How They Interact? Understanding Cyber and Physical Interactions against Fault Propagation in Smart Grid

Zhuo Lu, University Of South Florida <u>Mingkui Wei</u>, Sam Houston State University Xiang Lu, Institute Of Information Engineering

- 2. Problem statement and model
- 3. Analytical formulation and results
- 4. System level simulation
- 5. Conclusion

- 2. Problem statement and model
- 3. Analytical formulation and results
- 4. System level simulation
- **5.** Conclusion

Cascading Failure in the Power Grid

• The propagation of a single fault can cause widearea, large-scale system failure.

Initialization:

Random transmission line failure; Power redistribution; while Overloaded line exists do Fail overloaded lines; Power redistribution; end

Algorithm 1: How to take down a power grid

Cascading Failure in the Power Grid

• The propagation of a single fault can cause widearea, large-scale system failure.

Figure: 2003 US northeast blackout, before and after the event.

Shedding Load to Stop Cascading Failure

- Legacy grid approach
 - Load is pre-configured with priority
 - Load is shed according to priority, rather than its contribution in stopping fault propagation
 - Local load shedding

Shedding Load to Stop Cascading Failure

- Smart grid approach
 - Shed load and eliminate over with the least cost
 - Relies on *communication networks*
 - Global load shedding

Existing Works

- Analytic modeling
 - Is based on complex/interdependent network theory
 - Does not necessarily accommodate power factors
- Event or simulation based analysis
 - Has more realistic power system setting
 - Studies the result and impact of fault propagation
 - Implicitly assumes the communication is ideal

Motivation

- Global load shedding with message delay
 - What if the load is shed too late?
 - Is communication always a helpful factor?

- 2. Problem statement and model
- 3. Analytical formulation and results
- 4. System level simulation
- **5.** Conclusion

Smart grid and network architecture

Smart grid as a multigraph: $\mathcal{G} = (\mathcal{N}, \mathcal{E}_c, \mathcal{E}_p)$

- \mathcal{N} is the set of all nodes;
- \mathcal{E}_c and \mathcal{E}_p are the set of cyber and physical edges
- Cyber system $\mathcal{G}_c = (\mathcal{N}, \mathcal{E}_c)$, and power system $\mathcal{G}_p = (\mathcal{N}, \mathcal{E}_p)$

Fault propagation in the physical domain

Definition 1:

The total number of failed lines $\{M(t); t \ge 0\}$ is an inhomogeneous counting process with the i-th random counting interval τ_i depends on *i*.

• Fault propagation in the physical domain

Definition 2:

The failure probability, denoted as $P(M(\infty) \ge m)$, is the probability that at least m lines eventually fail.

• Fault propagation in the physical domain

Definition 3:

The action of load shedding is triggered at each epoch in the process $\{M(t); t \ge 0\}$ with delay d_i denote the duration between the i-th load shedding procedure starts, and the corresponding load is shed in the physical domain.

Problem Statement

- How to formulate and characterize the failure probability $P(M(\infty) \ge m)$?
- What are the most important factors to use global and local load shedding to stop failure propagation?

- 2. Problem statement and model
- 3. Analytical formulation and results
- 4. System level simulation
- **5.** Conclusion

Cyber-Physical Interactions during Fault Propagation

Why fault propagation won't be stopped by global load shedding?

- act 1: detection of fault in event 0.
- act 3: delivering of control message in reaction to fault in event 0.
- Problem: act 3 is delivered after new fault (event 1) has been caused.

Theorem 1

Given the physical and cyber interactions in Definition 1 and 3, the failure probability $P(M(\infty) \ge m)$ satisfies:

$$P(M(\infty) \ge m) = 1 - \sum_{l=1}^{m} (-1)^{l-1} \sum_{(x_1, \dots, x_l) \in R_{l,m}} P(\bigcap_{k=1}^{l} \bigcap_{l=x_{k-1}}^{x_k} A_{i, x_k})$$

where $R_{l,m} = \{x_1, x_2, \dots, x_l | 1 \le x_1 \le x_2 \dots \le x_l \le m\}.$

Analytic Results

- A_{i,j} is the event that *j*-th load shedding happens after the *i*-th failure.
 - $A_{1,1}$ means the 1st load shedding occurred after the 1st failure, i.e., $d_1 > \tau_1$.
 - $A_{1,2}$ means the 1st load shedding occurred after the 2nd failure, i.e., $d_1 > \tau_1 + \tau_2$.

Theorem 2

Denoted by $n = |\mathcal{N}|$ the number of nodes in the network. If the delay in the cyber domain is exponentially distributed, with mean denoted in the asymptotic notation as $E(d_i) = \Theta(g(n))$ for some function $g(\cdot)$, and τ_i has a finite mean, it holds that:

$$P(M(\infty) \ge m) \ge e^{-\Theta(\frac{mf(\{\tau_i\})}{g(n)})}$$
,

where $f(\{\tau_i\})$ is a function of $\{\tau_i\}$.

Analytical Result

Figure: a numerical example comparing lower bound of wired and wireless.

- For a wired network, $g(n) = \Theta(\log n)$.
- For a wireless network, $g(n) = \Theta(\sqrt{n})$.
- For local shedding, $g(n) = \Theta(1)$.

Global shedding is not uniformly better than local shedding!

- 2. Problem statement and model
- **3.** Analytical formulation and results
- 4. System level simulation
- **5.** Conclusion

Global Load Shedding with Practical Link Performances

- Simulation is conducted on the IEEE 57-Bus system
 - 57 buses, 80 transmission lines, 1,250,800 Kilowatts load.
- Average communication delay is set to be 0.1, 1, and 10 ms.

Global Load Shedding with Practical Link Performances

- 1. 10 ms delay results in more than half line failure and about half load lost.
- 2. Shorter delay brings better result.
- 3. Even very small delay can still not completely prevent fault propagation.

Global Load Shedding in Wired and Wireless Networks

- Change of $P(M(\infty) \ge m)$ as number of nodes increase, while m is fixed to be m=32.
- Follows analytical results.
- Wireless incurs much higher failure probability.

Global v. Local Load Shedding

- Delay in Global load shedding is set to 0.1, 1, and 10 ms.
- Local load shedding without communication.
- Local load shedding outperforms the 10 ms case.

- 2. Problem statement and model
- 3. Analytical formulation and results
- 4. System level simulation
- 5. Conclusion

Conclusion

- Characterized the cyber-physical interaction of fault propagation using analytical modeling and system-level simulation.
- Demonstrated that:
 - Global load shedding is sensitive to the performance in the cyber domain;
 - Local load shedding may perform better in the presence of an imperfect cyber domain.
- Necessitate a joint view for any design in the smart grid.

Thank you!

