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Abstract—To secure a Vehicular Ad-hoc Network (VANET),
extensive studies have been conducted on developing authenti-
cation infrastructures, and identifying misbehaving vehicles. The
effectiveness of such efforts heavily depends on the underlying
communication network. However, information exchange in the
VANET can be severely delayed because of its highly-dynamic
and partially-connected topology. Such delay can be potentially
exploited by attackers to cause physical impacts to the trans-
portation system. In this paper, we propose and model a new
attack, called vehicle evacuation attack, to investigate how the
message delay endangers the trustworthiness in VANETs, and
further causes physical impacts to cars on the road. Our study
demonstrates that there exists a linear relationship between the
delay of message dissemination and the impact of the vehicle
evacuation attack, which can be used as a guideline on security,
reliability, and safety design in real-world VANETs.

I. INTRODUCTION

Facing the shear contrast between daily increasing volume
of vehicles and the relatively under-developed highway system,
people begin to exploit the potentials of the Intelligent Trans-
portation Systems (ITS) for safer and more efficient human and
freight transportation. An essential enabling feature of the ITS
is the Vehicular Ad-hoc Network (VANET), which is estab-
lished with the On-board Unites (OBUs), i.e., microcomputers
equipped on vehicles to facilitate the Vehicle-to-Vehicle (V2V)
communication. Over the V2V network, critical information
such as road conditions or emergencies can be exchanged
[1], which can result in enhanced transportation efficiency
and reliability. While the V2V network is dedicated for inter-
vehicle communication without Internet access, the Vehicle-to-
Infrastructure (V2I) network enables vehicles to access Internet
with the help of Road Side Units (RSUs).

The VANET is a highly-dynamic network because vehi-
cles travel fast and cause the topology of the network to
change rapidly. Stemming from this character, information
trustworthiness becomes a major concern in VANETs [2]. For
instance, two cars may have never met before, how can they
know they should trust each other during V2V information
exchange? And if a car is identified as malicious, how to
inform other cars of its malicious identity? In this regard, many
works have focused on identifying misbehavior in VANETs, or
developing secure infrastructures to regulate vehicles’ behav-
ior. In particular, the work in [3] proposed a comprehensive
secure architecture leveraging many modern security strate-
gies. This architecture has its basis as a centralized Public
Key Infrastructure (PKI), on which other strategies such as
Intrusion Detection and Pseudonymity are further deployed.
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Fig. 1. Scenarios where VANET (a) is or (b) is not susceptible to malicious
attacks.

The work in [4] improved the conventional PKI to a group
signature design, which allows a group of vehicles to sign
for a message such that individual vehicle’s identity can be
preserved. From the aspect of directly identifying misbehaving
vehicles, [5] proposed to detect misbehavior nodes based on
theirs deviations from an established model of the network, and
[6] proposed another approach by observing both disseminated
messages and the subsequent behavior of a particular vehicle.
However, an assumption for these approaches to work is
reliable real-time information exchange supported by commu-
nication networks in VANETs, which is, unfortunately, not
always true in real-world scenarios.

Indeed, message exchange in VANETs can endure long
delay and also is error-prone. In this paper, we find that
such long message delay and partially-disconnected topology
in a VANET result in a security vulnerability that can cause
physical impacts on vehicles. In particular, we use examples
in Fig. 1 to explain the potential security issue.

In Fig. 1 we present a highway segment with two direc-
tional roads. Vehicles travel from right to left (westbound) on
the top lanes, and travel from left to right (eastbound) on the
bottom lanes. As a malicious vehicle A travels westbound,
it keeps broadcasting false information to eastbound vehicles,
telling them that there is a traffic condition in front of them. In
both Fig. 1(a) and Fig. 1(b), the benign vehicle B encounters
A at a place outside the coverage of any RSU that provides
Internet access. This means that B receives A’s false informa-
tion, but will experience a delay period before it can encounter
an RSU and verify the information from A via the RSU. In
Fig. 1(a), there is an RSU in the close proximity, thus B has
the opportunity to reconnect and verify with the RSU the real
traffic condition and hence discard the false information from
A. However, as shown in Fig. 1(b), the delayed information



exchange between B and the RSU misleads B to exit the road
to avoid the (actually non-existed) traffic. We call such an
attack vehicle evacuation attack. Note that in this case, unless
B already knows that A is malicious, which still remains as an
open research issue [2], the impact of A on B is unavoidable.

