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Abstract—A botnet in mobile networks is a collection of
compromised nodes due to mobile malware, which are able to
perform coordinated attacks. Different from Internet botnets,
mobile botnets do not need to propagate using centralized
infrastructures, but can keep compromising vulnerable nodes in
close proximity and evolving organically via data forwarding.
Such a distributed mechanism relies heavily on node mobility
as well as wireless links, therefore breaks down the underlying
premise in existing epidemic modeling for Internet botnets.

In this paper, we adopt a stochastic approach to study the
evolution and impact of mobile botnets. We find that node
mobility can be a trigger to botnet propagation storms: the
average size (i.e., number of compromised nodes) of a botnet
increases quadratically over time if the mobility range that each
node can reach exceeds a threshold; otherwise, the botnet can
only contaminate a limited number of nodes with average size
always bounded above. This also reveals that mobile botnets can
propagate at the fastest rate of quadratic growth in size, which
is substantially slower than the exponential growth of Internet
botnets. To measure the denial-of-service impact of a mobile
botnet, we define a new metric, called last chipper time, which
is the last time that service requests, even partially, can still be
processed on time as the botnet keeps propagating and launching
attacks. The last chipper time is identified to decrease at most

on the order of 1/
√

B, where B is the network bandwidth. This
result reveals that although increasing network bandwidth can
help with mobile services; at the same time, it can indeed escalate
the risk for services being disrupted by mobile botnets.

I. INTRODUCTION

With the proliferation of smart handheld devices and the

exploded number of malware on mobile platforms, a mobile

botnet [1], [2], which is a collection of compromised (or

infected) mobile nodes. that can perform coordinated attacks,

no longer occurs in theory, but comes into practice. For

example, Ikee.B [3] in 2009 was found to include command

and control logic to render a number of infected iPhones

under the control. In 2012, Symantec found a large botnet

Android.Bmaster [4] in China that had infected an estimate of

hundreds of thousands of Android phones. As a result, mobile

botnets have already become one of the most serious security

threats to today’s mobile networks and applications.

A mobile botnet can compromise vulnerable nodes by

sending malware via centralized infrastructures (e.g., using

short and multimedia message services [1], [4], [5]). However,
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to eschew increasingly enhanced monitoring of cellular infras-

tructures, a stealthy way for propagation is to stay off the radar

and spread to vulnerable nodes nearby, which has been adopted

in existing malware, such as Mabir, Lansco and CPMC [6].

A challenging question is how botnets propagate via such

proximity infection, especially how they behave in mobile

networks compared with their forerunners in the Internet.

Extensive works have investigated Internet malware prop-

agation using epidemic modeling (e.g., [7], [8]), which pre-

sumes a condition that an infected node can compromise other

vulnerable nodes with equal probability. A few studies [9],

[10] have adapted epidemic modeling to characterize mobile

malware based on simplistic random movements, where the

equal-probability assumption still holds. These prior efforts

conclude that using proximity infection, malware can continue

infecting more nodes without using infrastructures, thereby

leading to severe epidemics. This result is also observed by

a number of experiments [11]–[13]. Interestingly, however, a

recent paper [14] draws an opposite conclusion based on simu-

lations that proximity infection only affects a limited number

of nodes and is far less concerning in urban environments

where node susceptibility is relatively low. These somewhat

discrepant results may be due to different system setups,

such as transmission range and random mobility. Nonetheless,

the primary reason is still unclear. As a result, it is not yet

fully understood how proximity infection can cause a botnet

propagation storm and what the impact is in mobile networks.

In this paper, we are motivated to address this open question

by considering a practical scenario with heterogeneous mobil-

ity, in which nodes are more likely to move around in certain

areas. Such heterogeneity inevitably breaks the premise of

equal-probability infection used in existing epidemic modeling

[9], [10]. Thus, we take a stochastic approach to study how

a mobile botnet evolves. In particular, we denote by S(t) the

set of infected nodes in a mobile botnet at time t. The botnet

originates from an initially infected node that starts to move

around and compromise nearby vulnerable nodes at time 0.

We are interested in how the botnet size |S(t)| (defined as the

number of infected nodes in the botnet) increases over time t.

Our results reveal an interesting dichotomy of mobile botnet

propagation: the average size of a mobile botnet E|S(t)| either

grows quadratically over time t or is always bounded above. In

particular, given node density λ, wireless transmission range r,

and mobility radius α that is the maximum range that a node978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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can reach, we find that as long as λ(2α+r)2 exceeds a thresh-

old, E|S(t)| is a quadratical function of t; otherwise, |S(t)|
is finite almost surely with eventual size |S(∞)| exponentially

distributed. This means that with fixed network setups λ and r,

sufficient mobility (i.e., mobility radius α becomes large) can

provoke mobile botnet propagation from limited infection to

epidemics. Therefore, our findings not only serve as a bridge to

connect two discrepant results in the literature, but also reveal

that mobile botnets via proximity infection can propagate at

the fastest rate of quadratic growth, which is much slower than

the exponential growth of Internet botnets.
In order to measure the denial-of-service impact of a mobile

botnet with quadratic growth in size, we define last chipper

time, the last time moment that a required ratio σ of service

requests from mobile nodes to a service center can still be

processed on time, while the botnet keeps propagating and

attacking. We find that the last chipper time decreases at most

on the order of 1/
√

B log(1/(1−σ)), where B is the network

bandwidth. Based on this, we can quantitatively assess how

increasing network bandwidth induces the risk of botnets to

disrupt mobile services. For example, the bandwidth of current

cellular networks is expected to increase 10 times from LTE

to LTE advanced, a mobile botnet, in the fastest case, needs

to propagate only one third (i.e., 1/
√

10) of the time that it

spends in LTE to disrupt the same service in LTE advanced.
The reminder of this paper is organized as follows. In

