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Abstract—In tactical wireless networks, the one-to-multiple
communication model is pervasive due to commanding and
control requirements in mission operations. In such networks,
the roles of nodes are non-homogeneous; i.e., they are not
equally important. This, however, opens a door for an adversary
to target important nodes in the network by identifying their
roles. In this paper, we investigate an important open question:
how to detect and conceal the roles of nodes in tactical wireless
networks? Answers to this question are of essential importance
to understand how to identify critical roles and prevent them
from being the primary targets. We demonstrate via analysis
and simulations that it is feasible and even accurate to identify
critical roles of nodes by looking at network traffic patterns. To
provide countermeasures against role detection, we propose role
concealment methods based on proactive network strategies. We
use simulations to evaluate the effectiveness and costs of the role
concealment methods.

I. INTRODUCTION

Tactical wireless networks [1]–[3] are mission-critical mo-

bile ad-hoc networks that involve unique challenges due to

tactical requirements, such as reliability and security in hostile

environments. Tactical wireless networks are envisioned to

provide the most effective solutions to cyber dominance for

networked warfighters.

In tactical wireless networks, the roles of nodes are non-

homogenous; i.e., they are not equally important. For example

[4], Intelligence, surveillance, and reconnaissance (ISR) opera-

tions are used to collect operational information, such as status

of the enemy, terrain, and weather. Such information will be

delivered to the commander, who will make the best judgement

to task ISR assets and soldiers. Therefore, commanding and

control roles are pervasive in tactical wireless networks. At

the network level, such roles lead to the one-to-multiple com-

munication model in the network, which is usually facilitated

by either unicast or multicast protocols [5]–[7].

In this paper, we investigate an important question: how

to detect and conceal the roles of nodes in tactical wireless

networks? This question has not been well explored in the

literature, but is of essential importance. In particular, we say

that a node has a commanding role in a tactical network if the

number of its active network flows with other nodes exceeds

a given threshold and say that it has an acting role otherwise.

In this paper, the concept of a node being commanding does

not necessarily mean that the node is sending real operational
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commands to others, but indicates that it is actively interacting

with others, thereby playing an important role in the network

by definition. Accordingly, the problem becomes two-fold: 1)

the role detection problem, i.e., whether we can accurately

identify such critical commanding nodes in a network from

an adversary’s point of view; and 2) the role concealment

problem, i.e., whether we can protect such nodes from being

identified from a defender’s points of view.

The role detection and concealment problems seem to be an

endless arms race. As both role detection and concealment are

not well investigated in the literature, in this paper, we attempt

to provide an initial study on both problems. More specifically,

we first show that network flow analysis [8]–[15] servers as a

foundation for role detection, based on which we develop our

role detection method. Simulation results demonstrate that it is

quite feasible and accurate to identify the roles of command-

ing nodes. These nodes can become an adversary’s primary

targets, thus must be protected by role concealment methods.

Accordingly, we propose a line of network strategies, which

proactively cause network traffic dynamics to counter network

flow analysis based role detection. We also use simulations to

evaluate the performance and cost of such proactive strategies.

Our contributions are two-fold: 1) we provide an initial

study on role detection and concealment, which are important

in tactical wireless networks; 2) we propose role detection

and concealment methods and comprehensively evaluate their

performance. Our initial work demonstrates that it is vital to

be proactive to protect critical nodes from being identified and

becoming primary targets in tactical wireless networks.

The rest of this paper is organized as follows. In Sec-

tion II, we introduce models and state the problem. In Sec-

tions III and IV, we present our findings in role detection and

concealment, respectively. Finally, we conclude in Section V.

II. MODELS AND PROBLEM STATEMENT

In this section, we introduce models and state the problems

of role detection and concealment. Notations: We denote by

AT the transpose of matrix A. We use R
n×m to represent the

set of all n-by-m real-valued matrices.

A. Network Model and Roles of Nodes

We consider a tactical wireless network with n nodes

(indexed by N = {1, 2, · · · , n}) distributed independently and

uniformly on region Ω = [0,
√

n/λ]2 for a large node density



λ such that the network is connected (asymptotically almost

surely) [16]. We say two nodes have a network link if they

are in each other’s transmission range r.

To meet tactical requirements, such as information collect-

ing and reporting, we define that there are two roles in the

network: commanding and acting in the following.

Definition 1 (Commanding and Acting Roles): We say a

node is commanding if it has network flows with rates in rate

region Σ to/from at least nc nodes (where nc > 1 is said to be

the threshold for commanding); and say it is acting otherwise.

