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Abstract—It has been demonstrated that in wireless net-
works, Blackholes, which are typically generated by isolated
node failures, and augmented by failure correlations, can easily
result in devastating impact on network performance. In order
to address this issue, we focus on the topology of Cognitive
Radio Networks (CRNs) because of their phenomenal benefits
in improving spectrum efficiency through opportunistic commu-
nications. Particularly, we first define two metrics, namely the
failure occurrence probability p and failure connection function
g(·), to characterize node failures and their spreading properties,
respectively. Then we prove that each Blackhole is exponentially
bounded based on percolation theory. By mapping failure spread-
ing using a branching process, we further derive an upper bound
on the expected size of Blackholes. With the observations from
our analysis, we are able to find a sufficient condition for a
resilient CRN in the presence of Blackholes through analysis
and simulations.

I. INTRODUCTION

Wireless communication has experienced an explosive

growth in the past few decades, which imposes a significant

demand for the already-crowded radio spectrum. However, a

recent report by the Federal Communications Commission

(FCC) indicated that over 90% of the licensed spectrum

remains idle at a given time and location [1]. This observation

immediately incurs considerable attentions [2]–[6] to Cogni-

tive Radio Networks (CRNs), which show great potential for

improving spectrum usage efficiency by permitting secondary

networks to coexist with licensed primary networks. On one

hand, many efforts have been devoted to understanding the

performance limits of CRNs, including maximum capacity,

minimum delay and connectivity [7]–[13]. These works have

presented a very good understanding of the potential of

CRNs for a variety of applications in theory. On the other

hand, the properties and dynamics of global topology, which

plays an important role in designing fundamental networking

functionalities, such as point-to-point routing and scheduling

algorithms, has never been well studied. The lack of knowl-

edge about network topology greatly hinders the practical de-

ployment of CRNs, which motivates the study on topological

features of CRNs in this paper.

Topology of wireless networks changes frequently due to

different factors (e.g., node mobility, failures) and in this

paper, we focus on topological transmutation by studying

Blackholes due to node failures. Such unavoidable faults can

be brought out by malfunctions of electrical devices, energy

depletion, natural disasters (fire, river overflow, earthquake,

etc) or adversarial attacks (a bomb explosion for example).

Communications may be disabled by jamming, traffic conges-

tion or energy depletion. In addition, causal relations often

exist among failures, i.e., some failures happen as a result

of other earlier failures. One example of such correlated

failures is traffic overloading and energy depletion [14], that

is, when a node fails to deliver packets, the incoming and

outgoing traffic is redistributed to the neighboring nodes. Some

neighbors may work under heavy traffic loads, resulting in

early energy depletion and node failures. Such correlation

among failures and cascading effects lead to Blackholes (i.e.,

components of failed nodes, see formal definition in Section

II) in the network, where information cannot be transmitted

or forwarded.

Understanding the properties of Blackholes in the CRNs,

or in particular, investigating structure and size of Blackholes,

is of great importance in the design of basic networking

operations. For example, a number of networking protocols

exploit geometric intuitions for simple and scalable data

delivery, such as geographical greedy forwarding [15], [16].

These algorithms based on local greedy advances may not

work properly in the presence of Blackholes, where routing

messages will be lost. Backup and restoration methods, such as

face routing on a planar subgraph, can help packets get out of

Blackholes, but also create high traffic on hole boundaries and

eventually undermine network lifetime [15], [16]. In addition,

a number of routing schemes address explicitly the importance

of topological properties and propose routing with virtual

coordinates that are adaptive to the intrinsic geometric features

[17]. However, constructing these virtual coordinate systems

requires the identification of topological features, especially

Blackholes first in order to proceed routing.

Therefore, Blackholes have been extensively explored in

wireless networks [18]–[20]. For example, Fang et al. [18]

studied the difficulties imposed by Blackholes on geographic

routing and proposed a distributed algorithm to build a path

bypassing such holes. Wang et al. [19] focused on topology

discovery and presented an algorithm to identify Blackholes.

The spatial features of the holes and their impact on data

preservation have been investigated in [20]. These results sig-

nificantly improve our understanding of the disadvantageous

impact of Blackholes on network performance.

Meanwhile, it is evident that all of these studies presume

a few interesting but more fundamental questions. First, what



is the driving force in the formation of Blackholes and how

large are these holes? Failure correlation [20], [21] has been

recognized as one of the most important factors for the

occurrence of Blackholes and Xu et al. [21] further studied

how an initial failure may incur a giant hole spanning over

the entire network. Given its detrimental consequences, the

occurrence of giant hole needs to be avoided in the initial

network design [21] such that node failures can result in many

finite holes in the network. However, how to quantify the finite

size of these holes has not been discussed. Moreover, existing

works [18]–[20] are focused on locating and bypassing these

holes in the network. But a fundamental question is whether

we can always find alternative routes to bypass all holes. If

such routes do not exist, routing protocols may not be a good

solution, which is a fundamental issue in multihop networks.

Particularly, the ability of wireless networks to maintain global

communication in the face of these Blackholes is a central

concern for these routing protocols. And a network may be

considered to be resilient if the largest connected component

of operational nodes are distributed to the whole network

and alternative routes bypassing dysfunctional nodes always

exist in a resilient network. Therefore, network resilience is a

premise for the applications of the existing solutions.

In this paper, we aim to provide insightful understanding of

the above questions. In particular, we first study the process of

how an initial failure “explodes” to a Blackhole and present

theoretical analysis to quantify the scope of Blackholes. Using

combinatorial arguments, we prove that the distribution of

Blackhole size decays exponentially and we further provide an

upper bound on the expected size of Blackholes by mapping

failure spreading to a branching process. Then we investigate

network resilience in the presence of Blackholes. A network

is said to be resilient to node failures when there exists a

large connected component of “surviving” (not failed) nodes

spanning over the entire network. We have identified a suf-

ficient condition for a resilient CRN against Blackholes by

using techniques in percolation theory [22].

Our contributions to the understanding of topological re-

silience are as follows:

• We investigate the formation of Blackholes due to explo-

sive spreading of random failures, and prove that each

Blackhole is exponentially bounded and provide an upper

bound on its expected size.