Section II, we introduce preliminaries and models. In Sec-

tions III and IV, we investigate how a mobile botnet evolves

and what its impact is. Finally, we conclude in Section V.

II. PRELIMINARIES AND MODELS

In this section, we first present the models used in this paper,

then formulate the research problem.

A. Network and Mobile Users

We consider a hybrid mobile network with two distinct types

of nodes: mobile nodes that are common users moving around

in the network, and infrastructure nodes that are base stations

or access points to provide mobile services to mobile nodes.
There are n mobile nodes distributed independently and uni-

formly on a torus surface Ω = [0,
√

n
λ ]2 for some node density

λ. Infrastructure nodes form square cells in the network, as

shown in Fig. 1(a). They have the wireless network interface

that offers wireless access to mobile nodes. In addition, they

are interconnected with each other via high-speed wireline

networks and are also connected to a data service center that

processes service requests from mobile nodes.
Mobile nodes are able to communicate directly with each

other, and can also communicate with their nearest infras-

tructure nodes for mobile services. As shown in Fig. 1(b),

the transmission ranges of mobile and infrastructure nodes

are the same and denoted by r. The network bandwidth B
is shared among all mobile and infrastructure nodes. Mobile

nodes consist of legitimate nodes and malicious nodes that are

compromised by malware and attempt to infect other mobile

nodes in the network. Infrastructure nodes, on the other hand,

are invulnerable to malware infection.

mobile nodes 

moving around

malware-infected nodes 

also moving around

Infrastructure 

node

transmission 

radius r

...

... ...

......

...

...

...

..
.

...

...

(a)

(b)

Fig. 1. Network architecture: infrastructure nodes and mobile nodes.

B. Mobile Malware and Botnet

When a mobile node is infected by malware, it may not

behave legitimately. Generally speaking, mobile malware is

malicious software on mobile platforms that attempts to take

control of a device and copy itself to other susceptible devices,

which is called malware propagation [1], [3]. More danger-

ously, if mobile nodes are infected by the same malware,

they can form a mobile botnet [2], [3] that is a collection of

compromised mobile devices under the same control. Mobile

botnets have already been found in practice, such as Ikee.B

in 2009 [3] and Android.Bmaster in 2011 [4]. In essence,

a mobile botnet can be formed in the following two ways:

(i) propagation through infrastructures (malware sending its

copies using short/multimedia message services or advertising

its applications (APPs) on mobile markets [1], [4], [5]), (ii)

proximity infection (a compromised node sending malware to

nearby nodes using peer-to-peer wireless links [6], [14]).

Although botnet propagation is very fast through infrastruc-

tures, it can be easily ceased by increasingly enhanced security

systems at infrastructures (e.g., Google’s Android kill switch).

Hence, a stealthy and safe way for propagation is to infect

vulnerable nodes nearby, because such proximity infection

can easily persist and remain undetected due to the nature

of decentralized infection and the dynamic network topology.

The proximity infection mechanism has already been found in

existing malware, such as Mabir, Lansco and CPMC [6].

mob
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 trac

e

infected node

susceptible
susceptible

infected infected

…

…

…

Fig. 2. Mobile botnet evolution over time via proximity infection.

Accordingly, we focus on the scenario in which malware

intends to use proximity infection to form a botnet. We

consider the malware infection process starting from one

initially infected node that attempts to propagate malware to

other vulnerable nodes in the network. As shown in Fig. 2,

a compromised node propagates malware to the other node
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when (i) the two nodes must move into each other’s wireless

transmission range r; (ii) the other node must be susceptible

to malware (a vulnerability ratio κ∈ (0, 1) is used to denote

the probability that a node is vulnerable); and (iii) the required

infection time (how long it takes to infect a node) is randomly

distributed in a range [δ1, δ2]. This is because the spread of

malware requires some time for user or application interaction.

If two nodes move out of each other’s range and have no time

to finish the interaction, a node cannot be infected even if it

is vulnerable. Thus, our model also accommodates the case of

limited contact or interaction time.

1) Node Mobility: Mobility plays an essential role in the

performance of mobile applications, and accordingly has sub-

stantial impacts on malware propagation [13]. We consider a

generic mobility model that accounts for a practical scenario of

spatial heterogeneity, in which mobile nodes are more likely to

stay in certain areas (e.g., their homes or offices) and less likely

to be in others. In particular, similar to existing works [15],

[16], we define that for a mobile node mi, there exist a home

point hmi
, which is independently and uniformly distributed

over region Ω. We also define a mobility radius α for mi such

that mi moves around hmi
with probability density function

Ψ(x), which is invariant in all directions and satisfies Ψ(x)>0
when ‖x−hmi

‖≤α, and Ψ(x)=0 otherwise. In addition, all

mobile nodes move around their home points according to

independent stationary processes.

