On Modeling and Understand Vehicle Evacuation Attacks in VANETs

MINGKUI WEI, SAM HOUSTON STATE UNIVERSITY ZHUO LU, UNIVERSITY OF SOUTH FLORIDA WENYE WANG, NORTH CAROLINA STATE UNIVERSITY

VANET Security

- Vehicular Ad-hoc Network
 - V2V and V2I network.
 - Authentication in partially connected, distributed and highly dynamic network.

- Existing works:
 - Secure authentication infrastructure [Li'07, Nowey'06].
 - Protocols to preserve user privacy [Zhang'11, Pan'13].
- What's Missing:
 - Rely on communications, which are not reliable in VANET.
 - Not effective with extreme long delay.

Motivation

- Physical character matters!
- Inherited from delayed information exchange, and is unavoidable.
- Understanding and minimizing the impact are imperative.

Research Question

Research Questions

- How message delay escalates the consequence of cyber-attacks in the physical domain?
- Objectives
 - *Model* the vehicle evacuation attack.
 - *Identify* the correlation between delay and security.

Vehicle Evacuation Attack: the Model

- When the malicious and benign vehicles are in contact:
 - Immune: vehicles that are still connected to RSU.
 - Infected: vehicles that are not connected to RSU.
 - Evacuated: infected vehicles that has an Exit in front.
- Objective:
 - Number of infected/evacuated vehicles.
 - Correlation between such number and message delay.

Challenges and Approaches

- Challenges
 - Model the Vehicle Evacuation Attack.
 - Connectivity of vehicles.
 - Practical distribution of vehicles on the highway.
- Approaches
 - Obtain a real-world transportation dataset.
 - Derive statistical properties of vehicles and clusters.
 - Mathematically model and evaluate the attack.

PeMS: the Dataset

- Caltrans Performance Measurement System (PeMS).
 - Managed and released by the Department of Transportation.
 - Chose the section Interstate 5 Northbound (I5-N), CA.
 - 44.4 miles long.
 - 333 sensors.

Vehicles' Statistical Properties

- Lemma 1 & 2: dataset analysis.
- Lemma 3 & 4: Innovative proposal based on classic theory and simulation observation.

Theorem: Evacuated Vehicles

The number of evacuated vehicles is given by:

$$N(d) = \frac{(1+\nu)}{E[l_{\nu}]} \int_{0}^{d} \left(\int_{0}^{x-R_{r}} f_{l_{c}}(y) dy \cdot \int_{0}^{D-R_{r}-x} f_{l_{c}}(y) dy \right) dx,$$

where
$$v = v_e / v_w$$
.

N(d) Increase According to d

Theorem: Average Message Delay

The average message delay is given by:

$$\tau = \int_0^{D-2R_r} f_{l_c}(x) \frac{(D-2R_r-x)^2(D-2R_r-2x)}{2\nu D^2} dx.$$

Comparison between τ and N(d)

• Question: correlation between delay and security?

- Left figure: N(D) as D changing.
- Right figure: τ as D changing.
- Observation: same trend, different scale.

Correlation between τ and N(d)

- Plot of $\tau N(D)$: linear relationship.
- Reducing delay and enhancing security can be implemented at the same time.

Conclusion

- It is critical to study the cyber-system (VANET) in the context of the cyber-physical system (Intelligent Transportation System).
- 2. Message delay is linearly related to the significance of vehicle evacuation attack.
- 3. Identified statistical characters of vehicles on the highway system.

Please address any of your questions to Mingkui Wei (mwei@shsu.edu).