• We identify a sufficient condition when a CRN is resilient

to blackholes, which can be used as a prerequisite for

the blackhole locating and bypassing algorithms in the

existing works [18]–[20].

Although we only addressed topological features and re-

silience of CRNs, questions presented in this paper are im-

portant yet remain unanswered in general multihop networks

(e.g., wireless sensor networks and wireless ad hoc networks).

Letting spatial density of primary users λp = 0, our results

can be extended to other wireless multihop networks, which

serves a timely complement to existing studies on restoration

algorithms and protocols [18]–[20].

The rest of this paper is organized as follows. In Section

II, we introduce network models and formulate the problem.

In Section III, we present our main results about Blackhole

size and network resilience, along with discussions of appli-

cations of our observations. We provide detailed proofs for

our analytical results about size of Blackholes and network

resilience in Section IV and V, respectively. In Section VI, we

use simulations to explain and validate our analysis, followed

by the conclusions in Section VII.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first present a brief description of prelim-

inaries, then describe the network models, basic assumptions

and notations, and formulate the problem last.

A. Preliminary

Before introducing network models, we need a brief intro-

duction of common models and tools used to study wireless

networks for clarification. A continuum graph consisting of

nodes X placed in space R
2, with edges added to connect pairs

of nodes which are close to each other, can be used to model

wireless networks [21], [23]–[26]. Rather than any specific

positions, nodes X are usually assumed to be a Poisson point

process for the following reasons. First, precise configuration

of points may not be known. In addition, Poisson point process

represents an average case. Some properties of graphs are

unfeasible to compute for large graphs, and understanding

their average behavior may be a useful alternative to exact

computation. For example, given a Poisson point process

X ⊂ R
2, the graph, denoted by G(X , r), with vertex set

X and edges connecting those pairs {x1, x2} ∈ X with

‖x1 − x2‖ ≤ r, is called Boolean model and has been used in

[23] to represent a large wireless network. If edge between x1

and x2 is added with probability g(‖x1 − x2‖), the resulted

graph G(X , r, g) is called random connection model and has

been used in [21] to study failure spreading.

Recently, Percolation theory, especially continuum percola-

tion, has been widely used to study the coverage, connectivity,

capacity and resilience of large-scale wireless networks [14],

[21], [23]–[26]. A percolation process resides in a random

geometric graph, where nodes or links are randomly desig-

nated as either ”active” or ”inactive”. When the graph structure

resides in continuous space, the resulting model is described

by continuum model [14], [22]. A major focus of continuum

percolation theory is the random geometric graph induced

by a Poisson point process with density λ. A fundamental

result for continuum percolation concerns a phase transition

effect whereby the macroscopic behavior of the system is very

different for densities below and above some critical value λc.

For λ > λc, there exists a giant component containing an

infinite number of points with positive probability; otherwise

any component in the graph is finite.

B. Network and Failure Models

In this paper, we consider a large CRN consisting of n

secondary users {v1, . . . , vn}, which are modeled by a random

geometric graph G(Hλ, r), where Hλ = {x1, . . . , xn} denotes
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Fig. 1. Primary-secondary interference.

the node set and r denotes the node transmission radius. In this

model, x1, . . . , xn denote the random locations of secondary

users and they are independently and identically distributed

(i.i.d) in a region Ω = [0,
√

n
λ ]2 for some constantλ. By

definition, Hλ is a Poisson Point process with density λ as

n → ∞ [27]. The secondary users are assumed to share a

set of m channels {ch1, . . . , chm} with coexisting primary

users. Particularly, we assume that for any 1 ≤ k ≤ m, an

overlay network of primary users with spatial density λpk

are transmitting with channel chk, and λpk = λp for any

k for simplicity. A synchronized slotted structure has been

adopted to model the dynamics of the primary traffic, which

has been used in [24] to study the connectivity of a large

single-channel CRN. Particularly, time is slotted into units and

at any time slot, primary users transmitting on any channel chk

are assumed to be uniformly and independently distributed in

Ω, and such distribution is i.i.d across slots.

1) Interference Models: In CRNs, there are two types of

interference for information dissemination among secondary

users: secondary-secondary and primary-secondary interfer-

ence. The former interference can be characterized by the well-

known protocol model [28]. Particularly, without interference

from primary users, a successful transmission from a sec-

ondary user vi to vj is achievable if ‖xi−xj‖ ≤ r and for any

other simultaneously transmitting node on the same channel

vl, ‖xl − xj‖ ≥ (1 + ∆)r, where r is the transmission radius

of secondary users, and ∆ models the guard zone around vj

in which any simultaneous transmission on the same channel

causes collision at vj . For the latter interference, denote RI

as the interference range of primary users. And as shown in

Fig. 1, the secondary users vi is permitted to use channel

chk to transmit to some other secondary user vj only when

there are no primary users on chk in the neighborhood, i.e.,

‖xi(t)−u(t)‖ > RI for any primary user u transmitting with

chk, where u(t) is the position of u at time t.

2) Failure Model and “Explosion”: In wireless networks,

nodes fail unavoidably due to adversary attacks, natural haz-

ards, resource depletion, etc. Node failures are often not

independent and causal relations exist among these failures,

i.e., some failures happen as a result of other earlier failures.

Traffic overloading and energy depletion [14] is an example as

a result of failures spreading. Because of failure correlation,
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Fig. 2. An example of Blackholes.

each initial failure will “explode” and impact a component

of nodes in the neighborhood. An illustration of such process

is shown in Fig. 2. In this example, random failures initially

occur at nodes v1, v5, v8, v12, v14 and v15. As a result of

the failure on v1, node v2 fails subsequently and spreads the

failure further away to nodes v3 and v4. Similarly, nodes v6,

v7, v9, v9, v10, v11, v13, and v16 fail subsequently due to

random failures on v5, v8, and v12. In Physics, a Blackhole is

a region of spacetime from which nothing, not even light, can

escape [29]. Likewise, in a wireless network, any information

(e.g., routing packets) transmitting to components of failed

nodes will be absorbed (lost). This similarity motivates us

call a component of failed nodes incurred by a particular

initial failure (see the shaded area in Fig. 2) a Blackhole for

convenience.

The above example shows that the formation of Blackholes

consists of the occurrence of initial failures and explosion of

these failures. Thus we introduce the following models:

• Random failure model: each node is either surviving or

failed independently and a node may fail with probability

p (failure occurrence probability). This model describes

the initial occurrence of node failures.