Mathematically, we define that the role of node i (i ∈ N ),

denoted by Ri, has value 1 if it is commanding, and value 0

otherwise; i.e.,

Ri =

{

1 if node i is commanding,

0 if node i is acting,

for i ∈ N .

Then, we define a role vector R = [R1, R2, · · · , Rn]T .

Accordingly, the roles of all nodes can be characterized by the

role vector R in the network. We note that R contains im-

portant, sensitive information in the network and should never

be revealed. If R is disclosed, an adversary can immediately

know which node plays an important (commanding) role in

the tactical network.

It is worth noting that the rate region Σ is a set of allowed

rates. It can be a generic region, such as [σ, +∞) to take into

account any network flow as long as the flow rate is larger

than a threshold σ. It can also be a specific region, such as

[σ − ǫ, σ + ǫ] to only consider network flows generated by a

military standard with a fix communication rate σ, where ǫ is

the allowed error margin.

B. Adversary Model

We assume a relatively strong attacker existing in the

network. The goal of the attacker is to successfully detect the

role of each node in the network; i.e., decide whether a node

is commanding or acting. The attacker can overhear the data

transmissions on each link and estimate the transmission rate at

each link (e.g., by placing eavesdroppers all over the network).

The attacker is aware of the network topology; hence, given

a routing protocol used in the network (e.g., shortest path

routing), the attacker knows the routing path between any

source-destination pair.

The attacker will observe the network for a sufficiently-

long observation period; then attempt to detect the role of

each node. In this paper, the role detection and concealment

methods, and their associated operations will all happen within

this observation period, unless otherwise specified.

C. Problem Statement

Given the network, role and adversary models, we state our

research problems.

Definition 2 (Role Detection): The goal of the adversary

is (by observing network traffic transmissions) to find a role

vector estimate R̂ such that R̂ is in close value to the real role

vector R. In the best case, ‖R̂− R‖ should be minimized.

Definition 3 (Role Concealment): The goal of the network

defender is to make the real role vector R difficult to detect.

In the best case, for any node i, the adversary’s estimate R̂i

in R̂ should be equal to real value Ri in R with probability

0.5 (i.e., equivalent to a random 0/1 guess).

Note that it seems that the two research problems become

an endless arms race: a concealment method can be developed

based on attacking a role detection method, and vice versa. As

both role detection and concealment are not well studied in

the literature, we aim to propose an initial study on the two

problems. In particular, we first show that the state-of-the-art

on network flow analysis makes it feasible to detect node roles

in a network, then exploit proactive design of countermeasures

to conceal node roles, which leads to substantial difficulty for

any role detection based on network flow analysis.

III. ROLE DETECTION

In this section, we describe our design of role detection

methods based on network flow analysis. We first introduce

the backgrounds on network flow analysis, then design our

methods, and finally use simulations to show the effectiveness

of our method.

A. Backgrounds on Network Flow Analysis

According to our definitions, the role Ri of node i is based

on the number of its network flows to other nodes. Therefore,

our design of role detection must be based on network flow

analysis, i.e., estimating the rates of all possible flows in

the network. Recent advances in network flow analysis have

already established a research line called network tomography,

which is an effective way to infer end-to-end flow or link rates

from network measurements [8]–[14]. Thus, it is necessary to

briefly introduce network tomography before moving to the

design of network flow analysis based on role detection.

In the network with n nodes, there are at most
n(n−1)

2
undirected flows1. All of them are associated with a flow

rate vector x ∈ R
n(n−1)

2 ×1, whose entry represents the rate

of each flow. The attacker aims to get an estimate x̂ in close

value to x. However, the attacker cannot directly see x, but can

only observe the data transmission on each link. Therefore, the

attacker has to estimate the flow rate vector from a link rate

vector, which belongs to network tomography. In particular,

the objective of the attacker is to compute an estimate of

x ∈ R
n(n−1)

2 ×1 from the observed link rate vector y ∈ R
L×1,

where L is the number of point-to-point links in the network.

Each entry of y is the data transmission rate at each link.

It has been shown in the literature (e.g., [8], [10], [12], [13])

that x and y exhibit a linear relationship, i.e.,

y = Ax, (1)

where A = {ai,j} is called the routing matrix in the network,

whose element ai,j has value 1 if the i-th link is on the routing

path of flow j, and value 0 otherwise. Various methods have

1For the sake of notation simplicity, we consider undirected links in this
paper. We note that the directed link case does not affect any formulation in
this paper and thus is a straightforward extension.



been developed to solve (1) in an effective way (e.g., [8]–[11],

[13], [17], [18]). In this section, we do not intend to develop

any method to solve (1), but aim to leverage existing solutions

to (1) for building a role detection method.