We assume that malware can only compromise the software

in a vulnerable node, but cannot decide the node’s movement

since mobility is usually determined by human beings.

C. Problem Formulation

As the initially infected node moves around and intends to

spread malware to other vulnerable nodes starting from time 0,

it can be expected that more and more nodes are infected and

repeat the same infection process in the network. Therefore,

a large-scale mobile botnet might be built from the scratch

with sufficient time. Such a botnet could be very detrimental

to mobile users as well as mobile service operations.

In order to understand the potential impact of a mobile

botnet, we first need to investigate how it evolves over time;

i.e., we are interested in how many nodes in total have been

infected at a particular time t. To proceed, we define the size

of a mobile botnet as follows.

Definition 1: A mobile botnet, denoted by S(t), is the set

of all malware-infected nodes at time t. The size of the botnet

|S(t)| is defined as the total number of nodes in S(t).
With Definition 1, we further characterize how fast a mobile

botnet can spread malware in the network. Specifically, we

define the evolution speed of a botnet in the following.

Definition 2: The evolution speed of a mobile botnet, de-

noted by V (t), is defined as V (t) = E|S(t)|/t, where E|S(t)|
is the average number of nodes in S(t) at time t.

Given Definitions 1 and 2, we formally state our research

problem: for a mobile botnet originated from one initially

infected node at time 0, what its size |S(t)| and evolution

speed V (t) are at time t > 0?

III. HOW DOES A MOBILE BOTNET EVOLVE OVER TIME?

In this section, we first investigate the size of a mobile

botnet |S(t)| and its evolution speed V (t), then use mobility

traces to show botnet propagation in realistic environments.

A. The Average Size and Evolution Speed

From Definition 2, we know that the evolution speed of a

botnet V (t) is based on the average size E|S(t)|. Thus, we

first investigate the size of a mobile botnet at time t.
Theorem 1 (Size of a mobile botnet): For a mobile botnet,

its average size E|S(t)| at time t can be written as

E|S(t)| =

{

Θ(1) if κλ(2α + r)2 = O(1)
Θ(t2) if κλ(2α + r)2 = Ω(1),

where κ is the vulnerability ratio, λ is the node density, α is

the mobility radius, and r is the wireless transmission range.1

Proof: This theorem consists of two parts. We first consider

the E|S(t)| = Θ(1) part, then the E|S(t)| = Θ(t2) one.

Without loss of generality, assume that mobile node m1 is

the initially infect node that moves around in the network and

attempts to infect vulnerable nodes as many as possible. Once

a node is infected by node m1, it will also start to infect others.

This means that this node can be considered as an offspring of

node m1. Thus, proximity infection can be modeled based on

a branching process [17] that characterizes how a population

evolves from generations to generations.

We consider node m1 as the only node in the 1st generation,

the nodes directly infected by node m1 as the 2nd generation,

and so on. Now construct a branching process {Zi} satisfying

Zi+1 =
∑Zi

j=1 Yi,j , where Yi,j is the number of nodes infected

directly by the j-th infected node of generation i.

ra a

infected 

node

vulnerable 

node

Fig. 3. The maximum possible range that a node can infect the other.

First take a look at node m1 (i.e., the 1st infected node of

generation 1). As shown in Fig. 3, it is impossible for node m1

to infect a node whose home point has a distance to m1’s larger

than 2α + r since there is no way for the node to move into

m1’s contact region. Let Y ′
1,1 be the total number of vulnerable

nodes that are able to move into the contact region of node m1.

Then, it always holds that Y1,1 ≤ Y ′
1,1 at any time. Similarly,

we have i.i.d. random variables {Y ′
i,j} that satisfy

Yi,j ≤ Y ′
i,j for any i, j > 0. (1)

1We say f(x) = O(g(x)) if ∃ x0 and c > 0 such that f(x) ≤ cg(x)
∀x>x0. Similarly, f(x)=Ω(g(x)) if f(x)≥cg(x). Finally, we say f(x)=
Θ(g(x)) if f(x)=O(g(x)) and f(x)=Ω(g(x)) at the same time.
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Note that Y ′
i,j denotes the total number of vulnerable nodes

that can move into the contact region of the i-th infected node

of generation j with radius 2α+r. This indicates that the mean

of Y ′
i,j satisfies µ = E(Y ′

i,j) = γκλπ(2α+r)2 by the thinning

theorem [18], where γ > 0 is the probability that an infected

node has no enough time to infect a vulnerable node when

they meet each other (i.e., their contact time is smaller than

the required infection time randomly distributed in [δ1, δ2]).
Construct a Galton-Watson process {Z ′

i} satisfying

Z ′
i+1 =

Z′

i
∑

j=1

Y ′
i,j . (2)