• Failure explosion: We define failure connection function

g(·) to model the likelihood of failure propagation from

vi to vj . If ‖xi − xj‖ < r, failure spreads from vi to

vj with a probability g(‖xi − xj‖) that depends on their

distance but not their respective locations. If vj is beyond

the transmission radius of vi, failure cannot spread from

vi to vj directly.

In this paper, we assume that g(·) ≡ τ , which is called

failure connection probability and r = 1 by default, if there

is no specific explanation. Thus failure spreading among

secondary users can be represented as a random connection

model G(Hλ, 1, τ).
Remark 1: These two models are not new. Particularly,

random failure model has been used in [23] to study topology

transition of wireless networks because of independent node

failures (without considering failure spreading) and failure

connection function has been used in [21] to determine

whether an initial failure will spread to the entire network.

However, as discussed above, the occurrence of random fail-

ures and their subsequent explosion are inseparable, and we

are interested in this paper how these two processes together



result in Blackholes in the network.

C. Problem Formulation

In order to understand the impact of Blackholes on network

implementation (e.g., routing), we first focus on a particular

hole, initiated by a failure on a node, say v1, w.l.o.g, and

denoted by Ov1
. Existing results on random connection model

[22] shows that there exists some critical value ζ on node

density λ, such that if λ > ζ, Ov1
may spread to the entire

network with some positive probability; and if λ < ζ, Ov1
is

finite. Given the devastating consequence of large-scale failure

spreading, previous work in [21] provided bounds on ζ, which

helps network designers to operate network at λ < ζ, making

network be resilient to cascading failures. In this paper, we

are interested in when λ < ζ, how large Ov1
is.

Definition 1: (BHG problem): For a CRN which is resilient

to large-scale failure spreading (i.e., λ < ζ), how large does

a Blackhole grow (i.e., how many failure nodes are in a

Blackhole)?

Definition 2: (Blackholes Resilient, BHR): Given the ex-

istence of Blackholes, a CRN is said to be BHR if a giant

component of surviving nodes, spanning over the entire net-

work, exists.

A network may be said to be resilient if the remaining

network is functional even after many node and link failures.

For example, if a wireless sensor network still manages to

collect information from a constant fraction of the sensors

even after a substantial number of node and link failures,

then the network is resilient. BHR property makes a CRN

maintain global communication capability in the presence of

Blackholes, i.e., information can bypass Blackholes and be

disseminated to the entire network through the giant compo-

nent, and thus a CRN with BHR property is considered to

be resilient in this paper. And the BHR property provides a

theoretical foundation to the existing studies on locating and

bypassing Blackholes [18]–[20]. Next, we will formally define

BHR problem.

BHR property makes a CRN maintain global communica-

tion capability in the presence of Blackholes, i.e., information

can bypass Blackholes and be disseminated to the entire

network through the giant component. And BHR property

provides theoretical foundation to the existing studies on

locating and bypassing Blackholes [18]–[20]. Next, we will

formally define BHR problem.

Definition 3: (BHR problem). For a large CRN which is

assumed to be initially connected (percolated), given node

failures characterized by random failure model and failure

explosion model, determine the condition under which the

network is BHR.

III. RESULTS AND APPLICATIONS

In this section, we present our main results concerning BHG

and BHR problems. We find that the size of Blackholes is

exponentially bounded and provide an upper bound on their

expected size. Based on the understanding of size of Black-

holes, we further identify a sufficient condition for a resilient

CRN. In addition, we further discuss potential applications of

our theoretical analysis.

A. Main Results

We summarize our main results as follows. First, following

theorems solve the BHG problem.

Theorem 1: Exponential decay of |Ov1
|. When Blackhole

Ov1
is not percolated, there exists some ǫ > 0 such that

P(|Ov1
| ≥ N) ≤ e−Nǫfor all N sufficiently large. (1)

Remark 2: Theorem 1 shows that when a failure cannot

spread to the entire network, the number of nodes that may be

infected by this failure is exponentially bounded. Exponential

distribution is not enough to show how large Blackhole Ov1
is,

since the expected value E(|Ov1
|) of |Ov1

| is unidentified, i.e.,

the parameter ǫ in Eq. (1) is unknown. We provide E(|Ov1
|)

in the next theorem.

Theorem 2: When Blackhole Ov1
is not percolated, its

expected size is upper bounded by

β = E(|Ov1
|) ≤ 1.43πλ2τ2

1 − 1.43λτ
+ 1, (2)

where λ is spatial density of secondary users and τ is failure

connection probability.

Remark 3: Theorem 2 indicates that the expected Blackhole

size grows as failure connection probability τ increases, which

corresponds to our intuition that the Blackhole is large when

nodes are prone to be infected by their neighbors. Eq. (2)

further implies that 1− 1.43λτ > 0 is necessary to guarantee

that Blackhole Ov1
is not percolated.

Theorems 1 and 2 study distribution and expected size of

Blackhole Ov1
. In particular, Eqs. (1) and (2) tells us that the

size of Blackhole is expontentlaly distributed with a bounded

mean. We note that our failure models (see Section II-B) do

not take primary users into account, because reasons incurring

failure correlation (e.g., due to traffic overloading and energy

depletion) are usually independent of primary users. In fact,

our failure models are similar to those used in general wireless

networks [21], [23]. This implies that our results concerning

Blackhole size can be directly applied to general wireless

networks. In previous work [21], Xu et al. prove a value ζ

such that when node density λ > ζ, a failure is percolated, and

it is not percolated otherwise. And our results further illustrate

the size of nodes infected by a failure when λ < ζ, which is

an important and necessary complement to the existing work.

The next theorem answers the BHR problem, providing a

sufficient condition for a resilient CRN in the presence of

Blackholes.

Theorem 3: Given a CRN where each secondary node fails

with probability p according failure models defined in Section

II-B, it is BHR if p < 1 − Λeβ

1−e−β+Λ
, where

Λ =

√

√

√

√

p2

c

(1 − eλd2

l )2
(

1 − (1 − e−λpα)m
) , (3)



dl = r√
5

, α = (dl + 2RI)(2dl + 2RI) and p2

c is given in

Appendix A.

