

Review and Evaluation of Security Threats on the Communication Networks in the Smart Grid

Zhuo Lu, Xiang Lu, Wenye Wang, Cliff Wang*

Department of ECE, North Carolina State University

*Army Research Office, RTP, NC

The work is sponsored by the NSF Future Renewable Electric Energy Delivery and Management (FREEDM) Systems Center and the ARO secure open systems initiative (SOSI).

Outline

- Background and Motivation
 - Why Smart Grid?
- A glance of the smart grid and security
 - Architecture of the smart grid communication network
 - Classification of security threats
- A case study for traffic-flooding attacks.
 - A mini-showcase of the smart grid communication network
 - Delay performance measurement

Conclusion

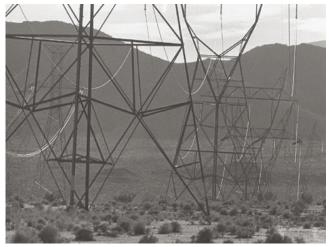
Networks in our daily life

Evolution of information technology

the Internet paradigm

30 years ago

Today

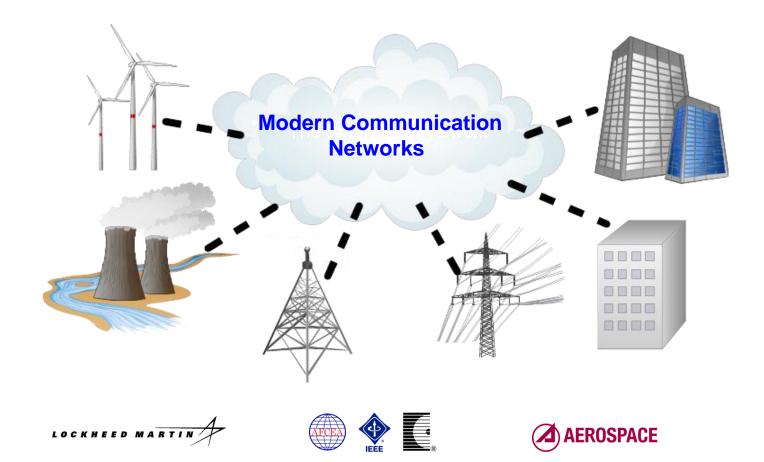


Why Smart Grid?

Evolution of power grids

30 years ago

Today


- Smart grid: the next-generation power system. (Energy Internet!)
 - On Oct. 27 2009, the Obama Administration announced 100 grants, totaling \$3.4 billion, for smart-grid efforts.

- The smart grid is a new paradigm for energy management and delivery systems.
 - Advanced digital computing and networking system connects every single part of the grid.

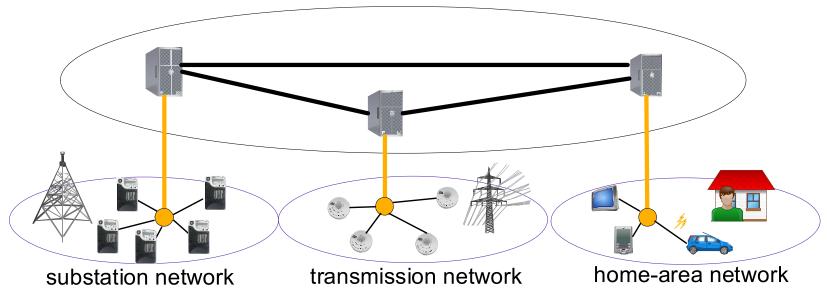
Network Security in the Smart Grid

Low-speed, Inefficient and private network
Upgrade
High-speed, Efficient, yet relatively open network
Malicious attacks

- In this work, we
 - take a quick glance at network security threats in the smart grid;
 - use a simple case study to illustrate the attack impact on power networks

Outline

- Background and Motivation
- A glance of the smart grid and security
 - Architecture of the smart grid communication network
 - Classification of security threats
- A case study for traffic-flooding attacks.
- Conclusion



Hierarchical architecture.

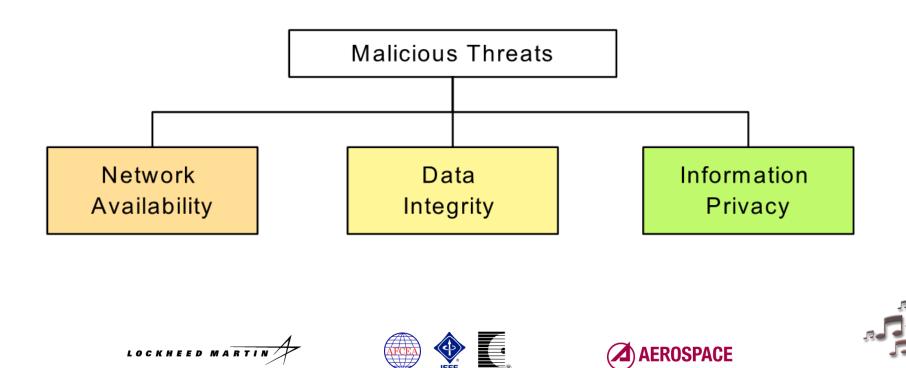
Backbone network and local-area networks

backbone network

• Various communication technologies: Fiber, Ethernet, WiFi, ZigBee, 3G, WiMax.