It follows from (1) that Zi≤Z ′
i for i>0. From the branching

property, it holds for generations i+1 and i that E(Z ′
i+1) =

µE(Z ′
i), and the average total number of nodes

∑∞
i=1 Z ′

i =
1/(1−µ) when µ<1. Thus, if µ<1 (i.e., γκλπ(2α+r)2 <1),

the average botnet size can be written as

E|S(t)| ≤
∞
∑

i=1

E(Z ′
i) = 1/(1 − µ) = Θ(1), (3)

which completes the E|S(t)| = Θ(1) part after we rewrite the

condition γκλπ(2α + r)2 < 1 as κλ(2α + r)2 = O(1).
Next, we move on to the E|S(t)| = Θ(t2) part. First, it

follows from Lemma 1 in Appendix A that the average size

of the botnet satisfies

E|S(t)| = Ω(t2) (4)

for κλ(2α + r)2 = Ω(1).
Thus, it suffices to show that E|S(t)| is upper bounded by a

quadratic function of t at the same time, i.e., E|S(t)| = O(t2).
Note that it takes at least a time period δ1 to propagate the

malware from one node to the other. At time t, the farthest

distance the malware can propagate is (2α + r)t/δ1. In this

range, the average number of vulnerable nodes is κλ((2α +
r)t/δ1)

2, showing that E|S(t)| = O(t2). Combining this upper

bound with the lower bound in (4), we obtain that E|S(t)| =
Θ(t2) when κλ(2α + r)2 = Ω(1). �

Remark 1: Theorem 1 reveals interesting phenomena of

mobile botnet propagation: a mobile botnet can either exhibit

quadratic growth in its size over time, or have a limited size

without persistent propagation. The key factor that determines

which type of propagation the botnet has is the value of

κλ(2α + r)2. When the value is larger than some constant,

the average total number of infected nodes keeps increasing

quadratically; when the value is less than some constant, only

a limited number of nodes can be infected in the network.

Given fixed network setups (i.e., node density λ and wire-

less transmission rage r), Theorem 1 indicates that sufficient

mobility (i.e., mobility radius α is sufficiently large) always

guarantees the quadratic growth in size for a mobile botnet.

In this case, more and more nodes become infected as time

goes, which has been observed in [9]–[13]. On the other hand,

given fixed mobility models, sufficiently small vulnerability

ratio κ ensures the limited propagation of a mobile botnet,

which well explains the opposite results in [14]. We also note

that there may exist a unique threshold of κλ(2α + r)2 to

trigger the Θ(t2) propagation. However, its exact value could

be mathematically intractable to find.
With Theorem 1, the results on the evolution speed of a

mobile botnet are presented in the following.
Corollary 1 (Botnet evolution speed): Given the conditions

in Theorem 1, it holds for the evolution speed of a mobile

botnet V (t) that V (t) = Θ(1/t) or V (t) = Θ(t).
Proof: According to Definition 2, we obtain the evolution

speed V (t) = E|S(t)|/t . Then, the results of V (t) = Θ(1/t)
or V (t) = Θ(t) follow immediately from Theorem 1. �

Remark 2: It is well known that the malware propagation

speed on the Internet increases exponentially over time. Our

results quantitatively show that mobile malware via proximity

infection propagates with at most linearly increasing speed,

which is significantly less than its counterpart on the Internet.

B. Stochastic Bound

According to Theorem 1, we know that the average size

of a mobile botnet with Θ(1) propagation is always bounded

above even if the time goes to infinity. In this case, we are

also interested in what the distribution of its eventual size is,

which is given in the following.
Theorem 2: The tail distribution of the eventual size of a

botnet P(|S(∞)| > L) decays at least exponentially fast when

κλ(2α + r)2 = O(1).
Proof: Recall that we have already constructed a process in

(2) that satisfies

P(|S(∞)| > L) ≤ P(

∞
∑

i=1

Z ′
i > L). (5)

Then, it suffices to show that the distribution of
∑∞

i=1 Z ′
i

decays exponentially fast.
First, according to the total progeny theorem (Proposition

3.4 in [17]), we obtain

P(

∞
∑

i=1

Z ′
i = l) = P(

l
∑

i=1

Y ′
l,i = l − 1)/l, (6)

where Y ′
l,i is the number of vulnerable nodes whose home

points fall into a circle with radius 2α + r. With the net-

work size scaling, node distribution can be represented as a

Poisson point process [19], [20]. Thus, it holds for Y ′
l,i that

P(
∑l

i=1 Y ′
l,i = l−1) = (lµ)l−1e−lµ

(l−1)! . Inserting it into (6) yields

P(

∞
∑

i=1

Z ′
i = l) = (lµ)l−1e−lµ/l!. (7)

Applying Stirling’s formula (l! = Θ(1)ll+
1

2 e−l) to (7), we

obtain

P(

∞
∑

i=1

Z ′
i = l) = Θ(1)l−

3

2 µl−1e−l(µ−1). (8)

Therefore, it follows from (8) that

lim
l→∞

log P(
∑∞

i=1Z
′
i= l)

l
= lim

l→∞

Θ(1)−3
2 log l+(l−1) logµ−(µ−1)

l
= log µ− lim

l→∞
1.5 log l/l = Θ(1), (9)
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showing that P(
∑∞

i=1 Z ′
i) decays exponentially, which com-

pletes the proof. �

Remark 3: Theorem 2 shows that if κλ(2α + r)2 is suffi-

ciently small, the distribution of the size of a mobile botnet

exhibits exponential decay. In this case, it is quite unlikely that

a botnet can infect a large number of nodes in the network and

cause severe impacts on mobile services.