Remark 4: BHR problem is not only important in CRNs, it

also remains unanswered in general wireless networks. Setting

spatial density of primary users λp = 0, Theorem 3 also

provides BHR condition for a general wireless network.

B. Applications

Besides the theoretical importance of our findings, our re-

sults can be used practically not only in the initial deployment,

but also as a theoretical foundation in evaluating protocol

designs. Here are some examples.

• In the initial deployment, an appropriate value for spatial

density λ of wireless nodes can be decided to guarantee

that any random failure can only spread within a prede-

fined area, if failure connection probability τ is known.

• There are many routing protocols [18]–[20] proposed to

identify a path to bypass Blackholes through the entire

network. However, when the network is not BHR, such

path does not exist and thus these protocols will not work

properly and waste network energy. Our result concerning

BHR can be used as a prerequisite in determining whether

adopt these routing protocols, or as a benchmark in

evaluating the efficiency of these protocols.

• In wireless networks, node failures affect the communica-

tion connectivity and in turn impair network functionality.

As mentioned in [30], redeploying additional nodes is

necessary to replace failed nodes so that a connected

network topology can be maintained. Let Ti (1 ≤ i ≤ n)
denote the lifetime of node vi before it is failed. Given

survival function S(t) , P(Ti > t) (thus failure oc-

currence probability p = 1 − S(t)), our results provide

network designers a guideline on the optimal time that

the redeployment of additional nodes should be carried

out.

IV. HOW LARGE IS A BLACKHOLE?

In this section, we demonstrate how to obtain the results

concerning size of Blackhole Ov1
given in Section III. Specif-

ically, we investigate how many nodes will be infected by

occurrence of failure on v1. We first study the distribution of

|Ov1
|.

A. The Distribution of |Ov1
|

Using percolation theory, Xu et al. [21] determine the

condition under which Ov1
may be percolated to the entire

network. However, when Ov1
is not percolated, how large

|Ov1
| is, remains unknown. To study distribution of |Ov1

|,
our approach takes following procedures. We first map failure

spreading process defined on continuous plane onto a discrete

lattice, whose edges are declared open if certain properties

are met (closed otherwise). In the discrete lattice, we then

investigate the size of components consisting of open edges

using combinatorial arguments. With a careful definition on

the open edge in the lattice, a relation between the size of

Blackholes and size of components of open edges can be

derived. Finally, we obtain the distribution of Blackhole size

|Ov1
| in Theorem 1. The detailed proof is presented as follows.

Proof of Theorem 1: When studying topology of con-

tinuum graph, an useful technique is the discretization of the

graph on R
2 into lattice on integer space Z

2, since topological

properties of the latter are easier to be analyzed [31]. One of

the technical uses of such a discretization lies in the availability

of combinatorial arguments for enumerating the sets in Z2. To

proceed, we shall require a variety of notations. A set A ⊂ Z
2

is said to be symmetric if −x ∈ A for all x ∈ A. Vertices

x, y ∈ A are said to be A-adjacent (x ∼A y) if and only if

y − x ∈ A. A subset S ⊂ Z
2 is A-connected if it induces a

subgraph with adjacency relation ∼A. The following lemma,

which says that the number of A-connected subsets of Z
2 of

size N containing the origin grows at most exponentially, is

helpful.

Lemma 4: (Peierls argument, see page 178 in [27]) Let

A be a finite symmetric subset of Z
2 with |A| elements. The

number of A-connected subsets of Z
2 containing the origin,

of cardinality N , is at most 2|A|N .

In this paper, we consider a discrete lattice L = dl × Z
2

with side length dl. The coordinates of the vertices of L
are (dl × i, dl × j) for (i, j) ∈ Z

2. Adjacency is defined

by A = {z ∈ L : ‖z‖1 = dl} where ‖ · ‖1 denotes 1-

norm distance, i.e., an edge connects x, y ∈ L only when

‖x−y‖1 = dl (see solid lines in Figs. 3 and 4). For any z ∈ L,

we construct a box Bz of size dl centered at dl × z (see the

dash lines in the Fig. 3 and 4). As Fig. 3 shows (for figures in

this paper, solid dots and circles denote failed and surviving

nodes respectively), failure spreading, represented by random

geometric graph G(Hλ, r, τ) (i.e., graph consisting of failed

nodes and edges connecting them), induces a realization of the

bond percolation on L by setting an arbitrary bond zz′ ∈ L
to be open if there exists an edge uv ∈ G(Hλ, r, τ) such

that u ∈ Bz and v ∈ Bz′ . That is, given one or more failed

nodes in Bz , at least one failed node connects to some some

nodes in Bz′ . And an example of open bond zz′ is shown

in Fig. 3. Let C(v1) denote the cluster of open bonds and

|C(v1)| denote its size. It is obviously true that if |Ov1
| < ∞,

then |C(v1)| < ∞, and vice versa. The mapping between the

cluster of failed nodes and the cluster of open bonds allows

us to find |C(v1)| and thus use it to study |Ov1
|.

Particularly, when Ov1
is not percolated, C(v1) is not

percolated. Bond percolation on discrete lattice (see Theorem

6.75 in [31]) shows that if C(v1) is not percolated, then there

exist constants µ > 0, n0 > 0 such that

P(|C(v1)| ≥ N) ≤ e−µN , N ≥ n0. (4)

By Peirels argument (Lemma 4), there is a constant γ such

that, for all N , the number of open paths of L of cardinality

N containing the origin is at most γN . If |C(v1)| < N and

|Ov1
| > KN + 1, then for at least one of these open paths,

the union of associated boxes Bz contains at least KN nodes

of Hλ (an example of such path and its associated boxes are

shown in Fig. 4 as the bold line and shaded area). Therefore,
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Fig. 3. An illustration of mapping from continuum graph to discrete lattice.

0

Fig. 4. An example of open path and the union of its associated boxes.

we have

P[{|C(v1)| < N}{|Ov1
| > KN + 1}]

≤ γN
P[Po(Nλd2

l ) ≥ KN ], (5)

where Po(·) denotes Poisson distribution. To continue, we

need the following lemma (see (1.12) in [27]).

