

THE UNIVERSITY OF **MEMPHIS**.

Network Anti-Inference: A Fundamental Perspective on Proactive Strategies to Counter Flow Inference

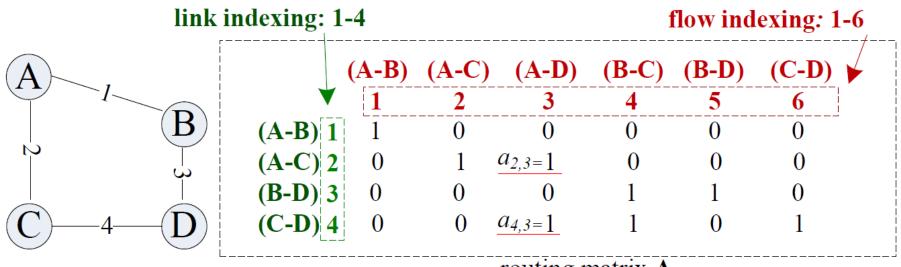
Zhuo Lu University of Memphis

Cliff Wang Army Research Office

Outline

- Network inference
- Network anti-inference
 - Deception traffic
 - Routing changing
- Analysis and examples
- Simulation results
- Conclusions

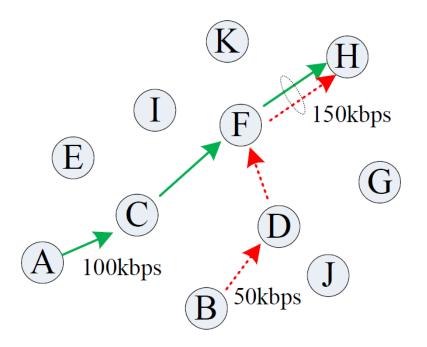
Network Inference


- Also called network tomography
 - Building a relationship between link and flow information. Then, Inferring one from the other.
 - Given link rate info, get the flow rate info;
 - Given flow rate info, get the link rate info;
- Applications: fault diagnose, network monitoring, flow detection, ...
- We focus on flow inference in wireless networks.
 - Goal: make flow inference inaccurate, which is called anti-inference!

Inference: Problem Formulation

- Flow inference formulation: y = Ax
 - y link rate vector: observed by attackers
 - x flow rate vector: to be estimated
 - A routing matrix: known network info
- Given A and y, estimate x
 - Usually an under-determined system
 - So no least squares solution!

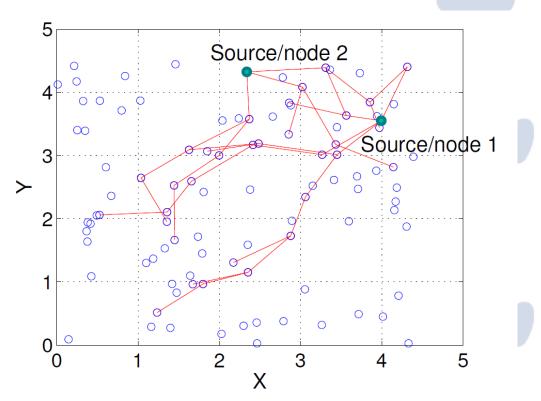
How to Get Routing Matrix A


• Example:

routing matrix A

Example

- Observing link transmissions (knowing y)
 - 11 nodes, 2 flows, $y=Ax \rightarrow get x$ from y.
 - Inference Result: $A \rightarrow H$: 100kbps, $B \rightarrow H$: 50kbps

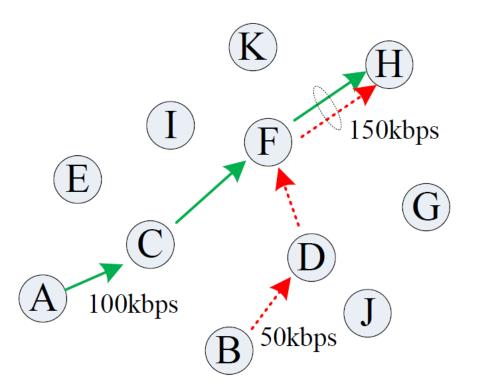


Network Inference: Negative Side

- Network inference:
 - Get some information by observing.

Example:

- Two critical nodes are multicasting info in the network,
- By using network inference, an adversary can infer all network flows by observing link transmission.
 - Know who are critical nodes.



Network Anti-Inference

- Definition:
 - Methods that make network inference inaccurate!
- Attacker:
 - Try to infer the rate of all network flows by observing link transmissions.
- Our objective is to answer:
 - What are the possible methods?
 - What is the benefit?
 - What is the cost?

How to break inference?

- Two underlying assumptions for inference
 - Link traffic is only induced by network flows
 - No flow → no link traffic
 - Routing is usually predictable
 - E.g., shortest path routing.

Anti-inference: break at least one of these assumptions! We have to be proactive!

Deception Traffic

- Link traffic is only induced by network flows
 - No flow \rightarrow no link traffic

Every node randomly transmits some redundant traffic

All nodes transmit some redundant traffic in a coordinated way

Deception Traffic Strategy (Proactive)

Routing Changing

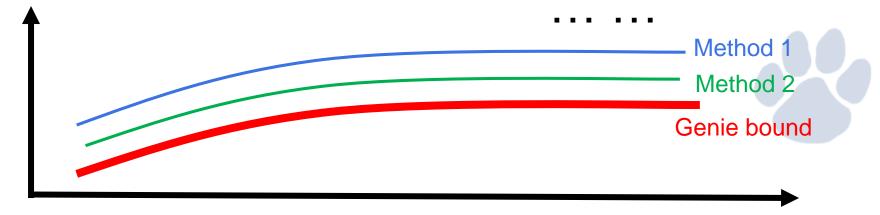
- Routing is usually predictable
 - E.g., shortest path routing.