C. Experimental Evaluation

In addition to theoretical analysis, we use experiments based

on mobility traces to investigate mobile botnet propagation in

realistic environments. In our experiments, we generate mobile

nodes on a fixed-size map. Each node moves around according

to realistic mobility traces. We randomly choose one node as

the initially infected node that attempts to propagate malware

to other vulnerable nodes.

In the first experiment, we use the EPFL data set [21], which

contains mobility traces of taxi cabs in San Francisco. We

generate 300 mobile nodes based on the 300 cab traces during

a 12-day time period. The experiment starts at time 0 and we

are interested in how many nodes are infected as time goes.

Fig. 4 shows the botnet size (i.e., the number of total

infected nodes) versus elapsed time with different initially

infected nodes (cabs “abmuyawm” in solid line and “oafhynu”

in dotted line), different transmission ranges (100m WiFi

and 10m bluetooth) and a constant vulnerability ratio κ=0.8

(i.e. 240 out of 300 nodes are vulnerable). It is noted from

Fig. 4 that malware propagation with WiFi is substantially

faster than that with bluetooth since WiFi has a much larger

transmission range than bluetooth. Moreover, we observe in

Fig. 4 that the botnet size as a function of elapsed time

exhibits approximately parabolic curves especially for the two

bluetooth cases, meaning that the botnet size is on the same

order of a quadratic function of time t, i.e., Θ(t2).
In order to further evaluate the WiFi cases, we perform a

set of experiments. Fig. 5 shows the botnet size versus elapsed

time for distinct vulnerability ratios (κ=0.1, 0.4, 0.6, and 0.8).

The initially infected node is set to be cab “abmuyawm” in

the traces, and all nodes use WiFi to propagate malware. We

use a quadratic function to curve-fit the experimental data in

Fig. 5 and find that the data shows the good trend of quadratic

increase (even for the κ=0.1 case with sufficient time, which

is not depicted in Fig. 5 due to the X-axis limit). In addition,

Fig. 6 depicts the evolution speed as a function of time with

vulnerability ratio κ=0.4, 0.6, and 0.8. It is observed from

Fig. 6 that the evolution speed shows the trend of linear

increase (not strictly linear, but in the order sense) for different

vulnerability ratios.

It is worth mentioning that during our experiments, we find

that malware can always infect all vulnerable nodes eventually.

The reason is that the mobility traces in the EPFL data set

are based on taxi cabs, which move around sufficiently on the

map of San Francisco. In other words, the mobility radius α is

large enough so that mobility has already triggered the Θ(t2)
propagation in Theorem 1.

In order to show how malware can propagate without

sufficient mobility, we use the UDelModels [22] to generate

mobility traces. UDelModels is a tool that can generate re-

alistic human mobility for downtown metropolitan areas with

configurable parameters. The map used in our experiments is

a 2km×2km map in downtown Chicago as shown in Fig. 7.

Detailed setups are shown in Table I.

TABLE I
UDELMODELS-BASED EXPERIMENT SETUP.

Number of walking nodes: 2000
Moving speed [1, 4]
Pause time distribution Exponential
Wireless transmission Bluetooth (10m)
Vulnerability ratio 60%
Running time 24 hours

Mobility radius1 10m, 100m, 500m, 1km

1. Each node’s mobility trace is generated based on a partial map
with a given mobility radius in UDelModels.

Fig. 8 illustrates the botnet size as a function of the elapsed

time with vulnerability ratio κ=60% and mobility radius

α=10m, 100m, 500m, and 1km. We note from Fig. 8 that when

the mobility radius α is 100m, 500m, or 1km, the botnet size

also exhibits quadratic growth over time, similar to Fig. 5.

However, when α=10m, the botnet size does not increase as
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Fig. 7. 2km×2km map in downtown Chicago
used in experiments (Courtesy of [22]).
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radius α = 10m.

time increases, indicating the malware propagation will stop

eventually due to insufficient mobility.
Fig. 9 shows the tail distribution of the eventual botnet

size when α=10m on linear-log scales. We can observe from

Fig. 9 that the tail distribution of the botnet size exhibits

approximately a straight line. As any exponential function

exhibits a straight line on linear-log scales, Fig. 9 demonstrates

that without sufficient mobility, the botnet propagation can

eventually stop with final size exponentially distributed, which

validates the theoretical prediction in Theorem 2. Due to the

exponential decay of the size of such a botnet, we can expect

that it is not likely to infect a very large number of vulnerable

nodes and make significant impacts.