As demonstrated by Fig. 1, the major cause for B to
be vulnerable in Fig. 1(b) is the long communication delay
between the time when B receives false information and the
time when B can verify it with an RSU. While this issue can be
easily addressed if we have enough RSUs to provide Internet
access to all vehicles, this solution is infeasible in practice
due to high RSU deployment costs [7]. Therefore, to evaluate
the performance of such an ITS, it is no longer sufficient to
consider only in the communication or network domain. For
instance, no matter how much the delay will be, vehicle A can
cause no harm to B if there is no Exit on the road (because the
physical condition makes B have no choice). This observation
motivates us to explore the research question: what is the role
of message delay in escalating the physical impacts of vehicle
evacuation attacks in VANET?

To answer this question, we first model the vehicle evac-
uation attack. In such an attack, a malicious vehicle keeps
broadcasting false traffic information and tries to evacuate
vehicles from the highway, as demonstrated in Fig. 1. The
model is developed based on real-world traffic data, and is
validated with intensive simulations. We define the metric
number of evacuated vehicles (i.e., the total number of vehicles
that are misled by false information and then exit) to evaluate
the consequences of such attacks, and demonstrate that there
exists a linear relationship between the worst case number of
evacuated vehicles and message delay in a VANET. Moreover,
the modeling of the vehicle evacuation attack also provides
accurate statistical properties of vehicles and clusters of vehi-
cles (i.e., a set of vehicles that are able to communicate with
each other via single-hop or multi-hop communications) on the
highway, which can be utilized by broader research regarding
ITS and facilitate future studies. To our best knowledge, this
is the first work considering the security of ITS jointly from
the communication network domain and the physical domain.

The rest of this paper is organized as follows. In Section II,
we mathematically model the vehicle evacuation attack based
on the vehicle and cluster properties derived from real-world
highway traffic data. In Section III, we explore the correlation
between message delay and the consequence of this attack, and
discuss potential solutions to combat this attack. In Section IV
we conclude our work.

II. VEHICLE EVACUATION ATTACK ON THE HIGHWAY

In this section, we model the vehicle evacuation attack
based on real-world highway traffic data.

A. Scenario and Attack Model

Consider the scenario shown in Fig. 2, where two consecu-
tive RSUs are placed between a segment of a highway. Without
loss of generality, we consider the location of the left-end RSU
in Fig. 2 as the origin, and denote the length of this segment
between these two RSUs as D.

At the beginning, we assume there is a malicious vehicle
(i.e., an attacker) traveling westbound. Along the way, it
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Fig. 2. Attack scenario with infected/evacuated/immune vehicles.

keeps broadcasting false traffic information (i.e., there is a
congestion) to eastbound vehicles, and these vehicles will react
to the false information differently depending on the positions
where they encounter the malicious vehicle. The eastbound
vehicles in Fig. 2 can be classified into three categories.

The immune vehicles are vehicles that are connected to
at least one RSU when they encounter the attacker, either
directly covered by an RSU, or indirectly bridged by a cluster
of vehicles.

The infected vehicles are vehicles that are not connected
to any RSU at the time when they encounter the malicious
vehicle. In this case, the infected vehicle will choose to trust
the false information, until it re-connects to an RSU.

The evacuated vehicles are vehicles that are infected, and
there is an Exit between where it was infected and the next
RSU. These vehicles will exit the highway at that Exit.

It is also easy to understand that, while multiple Exits may
exist on this segment in Fig. 2, it is the location of the last
Exit on the segment that determines the eventual number of
evacuated vehicles, because after the Exit vehicles cannot exit
as they can verify the information when reaching the next RSU.
We denote the distance from the last Exit to the origin as d.