B. Detection Method Design

We design a detection method to detect the roles defined in

Definition 1. As the role of a node is defined based on how

many network flows it has, the method consists of two steps

in the following.

1) Flow rate estimation. Use a network tomography method

to estimate all rates of possible flows in the network,

denoted by a vector x̂ = [x̂1, x̂2, · · · , x̂n(n−1)
2

]T . The

estimate x̂ should be in close value to x.

2) Role detection. For each node i, estimate its role R̂i as

R̂i = 1n“

P

f∈Fi
1{x̂f∈Σ1}

”

≥σ2

o

,
(2)

where Fi denote the set of indexes of all network flows

from/to node i, Σ1 is the rate threshold range for flow

detection, σ2 is the threshold for role detection, and

1E(x) is the indicator function that has value 1 if event

E happens and value 0 otherwise.

To be more specific, the second step in the role detection

method is to first compute the number of network flows

from/to node i with rate within the threshold range Σ1, then

compare the number with the threshold σ2 to decide whether

the role is commanding or acting. It is obvious that if the

first step can estimate the rates of all possible network flows

with small error, the second step will then accurately detect all

roles. In the literature, there are a wide range of tomography

methods available for the first step. In this paper, we use an

efficient basis pursuit denoising method in [19].

C. Performance Evaluation

We use simulations to evaluate the effectiveness of the

proposed role detection method. In our simulations, the trans-

mission range of each node is normalized to 1. We generate a

100-node network with density 5 (i.e., there are on average 5

nodes in a unit area). All nodes are uniformly distributed in the

network. There are 2 commanding nodes and 98 acting nodes

in the network. Each commanding node is communicating with

10 other random nodes. Among all acting nodes, there are

10 random source-destination node pairs. The rate of each

network flow is randomly distributed from 1 to 2 Mbps.

Fig. 1 shows a network topology in one simulation run.

In Fig. 1, two commanding nodes are sources/nodes 1 and

2. Each commanding node has 10 network flows to other

random destinations in the network. The links with active

network traffic induced by these flows are shown in solid lines.

Note that for better illustration, random network flows between

acting noes are not shown in Fig. 1.

Given the network topology and flow setups in Fig. 1,

we evaluate the performance of the role detection algorithm.

In particular, we first show the performance of flow rate

estimation, as it is the basis for role detection. We use a
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Fig. 1. Network topology and flows initiated by two commanding nodes
(nodes 1 and 2) in the 2-D network region (wireless transmission range is
normalized to 1).
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Fig. 2. Estimated flow rates from node 1 to nodes 2–100 in comparison to
real flow rates.

basis pursuit denoising algorithm proposed in [19] for flow rate

estimation. Fig. 2 depicts the comparison between estimated

and real flow rates for commanding node 1 to all possible

destinations (i.e., nodes 2 – 100). It is observed from Fig. 2 that

among all ten flows of node 1, eight are accurately estimated,

one has a substantial error, and the one is completely miss-

detected. This indicates the following.

• Most of the flow rates can be accurately estimated,

providing a good foundation for the next role detection

step;

• The thresholds Σ1 and σ2 in role detection algorithm (2)

should be properly set to achieve a good balance between

detection ratio and false alarm.

Next, we run role detection based on the flow rate estimation

with network setups in Fig. 1. We set Σ1 = [700, +∞] (i.e.,

we want to detect all flows with rate no less than 700 Kbps)

and σ2 = 7. Table I shows the following four performance

metrics.

• Flow detection error rate, which is the probability that

the existence of a flow is not detected.



• Commanding role detection rate, which is the probability

that a commanding node is indeed detected as a com-

manding node.

• Commanding role false alarm, which is the probability

that an acting node is mistakenly detected as a command-

ing node.

• Overall role detection error rate, which is the probability

that the role of a node (either commanding or acting) is

correctly detected.

TABLE I
ROLE DETECTION PERFORMANCE.

Flow Detection Error Rate: 1.4%

Commanding Role Detection Rate: 100%

Commanding Role False Alarm: 0%

Overall Role Detection Error Rate: 0%

We see from Table I that the flow detection error rate is

1.4%, indicating that most network flows can be identified

in the network with rate threshold region Σ1 = [700, +∞].
Commanding role detection rate and false alarm are very

important metrics for detecting critical roles in tactical wireless

networks. As most of the time, the adversary may be only

interested in these important nodes and consider them as the

primary targets. We see that the role detection method can

detect these roles with 100% accuracy and 0% false alarm for

the network setups in Fig. 1. And the overall role detection

error rate is also 0% shown in Table I.

