:
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Assumption 1 (Hölder Condition). There exists L > 0, α > 0 such that for any two contexts
x, x′ ∈ X , it holds that

|µ(x)− µ(x′)| ≤ L‖x− x′‖α (8)

where ‖ · ‖ denotes the Euclidean norm in R
D.

Assumption 1 is needed for the regret analysis, but it should be noted that CC-MAB can also be
applied if this assumption does not hold. However, a regret bound might not be guaranteed in this

case. Now, we set hT = ⌈T
1

3α+D ⌉ (where D is the dimension of the context space) for the context

space partition, and K(t) = t
2α

3α+D log(t) in each time slot t for identifying the under-explored
hypercubes and arms. Then, we will have a sublinear regret upper bound of CC-MAB as follows:

Theorem 1 (Regret Upper Bound). Let K(t) = t
2α

3α+D log(t) and hT = ⌈T
1

3α+D ⌉. If CC-MAB is
run with these parameters and Hölder condition holds true, the regret R(T ) is bounded by

R(T ) ≤(1−
1

e
) ·Brmax2D

(

log(T )T
2α+D
3α+D + T

D
3α+D

)

+ (1−
1

e
) · B2rmax

(
Mmax

B

)
π2

3
+

(

3BLDα/2 +
2Brmax + 2BLDα/2

(2α+D)/(3α+D)

)

T
2α+D
3α+D .

The leading order of the regret R(T ) is O(cT
2α+D
3α+D log(T )) where c = (1− 1

e )Brmax2D.

Proof. See Appendix A in the supplemental file.

The upper bound in Theorem 1 is valid for any finite time horizon, thereby providing a bound on
the performance loss for any finite T . This can be used to characterize the convergence speed of the
proposed algorithm. The leading order of regret upper bound R(T ) mainly depends on the context
dimension D. The role of D here is similar to the role of the number of arms in standard MAB
algorithms, e.g. UCB1[4]. Since the arm set considered in CC-MAB is infinitely large, CC-MAB
splits these arms into different groups (i.e., hypercubes) based on their context information. The
constant (1 − 1

e )Brmax2D grows exponentially with the context dimension D, and hence regret
tends to be high when the context space is large. However, a learner may apply dimension reduction
techniques, e.g., feature selection, based on empirical experience to cut down the context space. In
addition, the form of upper regret bound for CC-MAB is very different from that for many exist-
ing MAB algorithms, e.g. contextual/combinatorial/volatile MAB, which are developed on a finite
arm set. The continuum-armed bandits (CAB), considering a continuum arm set X ∈ [0, 1], pro-

vides a regret upper bound O(cT
2
3 log

1
3 (T )) with fixed discretization [13]. If CC-MAB is run with

one-dimension context space and the parameter α large enough, its regret upper bound reduces to

cT
2
3 log(T ), which is slightly looser than the CAB.

We note that the regret bound, which although is sublinear in T , is loose when the budget B is close
to Mmax (the maximum number of arms arriving in each time slot). Consider the special case of
B = Mmax, CC-MAB is actually identical to the oracle algorithm, i.e., choosing all arms arriving
in each time slot and hence the regret is 0. It is intuitive that when the budget B is large, learning
is not very much needed and hence the more challenging regime is when the budget B is small.
Furthermore, if we are able to know the specific stochastic pattern of the arm arrival, a sharper regret
bound can be derived. For example, consider a case that the number of available arms in each time
slot {M t}Tt=1 (M t = |Mt|) are i.i.d. random variables and the probability E [Pr(B < M t)] = β,
where β ∈ [0, 1], is revealed. Then, the regret upper bound of CC-MAB can be derived in the
following corollary.

Corollary 1. If Assumption 1 and E [Pr(B < M t)] = β hold true, and CC-MAB is run with the
parameters defined in Theorem 1. Let Rub be the regret upper bound defined in Theorem 1, the
regret R(T ) is bounded by R(T ) ≤ βRub.