IV. WHAT IS THE IMPACT OF A MOBILE BOTNET?

By compromising mobile nodes, a mobile botnet can lead

to either individual impacts (e.g., blocking the use of mobile

devices [1]), or global impacts (e.g., denial-of-service attacks

[2]). From the perspective of reliable network operations,

the denial-of-service impact is much more severe than the

individual impacts. Therefore, in the following, we focus on

the denial-of-service impact of a mobile botnet. Our objective

is to investigate what is the impact of a botnet, in which

all compromised nodes flood service requests to a service

provider to launch denial-of-service attacks. We first model

how service requests from mobile nodes are processed, then

propose the metric of last chipper time to measure the impact.

A. Modeling Mobile Service Processing

When mobile nodes move around in the network, they

connect to a service provider via infrastructure nodes for

service requesting and processing, as shown in Fig. 1. When

a service request is delivered to a service provider, it will

be immediately processed by the service processing center.

Nowadays, many service processing centers feature a cloud

computing paradigm [23], [24]: the data processing will be

partitioned into different tasks, which are assigned to distinct

computing units; then outputs of all tasks are combined. In

this paper, we also consider such a cloud processing model as

our mobile service application. In what follows, we will use

the cloud and the service processing center interchangeably to

denote the entity that processes service requests from mobile

nodes.
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Fig. 10. The processing delay versus constant cloud load L in Hadoop and
Storm with different numbers of computers M used in the cloud.

At first glance, it appears that performance modeling for

cloud processing is similar to a conventional waiting queue,

in which one or few users can be served and the others are

waiting in the queue. Nonetheless, cloud processing can be

quite different in that the cloud supports concurrent processing

(similar to the CPU sharing model) [23], [25]: when a service

request arrives, the cloud directly allocates the shared com-

putational resources (e.g., CPU time) for it instead of making

the user waiting. Such a concurrent processing mechanism is

widely used in current cloud processing frameworks [26], [27].

Therefore, a large amount of concurrent service requests can

be processed in the cloud at the same time. The more the

concurrent users (the heavier the cloud load), the longer the

processing delay. To find out the relation between the cloud

processing delay and the number of concurrent users, we adopt

an experimental approach in a small-scale cloud based on the

two popular Hadoop [26] and Storm [27] platforms.

We set up a small-scale cloud consisting of up to 8 com-

puters with Intel Core i5 2.67GHz. The cloud is installed with

Hadoop 1.0.2 and Storm 0.7.4. Fig. 10 shows the processing

delay Dp as a function of constant cloud load L (which is the

number of concurrent service requests being processed in the

cloud at the same time) for different numbers of computers

M . We can observe that for both Hadoop-based and Storm-

based systems, there is approximately a linear relation between
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Dp and L, i.e., Dp ≈ kL, where the slope k is a decreasing

function of M , showing that the more the computing resources

in the cloud, the less the processing delay. Accordingly, we

assume in this paper that Dp = kL for any constant load L,

and define C = 1/k as the cloud capability, which can be

considered as an indicator to represent the maximum number

of service requests that can be finished in the cloud per second.

With parameter C, we can obtain Dp = L/C for any

constant load L. In practice, however, the cloud load L is a

stochastic process due to network traffic dynamics, making the

processing delay Dp a random variable. It has been shown that

the cloud processing delay exhibits a heavy tail property [24].

Combining the constant load observation in Fig. 10 and the

heavy tail property, we define the following stochastic cloud

processing model.

Definition 3 (Service Processing): Let C be the cloud ca-

pability and L(t) be the average cloud load at time t. The

cloud processing delay Dp has a heavy tail, i.e., P(Dp > d) =
θ(d)d−β(t) with mean L(t)/C, where β(t) is some positive

power-law parameter at time t, and θ(d) is a slowly-varying

function satisfying limd→∞ θ(cd)/θ(d) = 1 for constant c.

B. Impact of A Botnet on Mobile Services

After we formulate the service processing model in Def-

inition 3, we can investigate the impact of a mobile bot-

net on mobile services. We consider the scenario where all

compromised nodes in a botnet flood service requests to the

cloud. In particular, the botnet, by keeping infecting more

nodes and flooding more requests, can gradually increase

the cloud load and reduce service availability for legitimate

services. This means that for any real-time mobile service,

the probability that a legitimate service request is processed

on time is gradually decreased. We are interested in how fast

such a botnet attack process can take down the service. As a

result, we define the metric of last chipper time as follows.

Definition 4 (Last Chipper Time): If a mobile botnet starts

propagation at time 0, the last chipper time Tl is the last time

that a required ratio (σ < 1) of mobile service requests can

still be processed on time under the botnet attack, i.e.,

Tl = sup{t ≥ 0 : P(Dp < d) > σ}. (10)

With the metric of last chipper time in (10), we state our

main result on the impact of a mobile botnet.

Theorem 3: If a mobile botnet can keep evolving in the

network, the last chipper time Tl of a mobile service with

requirement σ satisfies

Tl = O
(

1/
√

B log(1/(1 − σ))
)

, (11)

where B is the network bandwidth.