Lemma 5: Let Po(λ) be a Poisson random variable with

density λ. If K > e2λ, then

P[Po(λ) ≥ K] ≤ e−( K
2

)log( K
λ

). (6)

Letting K ≥ e2d2
l λ and putting Eq. (6) into Eq. (5), we

have

P[{|C(v1)| < N}{|Ov1
| > KN + 1}] ≤ γNe

−( KN
2

)log( K

d2

l
λ

)
.

(7)

If we take K sufficiently large, we see from Eqs (4) and

(7) that P(|Ov1
| > KN + 1) decays exponentially in N , so

that Eq (1) follows.

After proving exponential distribution of Blackhole Ov1
, we

next study its expected size.

B. The Expected Value of |Ov1
|

In this subsection, we investigate the expected number of

nodes in Blackhole Ov1
and prove the upper bound Eq. (2)

given in Theorem 2. Specifically, we model failure spreading

in CRNs as a branching process [32]. By studying the number

of offspring in this branching process, we obtain our result.

The detailed proof is given as follows.

Proof of Theorem 2: Denote our network with a graph

G(Hλ, 1, τ). Let x1, x2, . . . be the points of the Poisson

process Hλ and assume that a failure initially occurs to

x1 (thus x1 is initial member of the 0-th generation of

the branching process, as shown in Fig. 5). The children

of x1 in this branching process are points which can be

infected by x1 directly. According to failure spreading model

in Section II-B, each point of Hλ which lies in the ball

B(x1, 1) = {y ∈ R
2 : ‖y−x1‖ ≤ 1} (see the big circle in Fig.

5) may be a child of x1 with probability τ . If we take another

Poisson process X1 with density λ · τ , independent of Hλ and

let x1,1, . . . , x1,n1
be all the points of X1 which lie in the

ball B(x1, 1), the children of x1 in the branching process are

equivalent to these points x1,1, . . . , x1,n1
by thinning theorem

[22].

Let xk,1, xk,2, . . . , xk,nk
be the members of the k-th gener-

ation of the branching process. To obtain the children of xk,i,

we consider a Poisson point process Xk+1,i of density λ ·τ on

R
2, where Xk+1,i is independent of all the processes described

as yet. The children of xk,i are those points of the process

Xk+1,i which fall in the region B(xk,i, 1)\B(xk−1,j, 1) (see

the shaded area in Fig. 5), where xk−1,j is the parent of xk,i.

The type of a child is defined as the distance between this

child and its parent. For example, the type of xk,i is defined

‖xk−1,j − xk,i‖ ∈ (0, 1) (e.g., the length of the solid line in

Fig. 5). Clearly, the distribution of the number and types of

children of xk,i depend only on xk,i and its type. Indeed, the

distribution of the number of children of xk,i whose types lie

in (a, b), 0 ≤ a < b ≤ 1 depends only on the area of the

region (B(xk,i, 1)\B(xk−1,j , 1)) ∩ {y : ‖y − xk,i‖ ∈ (a, b)},

and this area depends on xk−1,j only through the distance

‖xk−1,j − xk,i‖, which is precisely the type of xk,i. Also,

the distribution of the number and types of children of an

individual xk,i does not depend on its generation k.

Given that xk,i is of type h, i.e., ‖xk,i − xk−1,j‖ =
h, let f(w|h) be the length of the curve given by

(B(xk,i, 1)\B(xk−1,j, 1)) ∩ {y : ‖y − xk,i‖ = w}. A precise

expression for f(w|h) follows from an elementary trigono-

metric calculation, which yields

f(w|h) =

{

2w cos−1 1−h2−w2

2hw if 1 − h < w < 1
0 if 0 < w ≤ 1 − h.

Recalling our earlier discussion on the independence prop-

erties of the offspring distribution, we easily see that the

expected number of children whose types lie in (a, b) of

an individual whose type is h is given by
∫ b

a λτf(w|h)dw.

Moreover, given that an individual is of type h, the expected

total number of grandchildren of this individual whose types

lie in (a, b) is given by

∫ 1

0

(

∫ b

a

λ2τ2f(w|t)dw
)

f(t|h)dt. (8)
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Fig. 5. An illustration of the branching process for the failure spreading.

In other words, if we let

f1(w|h) =

∫ 1

0

f(w|t)f(t|h)dt,

the integral in (8) reduces to

λ2τ2

∫ b

a

f1(w|h)dw.

Thus defining recursively,

fi(w|h) =

∫ 1

0

fi−1(w|t)f(t|h)dt,

we easily see that the expected number of members of the n-

th generation having types in (a, b) coming from a particular

individual of type h as an ancestor n generations previously

is given by

λiτ i

∫ b

a

fi(w|h)dw.

Hence the expected total number of individuals in the

branching process if we start off with an individual of type

h is ∞
∑

i=1

λiτ i

∫ 1

0

fi(w|h)dw. (9)

The node density λ is small enough to make Eq. (9)

converge by the assumption that failure is not percolated. To

estimate Eq. (9), we define

T (h) =

∫ 1

0

f(w|h)dw.

It is easy to see that

∫ 1

0

fi(w|h)dw = T i(h).

Thus Eq. (9) reduces to

∞
∑

i=1

λiτ iT i(h). (10)

By using Hilbert-Schmidt operator and standard numerical

methods of calculating eigenvalues (see page 87 of [22]), we

can show that T (h) < 1.43. Thus Eq. (9) reduces to

∞
∑

i=1

λiτ iT i(h) ≤
∞
∑

i=1

λiτ i1.43 =
1.43λτ

1 − 1.43λτ
. (11)

Come back to the 0-generation node x1. By thinning the-

orem [22], the expected number of children of x1 is πλτ .

Note that the expected total number of individuals starting of

any child x1,j of x1 is upper bounded by Eq. (11), thus the

expected number of nodes in each hole is upper bounded by

Eq. (2). This completes the proof.

Now we have proved distribution and expected size of

Blackhole Ov1
given in Theorems 1 and 2, which solve the

BHG problem. Next, we formally solve the BHR problem

defined in Section II-C, i.e., given exponentially distributed

Blackholes, does there exist a giant component of surviving

nodes spanning over the entire network?

V. IS A LARGE CRN BLACKHOLE RESILIENT?

In this section, we study the macroscopic structure of a

large CRN in the face of Blackholes and formally prove the

sufficient condition for a BHR network addressed in Theorem

3. As mentioned in Section II-A, percolation theory [22] is

a useful tool to investigate topology of wireless networks.