Results from Table I are obtained from one simulation

run with a particular network topology. Therefore, we also

comprehensively evaluate the role detection performance by

averaging 100 random network topologies, each of which also

includes randomly generated network flows, commanding and

acting nodes.

3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

Threshold

R
a

ti
o

 

 

Flow Det. Error

Overall Role Det. Error

Comm. Role Det. Error

Comm. Role False Alarm

Fig. 3. The performance metrics of role detection for different threshold σ2

(from 3 to 7).

In all simulation runs, we set Σ1 = [700,∞] and vary the

value of σ2 from 3 to 7 in the network. Fig. 3 shows the

performance of the role detection method. We can observe

from Fig. 3 that as the threshold increases, the commanding

role detection rate decreases; at the same time, the command-

ing role false alarm also decreases. This is intuitively true

because a higher threshold means a tougher detection standard,

which decreases the detection ratio and false alarm at the same

time. From Fig. 3, it is observed that around 50% of nc is a

good threshold to achieve good performance in commanding

role detection. Note that this can also depend on conditions

in applications, such as how many network flows usually a

command node has.

In summary, our simulations show that role detection is not

only feasible but also accurate, which poses a challenging issue

against protecting critical nodes from being exposed in tactical

wireless networks.

IV. ROLE CONCEALMENT

A. Design Methodology

We have shown the feasibility and effectiveness of the

proposed role detection method in the previous section. From a

network defender’s perspective, it is critical to design strategies

to make sure that an adversary can conclude nothing or

wrong information from role detection, which we call role

concealment. It has a great potential to be deployed in tactical

wireless networks where role detection must be prevented.

Nonetheless, an adversary can perform role detection via

only passive observation or overhearing, which means that

the presence of the adversary may be never correctly known.

Therefore, role concealment should be proactive (i.e., always

actively online) rather than following a wait-and-detect-then-

act paradigm.

To systemically develop proactive strategies for role con-

cealment, a natural starting point is to take a close look at the

role detection process, then attempt to break its underlying

conditions to make it not work. Apparently, role detection

is based on network flow detection. Therefore, we first need

to understand how network flow detection works. Fig. 4(a)

shows an illustrative example of how flow detection works:

node A has an end-to-end flow with rate 100kbps to node H

and node B also has a flow with rate 50kbps to node H.

Suppose that there is an adversary that attempts to use flow

analysis to deduce from all link observations the facts that

nodes A and B have 100kbps and 50kbps flows to node H,

respectively. If the adversary is aware of routing paths and

overhears all link transmissions, i.e., A→C: 100kbps, C→F:

100kbps, B→D: 50kbps, D→F: 50kbps, and F→H: 150kbps

(because two flows use the same F→H link). It is easy to use

a method to get the facts: A→H is 100kbps, B→H is 50bps,

and there is no other flow in the network.

There are two conditions that a flow analysis method relies

on to successfully deduce the facts of A→H and B→H. (i) The

reason that the adversary observes link transmissions is only

because there exist some end-to-end flows in the network. In

other words, if there is no network flow, no data transmission

should be observed. (ii) The adversary is aware of how data

is routed from a source to a destination, which is determined

by the routing protocol used in the network.
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Fig. 4. Simple examples of proactive strategies: (a) normal network operation, (b) transmitting deception traffic, and (c) changing routing strategies.

Both conditions usually hold in a network because opti-

mized data transmission and routing mechanisms are widely

used in a network. As one major objective in network design is

to optimize the performance (e.g., maximizing the throughput

or minimizing the delay), it is apparent that nodes should not

transmit anything if they have no data to transmit or forward.

In addition, a routing path should always be optimized from

a source to a destination. Such design can lead to static or

predictable routing paths, which can be in turn taken advantage

of by the adversary to infer information.

Accordingly, in order to make flow analysis inaccurate,

strategy design should be focused on breaking the two condi-

tions that it depends on.

• Transmitting redundant traffic into the network to break

condition (i). We call such traffic deception traffic. In this

case, the link observations are due to either deception

traffic or real network flows. For example, as shown in

Fig. 4(b), nodes B, C, D, and F all transmit an amount

of deception traffic into the network, which acts like

camouflage over the real network flows. Thus, it becomes

difficult for the adversary to infer the real network flow

information.