Notice that in practice a vehicle may not exit even if it
receives false information. Thus, it is more practical to assume
such a car has a certain probability to exit. In our modeling, we
assume this probability to be 1 for simplicity and to show the
maximum impact. We note that the value of the probability can
be adjusted with straightforward extension in the formulation.

B. Distribution of Vehicles on the Highway

To model the behavior and interaction of vehicles and
depict the consequence of a vehicle evacuation attack, it is
critical to identify how vehicles are distributed on the road.
In this subsection we adopt a data analysis approach to obtain
the distribution characteristics of vehicles.

1) Obtaining the Dataset: Our model is developed based
on analysis of real-world traffic data obtained from the Cali-
fornia Caltrans Performance Measurement System (PeMS) [8].
The PeMS collects real-time data from more than 39,000 indi-
vidual sensors placed on the freeway/highway system across all
major metropolitan areas of the California State, and the data is
then classified according to geographic highway sections. All
data is managed and published by the California Department
of Transportation.

In addition to common traffic-related data, the PeMS also
keeps monitoring and reporting the health status of sensors
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at each highway section, since the sensors are not highly
reliable and a fraction of them can malfunction at any time.
The particular dataset that is used in this study is taken on
Feb 9, 2016, and from the highway segment I5-N District 12
(Orange County), because this segment provides the highest
percentage of healthy sensors at the time of study. As a brief
overview, the studied segment is the northbound of highway
Interstate 5, which is 44.4 miles in length. It ranges from San
Clemente to Buena Park, and passes the whole Orange County.
The overall segment contains 333 sensors at the time of study.
A snapshot of this highway segment is shown in Fig. 3(a).

2) Distance between Vehicles lv: Since communication
between vehicles is limited by their transmission range, it is
critical to characterize the relative distance lv between vehicles
on the road. However, inter-vehicle distance is not directly
measured by the PeMS system. We first make the following
assumptions, and then demonstrate our procedure to infer
statistical properties of lv based on measured data.

1. The distance lv measures the center-to-center distance
of two consecutive vehicles. Because what we are interested
in is the distance between the communication devices of two
vehicles, without loss of generality, we can assume that such
device is equipped at the center of each vehicle.

2. Vehicles between two consecutive sensors are evenly
distributed, this is because the data granularity is limited by
the density of sensors and we cannot obtain more detailed data
between two sensors. However, our data shows the average
distance between two sensors is about 210 meters, while even
during the busiest hours, data samples of lv are still larger
than 50 meters. Therefore, statistically there are at most 4
vehicles between two sensors, thus this assumption will not
cause significant impact to the accuracy of the result.

Based on above two assumptions, lv can be calculated
with the occupancy, which is a directly measured parameter
at all sensors. The occupancy (denoted as θ) is a common
parameter in transportation measurement, which is defined as
the percentage of time over a given period of time (5 minutes
in this study) that the detection zone is occupied by vehicles
[8]. Based on θ, the inter-vehicle distance lv can be calculated
according to the linear equation:

lv(meters) =
λ(feet/vehicle)

θ × 5280(feet/mile)
×1609.34(meters/mile),

(1)
in which λ denotes the average length of a vehicle.

To find the statistical properties of lv , we choose 3 time
instances during the day to study different traffic conditions,

which are: 3:00am (light traffic), 7:00am (heavy traffic), and
22:00pm (medium traffic).

We assume the average vehicle length λ to be 20 feet
(∼6 meters) based on the report from the US Department of
Transportation [9].

We apply curve-fitting in Matlab for lv for 3 time instances,
and observe that all of them can be fitted to the lognormal
distribution with minimum errors. To further validate our
observation, we perform the Chi-square goodness-of-fit test
[10] between the empirical data and the fitted distribution. To
begin with, we set the null hypothesis to be: the empirical data
comes from the fitted lognormal distribution. As a result, the
null hypothesis is accepted for all three data sets at significance
level 0.05, which indicate these data follows the lognormal
distribution very well. The visual comparison for the dataset
at 22:00pm is provided in Fig. 3(b).