For example, by using percolation theory, Sun et al. [25]

study the connectivity of a large CRN without failures, and

identify a critical density λc, above which (i.e., node density

λ > λc) there exists a giant component of nodes. Xu et al.

[21] prove a value ζ such that when node density λ < ζ, a

failure can only spread among a finite number of nodes. In

this paper, we are interested in the scenario that λc < λ < ζ.

That is, the CRN is percolated initially. As time goes on,

random failures may occur and each failure may infect a finite

number of neighboring nodes, i.e., a sequence of Blackholes

may appear. An interesting question is that in the event of

Blackholes, whether the network remains percolated, or the

giant component breaks into many small components. Next,

we aim at answering this question.

A. Challenges and Differences with Earlier Work

As mentioned earlier, node failures and their impact on

network topology have been studied in [21], [23]. Particularly,

under a subtle assumption of no failure correlations, Xing

et al. [23] provide a condition for a percolated network

when random failures may occur independently. On the other

hand, Xu et al. [21] focus on a particular failure and study

the condition when this failure may spread to the entire

network due to failure correlations. Note that existing results

in percolation theory [22], [27] are based on the fundamental

assumption that the nodes are distributed as a Poisson point

process. Thinning theorem [22], [27] ensures that nodes after

failures in [21], [23] are still distributed as Poisson point

process and hence existing results can be applied directly. For

example in [23], nodes are initially distributed as a Poisson

point process with spatial density λ and each node may fail
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Fig. 6. Mapping from continuous to discrete percolation.
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Fig. 7. Illustration of events and cell size.

independently with probability p. By Thinning theorem, the

resulted network of surviving nodes is a Poisson point process

with density λ(1−p). Percolation theory [22], [27] states that

a Poisson distributed network is percolated when node density

is above some critical value φ, and therefore a condition for

network percolation in [23] is λ(1 − p) > φ.

In contrast to these two extreme scenarios investigated in

[21], [23], we studied a generic scenario that initially, random

failures may occur independently, and then each failure may

explode and incur an exponentially bounded Blackhole. There-

fore, Thinning theorem [22], [27], which requires independent

failures, cannot be used here and obviously surviving nodes

are no longer distributed as a Poisson point process. This

indicates that existing results in percolation theory cannot be

used to solve BHR problem directly. Fortunately, reference

[22](Page 181) shows that percolation phenomenon (see Sec.

II-A) happens not only in the Poisson point process, but in any

stationary point process. The occurrence of Blackholes does

not change the stationary property of the original Poisson point

process, which motivates us to use some fundamental proof

techniques in percolation theory to study the BHR problem.

B. Sufficient Condition for a Resilient CRN

In this section, we determine the BHR condition provided

in Theorem 3 by using the technique of continuous-to-discrete

percolation mapping. Specifically, we divide the network area

into many small square cells and thus the graph consisting

of surviving nodes and their connections now appear on the

background of these cells, as illustrated in Fig. 6(a). The

size of components of surviving nodes is studied via bond

percolation on a discrete grid, as shown in Fig. 6(b). In

particular, to obtain this discrete grid, we represent a cell in

Fig. 6(a) by a site located at the center of this cell and two

neighboring sites are connected by a bond, which represents

the neighborhood between the two corresponding cells. We

choose the size of each cell small enough such that given two

arbitrary locations in two neighboring cells, one in each, their

distance is at most r (r is the transmission range of secondary

users defined in Section II-B). This small cell size guarantees

that a secondary node is able to communicate with every node

in the neighboring cell. Two nodes are separated farthest as

shown in Fig. 7(b), in which their distance is dl

√
5 and dl is

side length of the cell. Letting dl

√
5 = r, we obtain dl = r√

5
.

To proceed, we need the following notations for a given bond

b = sisj .

• Event Asi
: At least one surviving secondary node lies in

the cell Γi associated with site si (see Fig. 7(a)).

• Event Csisj
: The rectangle Recb associated with bond b

is defined as the union of two squares associated with si

and sj respectively (e.g., see the solid rectangle in 7(a)).

Particularly, denote dl as the length of the square (see

Fig. 7(b)), and (Xsi
, Ysi

) and (Xsj
, Ysj

) as coordinates

of sites si and sj respectively. Then Recb , [Xsi
−

dl

2 , Xsi
+ 3dl

2 ]×[Ysi
− dl

2 , Ysj
+ dl

2 ]. The extended rectangle

is defined as RecEb , [Xsi
− dl

2 −RI , Xsi
+ 3dl

2 +RI ]×
[Ysi

− dl

2 −RI , Ysi
+ dl

2 + RI ] (see the dash rectangle in

Fig. 7(a)), where RI is the interference range of primary

users. We define event Csisj
as the set of outcomes for

which the following condition is satisfied: there exists at

least one channel chk such that no primary users using

chk lie in RecEb.

Note that event Csisj
guarantees that for some channel

chk, the distance between primary users using chk and any

locations within Recb is larger than the interference range of

primary users RI , which indicates that chk can be used by

any secondary users in Recb. We next define a bond sisj to

be open when events Asi
, Asj

and Csisj
occur simultaneously.

Particularly, let Po be the probability that any bond is open.

Then we have Po = P(Asi
∩Asj

∩Csisj
). By this definition,

an open bond sisj implies that surviving nodes exist in Γi and

Γj respectively, and some channel can be used by these nodes.

This is equivalent to saying that an open bond sisj implies an

communication link across Γi and Γj . By this mapping, bond

percolation on the discrete lattice ensures percolation of CRN.

Therefore, we next investigate bond percolation condition for

the discrete grid, which is sufficient for a BHR network.

In Section IV, we have shown that the number of failed

nodes in each Blackhole Ov1
is upper bounded by Υ ∼

Exp(−β), where the expected size β of Ov1
is given in Eq.