Proof: According to Definitions 3 and 4, we have

Tl = sup{t ≥ 0 : θ(d)d−β(t) > 1 − σ}
≤ sup{t ≥ 0 : sup{θ(d)}d−β(t) > 1 − σ}, (12)

where sup{θ(d)} = Θ(1) (property of slowly-varying func-

tions) and β(t) is the power-law parameter at time t. From

the power-law property, the average processing delay can be

represented as Θ(1)(β(t) − 1)/(β(t) − 2). From Definition 3,

the average load can be written as

L = CΘ(1)(β(t) − 1)/(β(t) − 2). (13)

On the other hand, the average load L is the sum of the

average load of legitimate requests Ll and the average load

induced by attacks La, i.e.,

L = Ll + La. (14)

To calculate La, we first obtain from Theorem 1 that the

average botnet size E|S(t)| is at most Θ(t2).
In addition, compromised nodes can flood service requests

to the service processing center. How many service requests

they can exactly send to the center depends on the network

access schemes and network bandwidth B. No matter what

access scheme the network has, the maximum bandwidth

available for a node is always no greater than network band-

width B, which indicates the rate of flooded requests at each

compromised node is always upper bounded by O(B).
Therefore, the average load induced by attacks La at the

service processing center is at most

La = CE(|S(t)|O(B)) = Ct2O(B). (15)

Then, It follows from (13), (14), and (15) that

β(t) = 2 + 1/(t2O(B)). (16)

Inserting (16) into (12) completes the proof. �

Theorem 3 shows that if a botnet can keep evolving in the

network, the last chipper time decreases at most on the order of

1/
√

B. It has already been predicted in existing work [1] that

the risk of mobile malware attack increases with the improved

bandwidth in future wireless networks. Theorem 3 gives an

interesting assessment on how such a risk is boosted. For

example, LTE advanced is planned to improve the LTE uplink

speed 10 times (from 50 Mbps to 500 Mbps). It follows from

Theorem 3 that for the same mobile service, its last chipper

time in LTE advanced will become around one third of the

time in LTE (1/
√

10 ≈ 1/3). This means that in order to

make some impact in LTE advanced, a botnet only needs to

propagate one third of the time that it spends in LTE.

Remark 4: It is worthy of note that the decrease on the

order of 1/
√

B of the last chipper time relies on the condition

that all infected nodes attempt to saturate the network channel

to launch attacks. If they attack at a constant rate that does not

depend on B, the last chipper time should not be affected by

B. Therefore, practical networks must always deploy attack

detection and rate-limiting schemes to prevent infected nodes

from flooding service requests at the saturated rate. However,

we do believe that the decrease on the order of 1/
√

B
represents the worst-case scenario that should be considered

for any risk assessment of mobile botnets.

C. Experimental Evaluation

We also use experiments to measure the last chipper time.

We first present the setups, then discuss the results.



8

1) System Setups: We set up a small-scale cloud that con-

sists of 8 computers running over the Storm framework [27].

As shown in Fig. 11, the cloud is connected to a simulation

server that simulates a wireless network environment.

...

...

...

the cloud the network

service

processed 

simulation 
server

requests

results

...

Fig. 11. A small-scale cloud is connected to a network simulation server.

Network Setup: We place 25 access points with equal space

on the 2km×2km map shown in Fig. 7 to provide full wireless

coverage with 802.11 DCF. The transmission range of access

points and mobile nodes is 300 m. The network bandwidth

varies from 1 to 54 Mbps. Mobile nodes move around based

on UDelModels traces in Section III-C. They send service

requests to their nearest access points. These service requests

are delivered from the simulation server to the cloud for real-

time processing. Then, the processed results in the cloud are

sent back to mobile nodes in the simulation environment.

Service Setup: Mobile nodes use a location-aware service

[28], [29]: they send their location/mobile sensing data via

access points to the cloud, and obtain processed results from

the cloud every 5 s. The size of service requests is 800 bytes,

the size of processed results is 1200 bytes, and the processing

delay requirement for each request is 2 s at the cloud.

Botnet Setup: The vulnerability ratio κ = 60%, We randomly

choose one node in the network as the initially infected node

that propagates malware to others at time 0. To launch denial-

of-service attacks, all infected nodes attempt to saturate the

network channel by keep sending service requests to the cloud.
2) Experimental Results and Discussions: Fig. 12 shows

the last chipper time as a function of network bandwidth B
for service requirement σ= 70%, 80%, 90%, and 95%. The

mobility radius of each node is 100m. We can observe from

Fig. 12 that the last chipper time does decrease as B increases.

For example, for requirement σ=95%, when B goes from

10MHz to 40MHz (4 times), the last chipper time decreases

from 14.6 hours to 7.5 hours (almost halved). This can be

well predicated in Theorem 3: the last chipper time Tl can be

written as O(1/
√

B), and if B increases 4 times, Tl will be

reduced to one half of the original value.

Fig. 13 illustrates the last chipper time as a function of

network bandwidth B for mobility radius α=10m, 500m, and

1km. The service requirement is set to be σ=90%. First, we

see from Fig. 13 that regardless of different mobility radii, the

last chipper time always decreases as network bandwidth B
increases. Second, Fig. 13 shows that more node movement

does help the propagation of malware infection, and the last

chipper time decreases accordingly with α becoming larger.