Based on this observation, in the following study we
assume that the inter-vehicle distance lv follows the lognormal
distribution that is characterized by σv and µv , which are
summarized in the following model.

Model 1: The probability density function (PDF) of the
inter-vehicle distance lv is given by:

flv (x) =
1

xσv
√

2π
exp

(
− (lnx− µv)2

2σ2
v

)
. (2)

Accordingly, the expected value of lv is:

E[lv] = eµv+σ
2
v/2. (3)

It is worth noting that our observation that lv follows the
lognormal distribution is supported by other recent studies as
well. For instance, [1], [11] made the similar observation from
a dataset that completely differs from ours.

3) Size and Length of Cluster of Vehicles: A cluster is
a set of vehicles that are able to communicate with each
other in either single-hop or multiple-hop manners. In the case
that a vehicle is not directly covered by an RSU, it can still
communicate with the RSU as long as it belongs to a cluster,
and at least one vehicle in the cluster can communicate with
the RSU. To this end, clusters play a critical role in facilitating
normal operation of VANETs, and we aim to understand
statistical properties of clusters. For easy demonstration, in
the following we use Rv and Rr to denote the transmission
ranges of a vehicle and an RSU, respectively.

Distribution of Cluster Size sc: We use sc to denote the size
of a cluster, i.e., the number of vehicles in a cluster. When lv
follows the lognormal distribution, the cluster size sc can be
calculated by the following lemma.

Lemma 1: The cluster size sc is a discrete random variable
whose probability mass function (PMF) is given by:

Pr{sc = k} = (1− p)k−1p, (4)

where p = 1 − Φ
(

lnRv−µv
σv

)
, Φ(x) = 1

2 + 1
2erf( x√

2
), and

erf(x) =
∫ x
0

2√
π
e−z

2

dz.

Proof: From statistical perspective, the size of a cluster
can be interpreted as the number of trials before the value



of a lognormal-distributed random variable first exceeds the
threshold value Rv , which obviously follows the Binomial
distribution.

Distribution of Cluster Length lc: The Cluster Length lc
denotes the distance between the first and the last vehicle of
a cluster, and it is essentially a sum of a random number of
random variables. We use the following lemmas to characterize
its statistical properties.

Lemma 2: The PDF of the cluster length lc is given by:

flc(x) =

∞∑
k=1

Pr{sc = k} · flc|k(x|sc = k), (5)

where lc|k is the length of a cluster with size sc = k.

Proof: Consider a cluster composed by k+1 vehicles, let
the cluster length be represented by lc = lv1 + lv2 + ...+ lvk ,
in which lvi , for i ∈ [1, k], is the ith inter-vehicle distance in
this cluster. For a group of vehicles to formulate a cluster, it is
required that lvi ≤ Rv, ∀i, otherwise, it will break into more
than one clusters. This requires lvi to be a truncated lognormal
random variable with upper limit Rv , and we use l̄v to denote
this truncated lognormal random variable. Particularly,

l̄v ≡
{
lv lv ≤ Rv
0 otherwise.

(6)

Then, applying the law of total probability, we obtain the
PDF.

Although the expression in equation (5) looks simple and
intuitive, it is in fact challenging to find the closed-form
expression of flc(x). This is because lc|k is a sum of k
truncated lognormal random variables, and a closed form
expression of its PDF is not yet known [12]. We address this
challenge by proposing an analytical approximation as follows.

Lemma 3: The PDF of the cluster length lc given in
Lemma 2 can be approximated as:

f lc(x) =
(1− p)p
xσc|2

√
2π
exp

(
−

(lnx− µc|2)2

2σ2
c|2

)
χRv (x)

+

∞∑
k=3

(1− p)k−1p
σc|k
√

2π
exp

(
−

(x− µc|k)2

2σ2
c|k

)
χ(k−1)Rv (x),

(7)

where µc|k = (k − 1) · E[l̄v] and σc|k =√
(k − 1) · (E[l̄v

2
]− E[l̄v]

2
) for k ≥ 2.