(2). That is, any node vi may be infected by at most Υ − 1
nodes. Thus let Pl denote the probability that a node vi is



surviving (not failed) and we have

Pl =

∞
∑

ι=1

P(vi is surviving|Υ = ι)P(Υ = ι)

=

∞
∑

ι=1

(1 − p)ι(P(Υ ≥ ι) − P(Υ ≥ ι + 1))

=

∞
∑

ι=1

(1 − p)ι(1 − e−β)e−βι

=
(1 − e−β)(1 − p)e−β

1 − (1 − p)e−β
. (12)

And

P(Asi
) ≥ Pl(1 − eλd2

l ). (13)

And by the assumption that primary users on any channel chk

are distributed as a Poisson point process with density λp, we

have

P(Csisj
) = 1 − (1 − e−λpα)m, (14)

where α = (dl +2RI)(2dl +2RI) denotes the area of RecEb

(as illustrated in Fig. 7(a)).

To obtain Po = P(Asi
∩ Asj

∩ Csisj
), another challenge is

that Asi
and Asj

are not independent. To continue, we need

introduce the following concept and inequality.

Definition 4: For two geometric random graphs G and G′,
a partial ordering � is defined as G � G′ if and only if G′

can be induced from G by adding more (Poisson) points. Then

an event E is said to be increasing (decreasing) if ∀G � G′,
1E(G) ≤ 1E(G′) (1E(G) ≥ 1E(G′)), where 1E is the indicator

function of event E.

Lemma 6: (KFG’s inequality [22]) If two events E1 and E2

are both increasing or decreasing, then

P(E1 ∩ E2) ≥ P(E1)P(E2).

By our definition, the more points in Γi, the more likely

Asi
occurs. Thus Asi

is increasing. Therefore, we have

Po = P(Asi
∩ Asj

∩ Csisj
)

= P(Asi
∩ Asj

)P(Csisj
) ≥ P(Asi

)P(Asj
)P(Csisj

)

≥ P
2
l (1 − eλd2

l )2
(

1 − (1 − e−λpα)m
)

. (15)

Finally, by using the percolation condition in square lattice,

we can achieve the sufficient BHR condition given in Theorem

3.

Proof of Theorem 3: As analyzed above, by careful

definition of open bond in the square lattice, bond percolation

on the mapped lattice guarantees the BHR property of CRN. In

Appendix A, we derived a probability p2

c such that if bond is

open with probability Po > p2

c , the square lattice is percolated,

which further indicates a BHR CRN. Plugging Eq. (15) and

solving

P
2
l (1 − eλd2

l )2
(

1 − (1 − e−λpα)m
)

> p2

c , (16)

we arrive at

Pl > Λ, (17)

where Λ is given in Eq. (3). Then substituting Eq. (12) into

Eq. (17), we have

1 − p >
Λeβ

1 − e−β + Λ
, (18)

which indicates that p < 1− Λeβ

1−e−β+Λ is sufficient for a BHR

CRN. This completes the proof.

VI. SIMULATIONS
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(a) Random failures.

0 200 400 600 800 1000
0

200

400

600

800

1000

(Meters)

(M
e
te

rs
)

(b) A percolated CRN in the event of random failures

Fig. 8. Network percolation in the event of random failures.

In this section, we have performed a series of simulations in

MATLAB to explain and demonstrate the occurrence of Black-

holes, and validate our theoretical analysis. In the simulation,

secondary users are distributed independently and uniformly

with density λ. Time is slotted into units, and at each time

slot, primary users on any channel are distributed as a Poisson

point process with density λp. The transmission range r of

secondary users and interference range RI of primary users

are set as r = 50 (meters) and RI = 80 (meters) respectively.

We consider a CRN deployed within area [0, 1000]2 (me-

ters) with m = 4 channels, λ = 0.0008 (per meter2) and

λp = 0.00001 (per meter2). To study Blackholes, we first

investigate the occurrence of random failures (according to

the random failure model in Section II-B). Assume that each

secondary node fails independently with probability p = 0.1,

as shown in Fig. 8(a) ( in Figs. 8, 9, 10 and 11, solid dots

and circles represent failed and surviving nodes respectively, a

line connecting two failed (surviving) nodes denotes a failure

connection (communication link), and the positions of primary

users are not shown in the figures for simplicity). Ignoring
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(a) An initial failure.
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(b) Failure percolation.

Fig. 9. An initial failure explodes to the entire network.
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(a) Small Blackholes.
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(b) Network percolation in the face of Blackholes.

Fig. 10. Network is percolated in the event of small Blackholes.

failure correlation, the condition of whether a network is

percolated in the event of such independent failures has been
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(a) Large Blackholes.
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(b) Non-percolation in the face of Blackholes.

Fig. 11. Network is not percolated in the face of large Blackholes.

studied in [23]. An example of a percolated CRN in the face

of independent failures has been shown in Fig. 8(b). On the

other hand, to understand the failure correlation, we simulate

the scenario studied in [21]. Specifically, a particular failure

occurs initially, as shown in Fig. 9(a) (see the solid dot in

square area). This failure may infect its neighbors, according

to the failure explosion model defined in Section II-B, and

similarly, infected neighbors may further impact more nodes.

Xu et al. [21] determine when this failure will spread to the

entire network and an example of such failure percolation has

been shown in Fig. 9(b).

In contrast, we will study the random failures and then their

explosion subsequently. In particular, random failures may

occur initially according to the random failure model, as shown

in Fig. 8(a). Each random failure then explodes according

to the failure explosion model. By using the results in [21],

we can set network parameters to ensure that each failure

will not spread to the entire network. Therefore, each failure

only infects a finite number of nodes and thus a sequence of

Blackholes occur (see the components of solid dots in Fig.

10(a) and 11(a), and two examples of Blackholes have been

circled in Fig. 10(a)). The size of Blackholes depends on the

failure connection probability τ in the failure explosion model

(Blackhole size increases as τ increases, as shown in Eq. (2)).

And Blackholes in Fig. 10 and 11 are incurred by setting

τ = 0.2 and 0.3 respectively. When Blackholes are small,

CRN is percolated (see the giant component of surviving nodes

in Fig. 10(b)). As Blackholes grow, this giant component may

disappear and CRN is not percolated, as shown in Fig. 11(b).
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Fig. 12. CCDF of Blackhole size Ov1
under different failure connection

probability τ (see Section II-B) on a semi-log scale.

This motivates our study on the size of Blackholes (BHG

problem) and determine when the network is percolated in

the presence of Blackholes (BHR problem).

