

Socio-Technological Communication Testbed for Mobile Social Networks

Zhuo Lu, University of Memphis Yalin Sagduyu and Yi Shi, Intelligent Automation Inc.

Dreamers. Thinkers. Doers.

Outline

- 1. Motivations of Socio-Technological Communication Network Research
- 2. Experiment Setups
- 3. Data Delivery and Routing in Socio-Technological Communication Network
- 4. Experimental Results

Common network links existing today

- Today's infrastructure based network
 - Cellular network
 - Satellite network
- Peer-to-peer based network, ad-hoc network
 - WiFi
 - bluetooth

Social Networks vs Physical Networks

- Social link
 - Logical link, does not physically exit
- Today's communication network provide a communication medium for social connections

Friends talking using phones

Social network experiments

Mail experiment (Milgram, 1969)

Email Experiment (Watts, 2003)

Given a target individual and a particular property, pass the message to a person you correspond with who is "closest" to the target.

Short chain lengths – six degrees of separation

Typical strategy – if far from target choose someone geographically closer, if close to target geographically, choose someone professionally closer

Social links overlaid over wireless networks

 On the upper layer, we can think data is delivered over social links.

A highly abstract model

- Socio-Technological Communication Network
 - A hybrid network consisting of
 - Social links
 - Wireless links

Both links can be used to deliver data

Peer-to-peer wireless link

Potential Application

- Exploratory research
 - Combining social and communication networks
 - Analyzing information dissemination over joint network structures.
- Potential applications:
 - Emergency broadcasting
 - Secure key establishment

Emergency broadcasting

Secure Key Establishment

- A wants to communicate with B
- A: I can send data to you as a forwarding node to reach B only if
 - I can see you (in one-hop communication distance)
 - I know you (has a social link)

Goals

Design and study

 – experimental/emulation testbeds for combined social and wireless network

Communication network testbeds CORNET (Vtech), ORBIT (WINLAB), Emulab (Utah), ...

Social media and Social networks

Testbed Setups

- SVT: Surrogate Virtual Transmitter
- SVR: Surrogate Virtual Receiver

Raytheon

Testbed Picture

Components

- RouterStation Pro:
 - -WiFi, Ethernet interfaces
 - Running as a node
- WiFi
 - Wireless links
- Ethernet
 - Emulated social link controlled by social network server

Social Network Server

 Maintaining social connections fro MIT RealityMining Data Set

Reality Commons

brought to you by the MIT Human Dynamics Lab

Reality Mining Dataset - Data Breakdown

sensor data (temporal resolution 6 minutes)
roximity
ocation, location labels, latitudes and longitudes (spatial resolution, about 100 meters)
all log, sms: time with hourly resolution (or date + early norming/morning/afternoon/evening/midnight), duration, unique callee identifier (natural number)
unning Nokia applications
survey data
erceived friendship
ersonal attributes
esearch group
osition (graduate student, undergraduate student, staff, prof.)
eighborhood of apartment
festyle: when in the office, how often to travel, predictability of life, where to hangout, how often let sick.

RFnest: Multi-hop wireless channel emulator

Using RF cables connected to stations, RFnest accepts real RF signals and applies digitally controlled channel effects to RF signals

Wireless Network Emulation with RFnest

- RFnest controls attenuation, interference, multipath and Doppler effects.
- RFnest supports seamless integration of real nodes (actual radios) and virtual nodes (simulated nodes) for additional scalability.

Specifications at a glance:

Number of Ports: 8 to 96

RF Configurations: MIMO, SISO, SIMO, MISO, MESH

Frequency Band: 0 Hz to 6 GHz (model dependent)

Maximum Propagation Delay: 2 seconds

Doppler Shift: up to 200kHz

Fading Profiles: Rayleigh, Rician, Pure Doppler, Freq/Phase Shift, Log-normal Fading

Interference Generator: Independent per channel

Control Panel for the Testbed

		Ne	twork Control Pa	anel		~ - +	
(1)	Source:	þ	Destination:	15	Y Send M	lessages	
(2)	Source:	10	Destination:	16	✓ Send M	lessages	
(3)	Source:	11	Destination:	17	Send N	Send Messages	
(4)	Source:	12	Destination:	18	Send N	Send Messages	
(5)	Source:	13	Destination:	19	Send M	lessages	
	-Mob Spee	ility Manage d: 💿 1X (ment > 2X () 5X [S	tart Mobility	Stop Mobility]	
Map Nid	o Control th (m):	700 Heigh	nt (m): 600 O	Random 🔿	Grid Gene	erate Map	
	Link Failu Social (9	ire Ratio Seti 6): 0 E:	up ktra Delay (ms <mark>):</mark>	D Set	Routing Selecti Regular Greed	on V	

How to send a message: example

Greedy Routing

 In all of social link and communication link neighbors, attempt to find the next-hop node in neighbors, whose distance to the destination is the shortest.

Coupling between social & communication links

 We capture correlation between social and communication links in modeling, analysis and experiments.

Distance between source and destination

• d – the distance

Overall a very challenging question to get delay and delivery ratio! Get an analytical solution? Mission impossible!

Raytheon

Visualization

Experiments: Success Probability

Raytheon

APL JOHNS HOPKINS APPLIED PHYSICS LABORATORY

Experiments: Delivery Delay

Persistent Transmission: Success Probability

Raytheon

Persistent Transmission: Delivery Delay

Conclusions

- Investigated the design of combining the social and wireless network.
- Built a socio-technological testbed to evaluate joint social and communication network design.
- Success probability is always bounded from below, as distance goes to infinity.
- Average delivery delay is always bounded from above, as distance goes to infinity.