And χA(x) =

{
1 x ≤ A,
0 otherwise,

is a step function.

Proof: See Appendix.

C. Number of Evacuated Vehicles

In the following we demonstrate the derivation of the
number of evacuated vehicles N(d). It is assumed that the
westbound and eastbound vehicles travel with approximately
constant speed, which is mostly the case on a highway without
any congestion, and the speeds are denoted as vw and ve,

respectively. These denotations are also demonstrated in Fig. 2.
The following theorem characterizes the number of evacuated
vehicles.

Theorem 4: Given a segment with length D, on which the
eastbound vehicles travels at speed ve and with their inter-
vehicle distance lv ∼ lognormal(µv, σv), and the westbound
attacker travels at speed vw, and starts to broadcast false
information as it travels from distance D to the origin. Denote
the distance of the last Exit to origin as d ∈ [0, D]. The number
of evacuated vehicles is given by:

N(d) =
(1 + ν)

E[lv]
·∫ d

0

(∫ x−Rr

0

flc(y)dy ·
∫ D−Rr−x

0

flc(y)dy

)
dx,

(8)

where ν = ve/vw is the speed ratio of the eastbound to the
westbound traffic.

Proof: The number of evacuated vehicles can be calcu-
lated by integrating the number of infected vehicles at each
point of the segment from 0 to d.

Denote an arbitrary point on the segment as x. If x ∈
[0, Rr] or x ∈ [D−Rr, D], that is, if this point is covered by
RSUs, then any vehicle at this location has probability 0 to be
infected because it can communicate directly with an RSU. On
the other hand, for x ∈ (Rr, D−Rr), the number of infected
vehicles is the product of the two parameters: the probability
a vehicle will be infected, and the average number of vehicles
appear at x ∈ (Rr, D −Rr).

The probability that a vehicle will be infected at at
x ∈ (Rr, D − Rr) is the probability that it is not
connected to both RSUs, which can be calculated as
Pr{vehicle disconnected at x} =

∫ x−Rr
0

flc(y)dy ·∫D−Rr−x
0

flc(y)dy.

In particular, we consider the interval [x, x + ∆x]. Then,
the number of vehicles appearing in this interval is the product
of the vehicle density and the length of this interval. Because
vehicles in the two lanes move towards opposite directions
with different speeds, we have to choose one direction as
the reference. We here choose to consider the problem from
the malicious vehicle’s perspective. The time it takes for the
malicious vehicle to travel from x to 0 is x/vw, during this
time, the distance that an eastbound vehicle has traveled is
(x/vw) · ve = νx. Therefore, during this process, the total
number of eastbound vehicles that actually encountered the
malicious vehicle is (x + νx)/E[Lv]. On the other hand, the
malicious vehicle has traveled only for a distance x, there-
fore, the density of the eastbound traffic, from the malicious
vehicle’s perspective, is (1+ν)x

E[lv]·x = 1+ν
E[lv ]

, and the number
of vehicles between the interval [x, x + ∆x] is therefore
(1+ν)
E[lv ]

·∆x. Accordingly, the number of infected vehicles within
this interval can be found as:

(1 + ν) ·∆x
E[lv]

(∫ x−Rr

0

flc(y)dy ·
∫ D−Rr−x

0

flc(y)dy

)
.

(9)
Taking integration of equation (9) from 0 to d, as ∆x → 0,
completes the proof.
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Notice that the malicious vehicle may not be the only
vehicle existing on the westbound lane, we assume other
westbound vehicles do not help eastbound vehicles verify
this information even they have access to RSUs, because this
information regards to the situation behind of the westbound
vehicles, and thus of no interests to them.