Compared to Theorem 1, the regret is scaled by the parameter β in this case. This is due to the fact
that with probability (1 − β) the budget is larger than the number of arrived arms and hence, both
CC-MAB and oracle algorithm select all the arrived arms and no regret is incurred.
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3.3 Complexity Analysis

The computational complexity of CC-MAB is mainly determined by the counters C(p) and es-
timated context-specific qualities r̂(p) for each hypercube p ∈ PT kept by the learner. If CC-

MAB is run with the parameters in Theorem 1, the number of hypercubes is (hT )
D = ⌈T

1
3α+D ⌉D.

Hence, the required memory is sublinear in the time horizon T . However, this also means that when
T →∞, the algorithm would require infinite memory. Fortunately, in the practical implementations,
A learner only needs to keep the counters of hypercubes p to which at least one of appeared arms’
context vectors belongs. Hence the required number of counters that have to be kept is actually
much smaller than the analytical requirement. Moreover, the learner may choose to stop splitting
the context space after a certain level of granularity so the number of hypercubes will be bounded.

4 Experiments

4.1 Experiment setting

We evaluate the performance of CC-MAB in a crowdsourcing application based on the data pub-
lished by Yelp1. The dataset provides abundant real-world traces for emulating spatial crowdsourc-
ing tasks where Yelp users are assigned with tasks to review local businesses. The dataset contains
61,184 businesses, 36,6715 users and 1,569,264 reviews.

1) Arms and Context: We divide the time span of the dataset into daily instances, and every day (each
time slot) a set of users are selected to review businesses. In each time slot, a user can choose one
business from a set of reachable businesses to review. Therefore, each user-business pair is an arm
in our crowdsourcing problem. Note that the available users vary across the time and the businesses
a user can review also change depending on users’ location. This means that the available arms in
each round are different. In addition, each user has side information including the number of fans,
the number of received votes, and the years a user was elite, which can be used as arm context.

2) System Reward: When soliciting reviews on businesses, the decision maker expects more busi-
nesses covered under the budget constraint. Therefore, individual user’s marginal quality is maxi-
mized if each of them reviews a distinct business. In the case that a business is reviewed more than
once, the value of subsequent reviews will be discounted. In order to capture this property, we use
Dixit-Stiglitz preference model [23] to calculate the total reward. Let rij denote the j-th review on
the i-th business. The quality of each review record (arm) is calculated based on the text length of
the comment, and the number of votes it received (rij = LijN

votes
ij where Lij is the normalized text

length and N votes
ij is the vote count). Figure 1 shows the distribution of arm quality over the number

of fans context. We see that the reviews from users with a larger number of fans tend to have a
higher quality. Figure 2 further depicts the expected quality of user groups in each hypercube on
two context dimensions number of years as elite and number of fans, which are used to define the
context space in the experiment. We see that the review quality is very related to the users’ context.

Figure 1: Arm quality distribution on fans context.
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Figure 2: Expected quality for hypercubes.

For each business i, its reward is given by the Dixit-Stiglitz model:

ui =
(∑

j
(rij)

p
)1/p

, p ≥ 1. (9)

1Yelp dataset challenge: www.yelp.com/dataset/challenge
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and the total reward is the sum of rewards of all businesses: u =
∑

i ui. It can be easily verified that
the given reward function is submodular for any value of parameter p ≥ 1. We compare CC-MAB
with the following benchmarks:

1) Oracle: Oracle knows precisely the expected quality of each arm. In each time slot, Oracle
chooses B arms using the greedy algorithm presented in Algorithm 1.
2) k-LinUCB: LinUCB [16] is a contextual bandit algorithm which recommends exactly one arm
in each round. To select a set of k users, we repeat LinUCB algorithm k times in each round. By
sequentially removing selected arms, we ensure that the k arms returned by k-LinUCB are distinct
in each round. Notice that k-LinUCB is unaware of the submodular reward when selecting users.
3) UCB: UCB algorithm [4] is a classical MAB algorithm (non-contextual and non-combinatorial)
that achieves the logarithmic regret bound. Similar to k-LinUCB, we repeat UCB k times to select
multiple users in each round.
4) CC-MAB-NS: CC-MAB-NS(Non-Submodular) is a variant of proposed CC-MAB where sub-
modularity of reward function is not considered. It simply selects B (or (B − k)) arms with the
highest quality during exploitation (or semi-exploitation).
5) Random: The Random algorithm picks B arms randomly from the available arms in each round.