To study the size of Blackholes Ov1
, we run the simulation

with λ = 0.0008 and λp = 0.00001 within [0, 1000]2 1000
times independently for variant failure connection probability

τ . The probability P(|Ov1
| = N) is calculated by the fre-

quency of the occurrence of Blackholes with size N . Using

this method, the complementary distributions (CCDF) of Ov1

under τ = 0.2, 0.25, 0.3 have been calculated and shown in

Fig. 12 on a semi-log scale. As illustrated in Fig. 12, CCDFs

under different τ are approximately linearly under semi-log

scale, which validates our analysis in Theorem 1 that the size

of Blackholes Ov1
decays exponentially. In addition, Fig. 12

further shows that the CCDF of Ov1
decreases, which indicates

the expected size of Blackholes E(|Ov1
|) decreases, as failure

connection probability τ decreases. This corresponds to our

result about expected size of Blackholes in Theorem 2.

The major objective of this paper is to build analytical

models for failure spreading and investigate the stochastic

properties of Blackholes, and derive theoretical conditions

for resilience to these Blackholes in closed-form. Therefore,

in the simulations, we focus on illustrating the spreading

of failures, the formation of Blackholes, the existence of

“percolation phenomenon” in the face of the Blackholes and

more importantly verifying the stochastic results (e.g., the

exponential tail of Blackholes verified in Fig. 12). Note that the

exact value of critical density cannot be derived in the closed

form even for the fundamental Boolean model [27], given the

random positions of nodes. Therefore, we focus simulations

on verifying such stochastic properties of the Backholes rather

than trying to find the exact value of the Backhole size. We

will focus on obtaining more accurate quantitative values via

both analysis and simulations in the future work.

VII. CONCLUSIONS

In this paper we have studied the topology and resilience

of large CRNs in the presence of node failures. When there

exist causal relations, a single failure may initiate a component

of related failures, and thus random failures may trigger a

sequence of Blackholes in the network. In order to understand

network topology in the face of Blackholes, two metrics, fail-

ure occurrence probability p and failure connection function

g(·) are defined to characterize the occurrence of random

failures and their spreading to neighbors, based on which

we prove that when a Blackhole cannot spread to the entire

network, it is exponentially bounded. By mapping failure

spreading to a branching process, we derive an upper bound

on the expected size of Blackholes. After studying Blackhole

size, we then investigate network resilience. A network is

said to be resilient to Blackholes if there exists a giant

component of surviving nodes spanning through the entire

network. By coupling with a continuum percolation process

on the random geometric graph, we further obtain a sufficient

condition for a resilient CRN to a sequence of Blackholes.

We finally confirm correctness of our theoretical results by

simulations. It is worthy of pointing out that although our

results concerning Blackhole size and resilience are derived for

CRNs, nevertheless, by setting spatial density of primary users

λp = 0, these results can also be applied practically in general

wireless networks. For instance, Fang et al. [18] described

a distributed algorithm to build routes around Blackholes in

wireless sensor networks, and our results can be used to

determine the feasibility of such routes, and thus validate this

algorithm.
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APPENDIX

A. Calculation of Critical Probability p2

c

Let p2

c be the bond percolation probability of the square

lattice mapped from CRN (see Fig. 6(b)). It was proved in

[31] that bond percolation probability in square lattice is 1
2 .

In discrete percolation theory, the open or closed state of

L′

L

0

Fig. 13. A finite open cluster at the origin, surrounded by a closed circuit
in the dual lattice.

every edge (or vertex) is independent from others. In our

discrete lattice mapping, the state of an edge depends on,

however, how primary and secondary nodes are distributed

around this edge, which implies that adjacent edges are not

independent. Therefore, we cannot directly use the result in

discrete percolation theory and we need to find out alternative

percolation conditions for our mapping. Our method is based

on the following observation.

Consider square lattice and its dual L and L′ (see Fig. 13).

The construction of L′ is as follows: let each vertex of L′

be located at the center of a square of L. Let each edge of

L′ be open if and only if it crosses an open edge of L, and

closed otherwise. Now a key observation is that if the origin

belongs to an infinite open edge cluster in L, for which the

event is denoted by EL, then there cannot exist a closed circuit

(a circuit consisting of closed edges) surrounding the origin in

L′, for which the event is denoted by EL′ , and vice versa (see

page 17 in [31]). This is illustrated in Fig. 13. To proceed, we

further need the following lemma.

Lemma 7: Given a lattice L containing the origin 0 and its

dual L′, let σ(z) be the number of paths with length z in

L (i.e., comprising z edges) that start at 0, and ρ(z) be the

number of circuits in L′ with length z and containing 0 in their

interiors, then σ(z) ≤ 4 · 3z−1 and ρ(z) ≤ 2 · (z − 2) · 3z−2.

Proof: See Lemma 3 in [23].

Let Cz be a circuit of the lattice L′ with length z con-

taining the origin in its interior, then P(Cz is closed) =
P(all z edges are closed). Based on the open edge definition

described in Section V-B, edges a and b are independent if

their distance is larger than max{RI , dl} (the distance between

two edges is defined as the minimum distance between any two

points on edges a and b). This implies that an independent

subset of edges among z edges of Cz can be obtained by

selecting an edge in every ⌈ 2RI

dl
+ 1⌉ edges. Thus at least

κ = ⌊ z
⌈2RI/dl+1⌉⌋ have independent states among z edges

of Cz . Let q be the probability of any edge being closed, i.e.,

q = 1−p2

c , then for any Cz, P(Cz is closed) is upper bounded

by qκ. Thus the probability that there exists a closed circuit



surrounding the origin in L′ is,

∑

Cz,∀z

P(Cz is closed) ≤
∞
∑

z=4

qκρ(z). (19)

Therefore,
∑∞

z=4 qκρ(z) < 1 indicates that the probability of

no closed circuit surrounding the origin in L′ is strictly greater

than 0, which provides a lower bound of p2

c . For example, if

RI < dl

2 , κ = ⌊ z
2⌋ and thus

∑

Cz ,∀z

P(Cz is closed) ≤
∞
∑

z=4

q⌊
z
2
⌋ρ(z) =

4(9q)2

9(1 − 9q)2
.

When q < 1
15 ,

4(9q)2

9(1−9q)2 < 1 and thus the lattice is percolated,

which implies p2

c > 14
15 .