Remark 1: It is clear that N(d) is an increasing function
of d ∈ [0, D], Therefore, d = D (i.e., the last Exit has distance
D to the origin) represents the worst case scenario where the
number of infected vehicles is equal to the number of evaluated
vehicles. Thus, we can use N(D) to denote the number of
infected vehicles in the worst case.

D. Validation

We validate the derived statistical properties by comparing
the theoretical results to Matlab simulation results. We im-
plement a straight two-lane highway segment, with one lane
at each direction. The length of this segment is set to be
10,000 meters. At the beginning of each simulation, vehicles
are generated on both lanes, and the inter-vehicle distance is set
to be lognormally distributed with parameters obtained from
the PeMS dataset at the time 22:00pm. The transmission range
of both vehicles and RSUs is set to be 250 meters, which has
been shown to be a practical value in existing works [1], [11].

1) Size and Length of Clusters: From the distribution fitting
based on the 22:00pm data, we find the parameters for lv are
µv = 4.9468, and σv = 0.3747. Accordingly, we solve that
Φ
(

lnRv−µv
σv

)
= 0.9374.

Fig. 4(a) shows the PMF of sc for both theoretical and
simulation results, and Fig. 4(b) shows the PDF of lc derived
from both theoretical analysis and simulations. For the theo-
retical approximation, we set k ranging from 2 to 100, i.e.,
we neglect the probability that a cluster has 100 vehicles or
more. As shown by these figures, our analytic results match
the simulation results very well.

2) Number of Evacuated Vehicles: Fig. 4(c) shows the
comparison between simulation and theoretical results of the
number of evacuated vehicles N(d) as d goes from 0 to D with
ν = 1. From the figure, we can observe that our theoretical
model matches the simulation results. Furthermore, we observe
that N(d) dose not increase linearly as d grows from 0 to
D. Instead, N(d) grows slower where it is close to either
RSUs. This phenomena that N(d) exhibits provide effective

suggestions on RSU placement to enhance highway security,
which are discussed in detail in the next section.

III. UNDERSTANDING THE VEHICLE EVACUATING
ATTACKS

A. Understanding the Impacting Factors in N(d)

Recall that the number of infected vehicles N(d) is defined
by equation (8). Among all variables, Rr depends on specific
technology and cannot be changed. In addition, E[lv] and
flc(x) are determined by all drivers and are less likely to be
manipulated. Therefore, N(d) are essentially determined by
three parameters: the relative speed ν, the location of the last
Exit d, and the segment length D.

1) Impact of Relative Speed ν: From equation (8), we
observe that the relative speed ν only appears in the linear
part of this equation. Therefore, the change of ν will only
change the significance of N(d). While for most highways
the speed limit are symmetrically set for both directions,
the impact of ν can be escalated when the actual speed
on opposite lanes experience significant difference, which is
not uncommon in practice. For instance, in the metropolitan
area where most people work in the downtown but live in
satellite cities, traffic on both directions during rush hours
can be significantly asymmetric. If one lane is experiencing a
severe traffic jam while the opposite lane has light traffic, the
malicious vehicle may choose to broadcast false information
out of disgruntlement, or just for fun.

2) Impact of Last Exit Location d: The location of the last
Exit d is the key factor that allows us to understand the physical
impact of a malicious attack. While most existing works focus
only on improving the cyber aspect of the ITS, our model
demonstrates that the physical characteristics of the highway
are equally, if not more, critical.

Fig. 4(c) clearly shows three stages of how N(d) increases
with d: super-linear from 0m to 3,000m, linear from 3,000m to
7,500m, and sub-linear from 7,500m to 10,000m. This knowl-
edge provides useful suggestions on securing the highway in
terms of RSU deployment: i) whenever possible, we want the
last Exit to be located within the super-linear stage, where
N(d) grows slower than d, and ii) it is less favorable to have
an Exit within the sub-linear stage because this provides less
performance gain for the sake of reducing N(d).
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3) Impact of Segment Length D: Fig.5(a) plots N(d) for
D to be 5,000m, 7,500m, and 10,000m. From Fig. 5(a), we
observe that N(D) (i.e., the worst-case N(d)) dose not appear
to have a linear relationship with D. To better understand this
observation, we plot in Fig. 5(b) the value of N(D) as we
increase D from 250m to 10,000m with a step of 250m.