Dynamically change routing paths to make sure the attacker has some information mismatch

Routing Changing Strategy (Proactive)

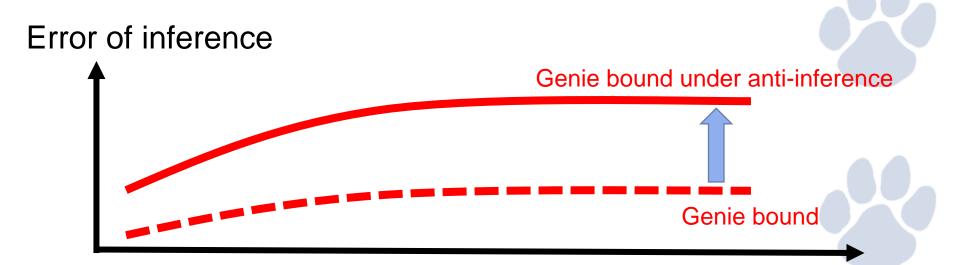
Formulation for Anti-Inference

• Original formulation:


-y = Ax

- Deception Traffic:
 - Add noise: y = Ax + J (deception traffic vector)
- Routing Changing:
 - Information mismatch: changing routing means routing matrix $A \rightarrow B$ (\leftarrow new routing matrix)

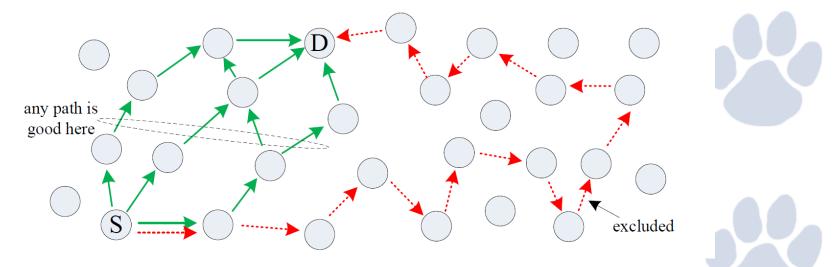
Metric to Measure the Benefit


- Metrics to measure the accuracy of network inference? Genie bound: lower bound of error in all possible methods.
 - Assuming the attacker knows who is transmitting,
 - Then using minimum mean squared error estimation to estimate all the flow rates.

Error of inference

Genie Bound

 We want to see how much the genie bound can be increased due to deception traffic and routing changing with bounded costs.



Bound the Costs

- Deception Traffic: y = Ax + J
 - |J|/n, or E|J|/n (average deception traffic per node) is smaller than a constant, where n is the number of nodes in the network.
- Routing Changing: $A \rightarrow B$
 - We have a random geometric graph model, all nodes are randomly distributed.
 - A and B are random matrices.
 - How to model the routing changing ??

Routing Modeling

Model: Under any routing strategy, the average number of hops between any source-destination pair is denoted by a function g(n) satisfying g(n) = O(n), where n is the number of nodes in the network

Existing K-shortest path routing satisfies this model.

Routing Modeling II

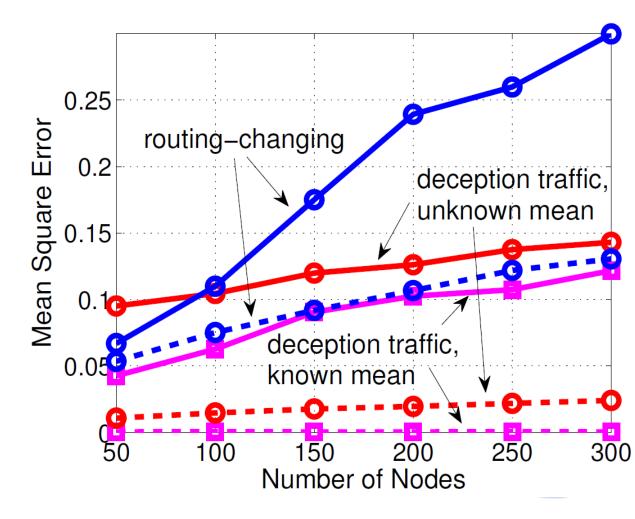
- Quantifying the cost of routing changing:
 - The original routing changing: g(n)
 - The new routing changing: h(n)
 - The cost is h(n)/g(n),

where *n* is the number of nodes in the network.

Limit the cost: $\Theta(h(n)/g(n)) = \Theta(1)$,

Theoretical Result: An Example

- In a network with *n* nodes, ⊖(n) random network flows.
 - ▲ Impact of antirouting-changing and random inference under deception traffic (at least) limited cost routing-changing (at least) optimally coordinated deception random with unknown mean traffic random with known mean Number of nodes


Simulation Results

Inference:

 in-crowd algorithm (Gill, *et al*, 2011) for inference

Anti-inference

- ~50% deception traffic in the network,
- ~30% hop increase in routing changing

Dashed lines – Genie bounds; Solid slides – MSEs of in-crowd

Conclusions

- Network anti-inference
- A fundamental view on proactive strategies:
 - Deception traffic
 - Routing changing
- Random traffic has the impact on the same order of the best coordinated traffic.
- Routing changing is generally better than the deception traffic.

Thank you! Q/A?

www.memphis.edu