• Keeping changing routing to break condition (ii). We call

such a strategy routing changing. For example, as shown

in Fig. 4(c), if nodes A and B no longer use the static

routing paths, but vary their paths to node H, it is difficult

for the adversary to correctly acquire the exact routing

path information that varies over time.

Both deception traffic and routing changing strategies are

proactive and can cause more dynamics in the network to

make flow analysis inaccurate, and accordingly failing role

detection. On the other hand, however, they also break the

requirement of the optimized network design (e.g., not always

choosing the optimal routing path), thereby resulting in poten-

tial performance loss. A key question is under limited costs,

what we can do for role concealment.

In this paper, our objective is to design these two proactive

strategies with the simplest form to avoid incurring substantial

operational complexity in an already complicated network

environment. Thus, we consider a deception traffic strategy,

in which each node transmits deception traffic independently

to its one-hop neighbor. The amount of deception traffic on

each link is always bounded above such that the performance

degradation is also limited. We consider a routing changing

strategy, in which each node will randomly select a different

(longer) path for data delivery to a destination.

B. Simulations

We use simulations to evaluate the effectiveness and cost

of role concealment methods. We generate a similar 100-node

network with density 5. All nodes are uniformly distributed

in the network. There are 2 commanding nodes and 98 acting

nodes in the network. The rate of each network flow is ran-

domly distributed from 1 to 2 Mbps. There exists an adversary

that attempts to use the role detection method discussed in

Section III to detect the role of each node in the network.
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Fig. 5. The performance metrics of role detection under the deception traffic
based role concealment method.

We first evaluate the performance of the deception traffic

strategy. The deception traffic rate on each link is uniformly

distributed from 0 to a given rate. Fig. 5 shows the perfor-

mance metrics of role detection affected by deception traffic

with limited average traffic rate from 100–900 Kbps. We can

see from Fig. 5 that as the deception traffic rate increases,

the commanding role detection ratio decreases and approx-

imately remains at 75.0%; and the commanding role false

alarm increases sharply to 43.5%. This means that deception

traffic significantly reduces the performance of role detection,

particularly increasing false alarm as all nodes are transmitting



in the network (so they are very likely to be considered

as commanding). It is obvious that the overhead cause by

deception traffic is large as it requires every node to transmit

in the network.
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Fig. 6. The performance metrics of role detection under the routing changing
based role concealment method.

We then evaluate the performance of the routing changing

strategy. Each node will use K-th shortest path routing for data

delivery (K ≥ 2); however, we assume that the adversary has

no such knowledge and thinks everyone still uses the (1st)

shortest path. This, obviously, will lead to routing information

mismatch in role detection. Fig. 6 shows the performance

metrics of role detection affected by routing changing with

K = 2, 3, 4, 5, 6. it is noted from Fig. 5 that as long as K ≥ 2,

the commanding role detection ratio is approximately 50.0%,

which indicates that commanding role detection now becomes

a random 0/1 guess; and the commanding role false alarm

increases slightly to 1.41%, which is much smaller compared

with the false alarm induced by deception traffic in Fig. 5. This

is because when using routing changing, no node will transmit

redundant traffic (so they are less likely to be considered

having more network flows). The role detection error is due

to information mismatch.

In addition, we also measure the delay performance degra-

dation due to routing changing as each node will use a longer

routing path, causing more delivery delay. Table II shows the

delay cost for K = 2, 3, 4, 5, 6. For example, K = 6 will

cause 12.2% more delay in average message delivery in the

network.
TABLE II

DELAY PERFORMANCE DEGRADATION.

K: 2 3 4 5 6

Degradation: 5.56% 7.92% 9.37% 10.9% 12.2%

C. Discussions

From our simulations, we can see that deception traffic

is effective in causing false alarm in role detection, but re-

quires all network nodes transmitting deception traffic, causing

throughput degradation in the network. Routing changing is

a good strategy to counter the commanding role detection

at the cost of the delay performance. They can be chosen

based on different application requirements and conditions in

tactical wireless networks. We note that more sophisticated

strategies can be developed upon the deception traffic and

routing changing strategies discussed in this paper.

V. CONCLUSIONS

In this paper, we studied the role detection and concealment

problems. We showed that our role detection methods can

identify critical roles of nodes. Then, we proposed two proac-

tive strategies (deception traffic and routing changing) for role

concealment, and use simulations to show the effectiveness

and cost of the proposed strategies. Our work demonstrated

that it is vital to be proactive to protect critical nodes from

being identified in tactical wireless networks.
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