From Fig. 5(b), we observe a super-linear relationship
between N(D) and D, which is consistent with our intu-
ition: as D becomes larger, the benefit provided by a cluster
gradually diminishes. When D is large enough such that the
length-difference between a cluster and a single vehicle can
be neglected, N(D) will eventually become linear.

This observation suggests that in practice, we may want
to choose the value of D to be smaller than the point where
N(D) becomes linear, because beyond this point the increase
in D will incur larger negative impacts.

B. Correlating Message Delay and Vehicle Evacuation Attack

1) Per-segment Message Delay τ : We define the average
message delay as the time interval from the time that a message
is generated at a vehicle (i.e., when it wants to communicate
with an RSU) to the time that this message is delivered at
an RSU, which is essentially the average time an arbitrary
vehicle on the segment encounters an RSU. We neglect any
physical, transportation or application layer delay, since they
are of several orders smaller than the delay we are interested
in here. We provide the following result.

Theorem 5: For vehicles that travel with speed v, on a
segment with length D, the average message delay, denoted
as τ , satisfies

τ =

∫ D−2Rr

0

flc(x)
(D − 2Rr − x)2(D − 2Rr − 2x)

2vD2
dx.

(10)

Proof: Without loss of generality, consider an eastbound
vehicle that is in a cluster with length x. If this cluster’s tail
location is less than Rr, or its head location is greater than
D − Rr, i.e., at least one end of this cluster is covered by
one RSU, the delay for messages generated by this vehicle is
τ1 = 0, and the probability for both cases is (Rr + x)/D.

For any other scenario, we can calculate the message delay
as follows.

For this cluster to be isolated from any RSU, its tail
location has to be larger than Rr, and head location has to

be less than D −Rr. In this case, each vehicle in this cluster
has equal probability to appear in an interval with length
D − 2Rr − x, thus, the probability that this cluster is not
covered by any RSU is (D − 2Rr − x)/D.

The message delay is proportional to the distance between
the front RSU and the head of this cluster. Statistically, we can
assume that the cluster is located at the middle of the segment,
and the average travel time for a cluster to reach the front RSU
is (D − 2Rr − x)/2v.

The average message delay for a vehicle in a disconnected
cluster with length x can therefore be calculated as:

τ2 = Pr{lc = x} · (D − 2Rr − x)

2v
· (D − 2Rr − x)

D
. (11)

And the probability for this scenario to happen is

Pr{τ2} = 1− 2 · Rr + x

D
. (12)

Moreover, a cluster is isolated implicitly means that x <
D − 2Rr. Then, we can calculate the average message delay
as:

τ = τ1
2Rr + 2x

D
+

∫ D−2Rr

0

τ2 · Pr{τ2}dx. (13)

Bring equations (11) and (12) into (13) completes the
proof.

The results in Theorem 5 are also validated and matched
using simulations with the same setups in Section II-D. We
omit such similar results due to the page limit.

2) Correlating N(d) and τ : The average message delay
τ is computed in equation (10), from which we are able to
see that τ is determined by two factors: vehicle speed v and
segment length D. As it is intuitive that τ linearly depends on
vehicle speed v, we hereby only focus on understanding the
impact of D. Figure Fig. 5(c) shows the change of τ as D
increases from 250m to 10,000m with 250m each step, from
which we observe that τ also has a super-linear relationship
with D. Comparing Fig. 5(b) and Fig. 5(c), it is interesting to
observe that these two figures are almost identical. And this
observation indicates that N(D) is linearly related to τ . To
verify this, we plot the relationship between N(D) and τ for
three different speed ratio ν in Fig. 5(d), from which we are
able to more clearly observe the linear relationship between
these two parameters. Therefore, we can conclude that while
the number of evacuated vehicles N(d) can vary depending



on the location of the last Exit; its worst case scenario, N(D),
is linearly related to the average message delay.