4.2 Results and Discussions

Figure 3 shows the cumulative system rewards achieved by CC-MAB and 5 benchmark algorithms.
As expected, Oracle has the highest cumulative reward and gives an upper bound to other algo-
rithms. Among other algorithms, we see that the context-aware algorithms CC-MAB, k-LinUCB
and CC-MAB-NS outperform UCB and Random algorithm. This indicates that exploiting the con-
text information of arms helps to better learn the quality of arms. Further, it can be observed that the
CC-MAB achieves a close-to-oracle performance while k-LinUCB and CC-MAB-NS incur obvious
reward loss since they do not consider the submodularity of the reward function.
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Figure 3: Comparison of cumulative rewards.
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Figure 4: Cumulative rewards over budgets.

Figure 4 shows the cumulative rewards achieved by 6 algorithms in 200 rounds under different
budgets. In general, all the algorithms achieve a higher cumulative reward with a larger budget since
more arms can be selected. It is worth noticing that the cumulative rewards obtained by Oracle and
CC-MAB become saturated at budget B = 50 which is much smaller compared to that of other
algorithms that become saturated after B = 90. This is due to the fact that the most beneficial arms
can be efficiently identified by Oracle and CC-MAB algorithms by considering the submodularity of
the reward function, and therefore the arms that are left out only offer little marginal reward. Note
that, in our experiment, the maximum number of arms in each round is set as 100 and hence all
algorithms have the same performance at B = 100. In addition, we see that CC-MAB is able to
achieve the close-to-oracle performance at all budget levels. In Figure 5, we further depict the regret
of CC-MAB across different budgets. It shows that the regret decreases with the increase in budget.
This seems contradictory to Theorem 1 where the regret upper bound grows with the budget B.
However, the regret upper bound is proved for an arbitrary submodular function and an arbitrarily
large arm set in each round. In a setting that the maximum number of arms arriving in each round is
fixed, increasing the budget reduces the chance that beneficial arms are left out.

We also analyze the impact of submodularity to our algorithm. Figure 6 shows the cumulative reward
achieved by CC-MAB and CC-MAB-NS with different levels of submodularity, where the level of
submodularity is determined by the parameter p in the reward function (9). A larger p indicates a
stronger submodularity. When p = 1, the reward function becomes non-submodular, therefore CC-
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Figure 6: Impact of submodularity.

MAB and CC-MAB-NS achieve the same cumulative reward. Moreover, at this point, the achieved
reward is maximized since the diminishing return of submodularity disappears. When the reward
function becomes submodular (p > 1), CC-MAB outperforms CC-MAB-NS, and the performance
loss incurred by CC-MAB-NS grows as the submodularity becomes stronger.

Other extended simulations are given in Appendix B in the supplemental file.

5 Conclusion

We presented a framework called contextual combinatorial multi-armed bandit that accommodates
combinatorial nature of contextual arms. An efficient algorithm CC-MAB was proposed, which is
tailored to volatile arms and submodular reward functions. We rigorously proved that the regret up-
per bound of the proposed algorithm is sublinear in the time horizon T . Experiments on real-world
crowdsourcing data demonstrated that our algorithm helps to explore and exploit arms’ reward by
considering the context information and the submodularity of reward function and hence improves
the cumulative reward compared to many existing MAB algorithms. CC-MAB currently creates
static context partitions during initialization which may be inappropriate in certain cases, a meaning-
ful extension is to generate appropriate partitions dynamically over time based on the distribution of
arrived arms on the context space.
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