Smart Grid Network versus Internet

	Smart Grid Communication Network	The Internet
Major Performance Metric	delay	throughput
Traffic	Periodic,	Power-law
Models	constant	(WWW)
Communicati	Bottom-up,	End-to-end,
on Patterns	top-down	peer-to-peer



Network Security Threats

Security threats in conventional networks

- Selfish behavior -> fairness
- Malicious behavior -> network operation
- Security threats in the smart grid
 - Malicious behavior

- Attempt to delay, block or corrupt information transmission to make network resources unavailable in the smart grid.
- Examples of potential attacks
 - Conventional DoS attacks: traffic-flooding, TCP sync attacks.
 - Wireless jamming. (Strasser'08, Popper'09)
- Differing from conventional networks.
 - Time-critical nature of traffic.
 - 3-ms delay threshold in power substation in IEC61850.

Attacks Targeting Data Integrity

- less brute-force yet more sophisticated
- deliberately modify information to corrupt data exchange in this smart grid.

• Example:

- False-data injection attacks (Liu'09).

Authentication in the smart grid

- Time-critical traffic. (3 ms, 10 ms) (Wang'09)
- Short information length. (e.g., 20 bytes in a packet)
- Key management

- Attempt to eavesdrop on communications to acquire desired information.
- Examples:
 - Wiretapper.
 - Traffic analyzer.
- From the perspective of network operation, it has negligible effect.
 - The NIST smart grid report provides the priorities of the three security objective: (NIST Special Publication 1108).
 - Network availability
 - Data integrity
 - Information privacy

Outline

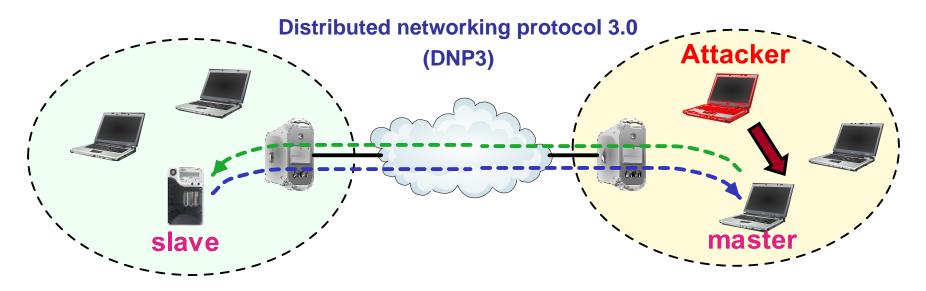
- Background and Motivation
- A glance of the smart grid and security
- A case study for traffic-flooding attacks.
 - A mini-showcase of the smart grid network
 - Delay performance measurement
- Conclusion

Experimental Power Network

- Experimental power network in the FREEDM center at NC State university
- Backbone network:
 - Campus backbone network at NC State University

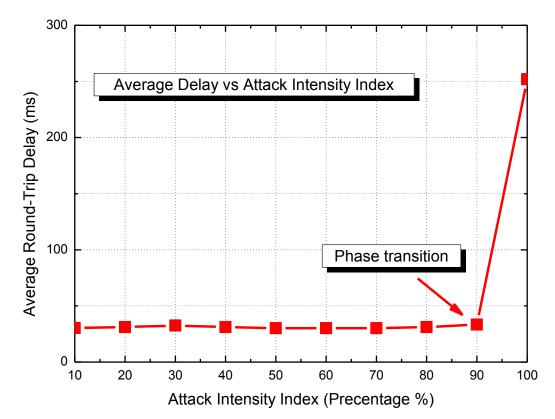
Power substation networks:

- Intelligent electronic devices (IED)
- Intelligent fault management devices (IFM)
- Interfaces:
 - Ethernet, WiFi, ZigBee



Case Study: Traffic-flooding Attack

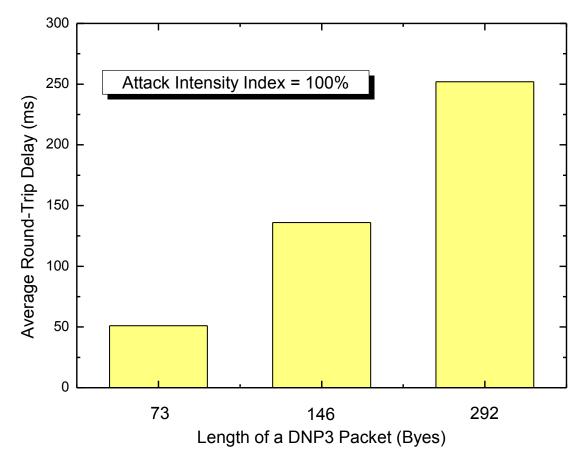
- Why traffic-flooding attack?
 - A type of denial-of-service attacks. (Adkins'03, Yu'08)
 - The one of the most easy-to-be-generated attacks
 - Attack intensity index:
 - I = rate of flooded traffic / channel bandwidth.
- Performance metric:
 - round-trip packet delay.



Experimental Results (I)

- DNP3 packets are transmitted every 500 ms.
 - Very light traffic

• For light traffic, performance is significantly degraded when the attack intensity index approaches 1.



Experimental Results (II)

• DNP3 packets are transmitted every 500 ms.

Short DNP3 packets are more resistant to traffic-flooding attacks.

Outline

- Background and Motivation
- A glance of the smart grid and security
- A case study for traffic-flooding attacks.
- Conclusion

Conclusion

- In this paper, we took a quick glance at security threats towards the communication networks in the smart grid.
- We used a case study to illustrate the impact of traffic-flooding attacks on a DNP3-based power system.
 - For light traffic in power networks, traffic flooding attacks only affect the delay performance when the attack intensity approaches 1.
 - Longer packets are more vulnerable to attacks.
- In-depth study via both analytical modeling and experiments is our future work.

Thanks!

AEROSPACE