3) Summary and Discussion: Recall that our objective is
to identify the correlation between the average message delay
and the consequence of the vehicle evacuation attack. In this
paper, we achieve this goal by demonstrating that the message
delay is linearly related to the worst case consequence of the
vehicle evacuation attack. This observation enables us to more
comprehensively inspect the characteristics of VANET and ITS
systems by coupling the communication performance with the
security performance, and provides insights in understanding
the physical impact of such a malicious attack. Further security
related studies can be conducted based on our observations.
For instance, existing works on RSU placement consider this
problem purely from economic point of view, i.e., how to cover
more vehicles with less RSUs [7]. This work reminds us that
road structures and their relative positions to RSUs also play
critical roles in determining the security and reliability of the
ITS system and should not be neglected.

IV. CONCLUSION

In this paper, we studied a new type of attack, vehicle
evacuation attack, in the ITS from a new perspective. While
most existing works still limit the ITS security study within
the cyber domain, we take one step further and consider both
the cyber and the physical domains. We demonstrate that
partially connected VANETs with incurred delayed messages
result in untrustworthy information, which eventually impacts
the physical perspective of public transportation. Our work
bears the significance in that it reminds us to consider the ITS
security from both the cyber and the physical perspectives.
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APPENDIX

The distribution of the lognormal sum (sum of regular
lognormal random variables) has been studied for years [12],
[13], but a closed-form expression is still unavailable. On the
other hand, it has been shown that the lognormal sum can be
approximated by a single lognormal random variable [13]. A
well-known and accurate method in estimating parameters of
this new lognormal random variable is the Fenton-Wilkinson
(F-W) method [12], which is to match the first and second
central moments of the new lognormal random variable to
the original lognormal sum. However, the F-W method cannot
be directly applied to solve equation (5), since the random
variables to be added are truncated in this problem.

Inspired by the F-W method, we propose a suitable ap-
proximation of the distribution of the truncated lognormal sum.
We use extensive Monte-Carlo simulations to create samples
regarding the truncated lognormal sum, and we observe that its
distribution well follows the normal distribution. To validate
this observation, we perform the Chi-square goodness-of-fit.
For each particular k, we generate 10,000 samples of the
truncated lognormal sum and fit it to a normal distribution, and
then test the goodness of fit between the sample data and the
fitted distribution. We extensively simulated for k ∈ [2, 500],
and test their goodness-of-fit with significance levels 0.05 and
0.01. As a result, for significance level 0.05, there are 24
out of the 499 (4.8%) cases where the null hypothesis (i.e.,
sampled data matches the fitted distribution) is rejected, while
for significance level 0.01, the number is only 7 (1.4%). The
first rejected case is at k = 9, which contributes only little
error considering Pr{sc = 9} is very small. Based on these
results, we accept this approach as a good approximation for
the truncated lognormal sum problem.

To estimate the parameters of this normal random variable,
we adopt the principle of the F-W method. In particular, denote
lc|k the length of a cluster with size k, we assume E[lc|k] = k · E[l̄v],

V ar(lc|k) = k · V ar(l̄v),
(14)

in which E[l̄v] and V ar(l̄v) can be easily derived by knowing
the first and second moment of l̄v:

E[l̄v] = eµv+
σ2v
2 ·

1− Φ(σv − lnRv−µv
σv

)

Φ( lnRv−µv
σv

)
, (15)

and

E[l̄v
2
] = e2µv+2σ2

v ·
1− Φ(2σv − lnRv−µv

σv
)

Φ( lnRv−µv
σv

)
. (16)

Summarizing equations (14), (15) and (16), the PDF of
cluster length lc in equation (5) is approximated as the result
in Lemma 3 (recall that lc = 0 when k = 1, and lc is exactly
the truncated lognormal random variable when k = 2 ).