We conclude from Figs. 12 and 13 that the last chipper

time is O(1/
√

B), as predicted in Theorem 3, and the more

the mobility radius, the smaller the last chipper time.
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Fig. 12. Last chipper time with
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V. CONCLUSIONS

In this paper, we investigated how mobile botnets evolve via

proximity infection and their impacts. We found that the size

of a mobile botnet can either increase quadratically over time

or be exponentially distributed with finite mean. In addition,

we also defined the metric of last chipper time to measure

the last time that a mobile service is still feasible under

botnet attacks. Our findings in this paper not only provide

a theoretical foundation to explain discrepant experimental

results of mobile malware propagation in the literature, but

also offer quantitative risk assessment on potential denial-of-

service impacts of botnet attacks in mobile networks.
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APPENDIX

Lemma 1: For a mobile botnet evolving in the network, its

average size E|S(t)| = Θ(t2) for κλ(2α + r)2 larger than

some constant, i.e., κλ(2α + r)2 = Ω(1).

Proof: First we discretize the entire network into hexagonal

cells with radius 2α + r. In what follows, we introduce

necessary definitions to facilitate our proof. We call a cell is

infected if there is at least one infected node (e.g., say node A)

in the cell, and call an infected cell is open if there are at least

one node in a nearby cell that is vulnerable to infection and

whose home point is within the reachable distance (i.e., 2α+r)

to the home point of the vulnerable node (i.e., node A). If a

cell is not open, it is called closed. For two open cells, we

say they are directly connected if they are neighbors to each

other, and indirectly connected if there exists a path between

them, on which all cells are open. Fig. 14 illustrates how we

discretize the entire network into open and closed cells.

Without loss of generosity, assume that the initially infected

node is in cell 0 in Fig. 14. A necessary condition for

E|S(t)| = Θ(t2) is that there must be infinitely many open

cells (directly or indirectly) connected to cell 0 in order for

malware propagation to go on. For example, malware in cell

0 shown in Fig. 14 is propagated to six neighbor cells (1–

6), called the first-generation cells, in which cells 2–6 are

open and cell 1 is closed. Then, malware in open cells 2–

6 can be propagated farther to their neighbor cells 8–18 (the

second-generation), in which cells 7, 8, 15, and 17 are closed.
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Fig. 14. Network discretization.
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Fig. 15. Example of an open cell.

The open cells in the second generation can repeat the same

infection process to the third generation, and so on.
Denote by ρ the probability that a cell is infected by its

neighbor and is also open (i.e., the newly infected cell can also

propagate the malware to some other cells) and denote by S1

the number of open neighbor cells in the first-generation cells.

We can obtain S1 is binomially distributed with parameters 6

and ρ, i.e., S1 ∼ binomial(6, ρ). Let S2 be the number of

second-generation cells that are open. Then, conditioned on

S1, S2 is also binomially distributed with parameters S1 and

ρ, i.e., S2 ∼ binomial(c1S1, ρ) for some constant c1, where

c1 is called cell expansion ratio and c1 > 1. Similarly, we

have Si+1 ∼ binomial(ciSi, ρ), for all i ≥ 1.
Accordingly, we have E(Si+1|Si) = ciSiρ, and the to-

tal number of connected open cells can be represented as
∑∞

i=1 Si =
∑∞

i=1 6ρiΠi
j=1cj ≥ 6

∑∞
i=1(ǫρ)i, where ǫ =

min{ci}> 1. This shows that there will be infinitely many

connected open cells if ǫρ≥1, where ρ is the probability that

a cell is open. For a particular cell, as shown in Fig. 15, it is

surely open if there is at least one vulnerable node in each of

areas 1–12. This implies that a cell is open with probability

ρ ≥ (1−e−
√

3κ(2α+r)2/4)12. Therefore, there will be infinitely

many connected open cells if ǫ(1−e−
√

3κλ(2α+r)2/4)12 ≥ 1,

which means that κλ(2α + r)2 = Ω(1).
To further show how |S(t)| increases when κλ(2α + r)2 =

Ω(1), let G(t) be the max number of cell generations that

the infection process has reached at time t. Then, the total

number of infected cells can be written as
∑G(t)

i=1 Si(t), where

Si(t) is the number of infected cells at time t for generation i.
Accordingly, we have

E|S(t)| ≥ E(
∑G(t)

i=1
Si(t)). (17)

The wait time between two cells depends on when two

nodes in the cells meet each other and it has already been

shown that in any bounded domain, the inter-meeting time

of two nodes is exponential distributed [30]. Therefore, the

wait time to propagate the malware from one cell to another

is also exponentially distributed, based on which G(t) can be

shown as a continuous Markov process with intervals decaying

exponentially fast. It follows from the elementary renewal

theorem that limt→∞ G(t)/t = Θ(1) and therefore G(t) =
Θ(t). Similarly, we can show that Si(t)/t = Θ(1). Then,

it follows from (17) that E|S(t)| ≥ tE
(

∑G(t)
i=1 Si(t)/t

)

=

tE
(

∑Θ(t)
i=1 Θ(1)

)

≥ tΘ(t) = Θ(t2), which shows that

E|S(t)| = Ω(t2). �


