
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Wireless Training-Free Keystroke
Inference Attack and Defense

Edwin Yang , Song Fang , Ian Markwood , Yao Liu , Senior Member, IEEE, Shangqing Zhao,

Zhuo Lu , Senior Member, IEEE, Member, ACM, and Haojin Zhu , Senior Member, IEEE, Member, ACM

Abstract—Existing research work has identified a new class of
attacks that can eavesdrop on the keystrokes in a non-invasive
way without infecting the target computer to install malware. The
common idea is that pressing a key of a keyboard can cause a
unique and subtle environmental change, which can be captured
and analyzed by the eavesdropper to learn the keystrokes. For
these attacks, however, a training phase must be accomplished
to establish the relationship between an observed environmental
change and the action of pressing a specific key. This significantly
limits the impact and practicality of these attacks. In this paper,
we discover that it is possible to design keystroke eavesdropping
attacks without requiring the training phase. We create this
attack based on the channel state information extracted from the
wireless signal. To eavesdrop on keystrokes, we establish a map-
ping between typing each letter and its respective environmental
change by exploiting the correlation among observed changes
and known structures of dictionary words. To defend against this
attack, we propose a reactive jamming mechanism that launches
the jamming only during the typing period. Experimental results
on software-defined radio platforms validate the impact of the
attack and the performance of the defense.

Index Terms—Keystroke eavesdropping, correlation, reactive
jamming.

I. INTRODUCTION

SENSITIVE information such as classified documents,
trade secrets, or private emails are typeset and input into

a computer for storage or transmission almost exclusively via
a keyboard. Emerging research work has identified a new
class of attacks that can eavesdrop on the keystrokes in a
non-invasive way [2]–[13]. These new attacks eliminate the

Manuscript received April 2, 2021; revised October 18, 2021 and
January 11, 2022; accepted January 27, 2022; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor K. Ren. This work was sup-
ported in part by the National Science Foundation under Grant 1948547.
An earlier version of the work [1] was presented in ACM CCS’18
[DOI: 10.1145/3243734.3243755]. (Corresponding author: Song Fang.)
Edwin Yang and Song Fang are with the School of Computer Science, The

University of Oklahoma, Norman, OK 73019 USA (e-mail: edwiny@ou.edu;
songf@ou.edu).
Ian Markwood is with the Cyber Development Department, BlackHorse

Solutions, Herndon, VA 20171 USA (e-mail: imarkwood@mail.usf.edu).
Yao Liu is with the Department of Computer Science and Engineering, Uni-

versity of South Florida, Tampa, FL 33620 USA (e-mail: yliu@cseusf.edu).
Shangqing Zhao is with the School of Computer Science, The University

of Oklahoma, Tulsa, OK 74135 USA (e-mail: shangqing@ou.edu).
Zhuo Lu is with the Department of Electrical Engineering, University of

South Florida, Tampa, FL 33620 USA (e-mail: zhuolu@usf.edu).
Haojin Zhu is with the Department of Computer Science and Engi-

neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
zhu-hj@cs.sjtu.edu.cn).

requirement to infect the target computer with a keylogger or
other malware to violate the user’s privacy. Their common
underlying principle is that pressing a key on a keyboard
causes subtle environmental impacts unique to that key, which
can be observed and correlated for all keys. For example,
an eavesdropper can set up a malicious WiFi router to receive
the wireless signal emitted by a target laptop. A user pressing
a key causes a unique disturbance on the received signal,
and the eavesdropper can analyze these disturbances to learn
which key is pressed. In general, these non-invasive keystroke
eavesdropping attacks can be classified into three categories,
vibration based [5], [6], acoustic signal based [7]–[9], [13],
and wireless signal based [2]–[4], [14].
These attacks also share a common weakness, i.e., requiring

a training phase. This establishes the relationships between
observed environmental disturbances and specific key presses.
During the attack phase, unknown disturbances are com-
pared with those recorded in the training phase to determine
which key was most likely pressed. However, the training
significantly limits the impact of these attacks. Most existing
works [2]–[7], [9]–[12], [14] assume the attacker has some
way to perform the training in a practical situation, but
none have provided technical details justifying their logistical
feasibility. Reference [13] proposes a practical way to collect
keystrokes for training by Voice-over-IP (VoIP) software (e.g.,
Skype), while this technique targets the scenario when the
attacker is able to talk with the target user via VoIP calls.
Requiring training imposes a large practical hurdle for the

attacker - most users are in full physical control of their
keyboards, whether they are part of a laptop set in arbitrary
locations or on a roll-out keyboard tray (a common feature
of desks). Anytime a laptop is moved or a keyboard tray is
pushed in or pulled out slightly, any previous training efforts
are invalidated. A user may also change typing behaviors
(heaviness of hand, etc.) during use of the computer. Hence,
training must be conducted frequently to cope with all these
changes. Because training requires knowledge of what key is
pressed to construct a mapping, and therefore requires access
to the system for some time, it is impossible to retrain once
the user has control of the system, and it is highly difficult to
train on systems controlled physically by the user (which are
most).
In this paper, we make non-invasive keystroke eavesdrop-

ping practical by removing the training requirement entirely.
Not only does this make these attacks actually possible, but it

2 IEEE/ACM TRANSACTIONS ON NETWORKING

also makes them far less invasive still, because physical access
to the system is never required.
Intuitively, statistical methods provide a way to remove the

training phase. Frequency analysis [15] is a typical unsuper-
vised learning method based on the statistical observation that
certain letters normally occur with varying frequencies in a
given language. In English, the letter ‘e’ is the most often used.
An input text of sufficiently large size will have a distribution
of letter frequencies close to the typical distribution of English
letters [16]. Since an environmental disturbance is associated
with a key, by analyzing the frequencies of observed dis-
turbances, the attacker can possibly determine the associated
keys. Intuitively, the most frequently observed disturbance is
likely to be caused by typing the letter ‘e.’
However, statistical methods determine the typical distri-

bution of English letters by ingesting a large amount of
text, while the distribution within a small sample text may
not be quite the same. The discrepancy between the sam-
ple and typical distributions is unpredictable, so correlating
environmental disturbances and keystrokes requires collecting
statistics over a long period, during which the environmental
disturbances (e.g., wireless signal properties) for different
keystrokes must remain static as well as distinct from one
another. In practice, these disturbances (especially wireless
signals) may change over time due to environmental changes
and mobility, preventing the attacker from collecting sufficient
reliable statistics for keystroke inference.
The challenges with using statistical methods motivate us

to develop an effective approach for non-invasive keystroke
eavesdropping within a shorter time window. We analyze the
self-contained structures of words, which can be immediately
observed by typing a single word, rather than probabilistic
statistics among words, which require many words to establish.
In particular, we notice that the repetition or uniqueness of
characters in a word shows through the structure of repeated
or unique environmental disturbances collected in the process
of eavesdropping. For example, assume that a user types
“sense,” and accordingly the attacker observes five environ-
mental disturbances. The first and fourth observed disturbances
are similar to each other, because they are caused by the
action of pressing the same key “s.” Similarly, the second
and last disturbances appear alike, because they are caused by
pressing the same key “e.” This structural information enables
the attacker to quickly identify the typed word, as only one
word “sense” from the 1,500 most frequently used words [17]
matches this structure, achieving a much faster establishment
of a mapping between disturbances and characters typed. This
observation also requires no prior interaction with the user’s
system and thus facilitates fast and accurate training-agnostic
keystroke eavesdropping.
To exploit this observation, we must compare the corre-

lations among letters of words with those among observed
disturbances. This requires a self-contained feature that can
quantify such correlations and be compared against others.
We identify and describe herein such a feature, having three
necessary characteristics. First, it achieves high uniqueness to

observed disturbances, so the two can be compared. Lastly,
as more words are typed, their corresponding structures can
be captured and integrated with previous information to refine
and shrink the search space.
Using this feature, we create approaches to compare sets

of observed disturbances to possible candidate words. Our
technique has mechanisms to adapt to and retain high accuracy
in the presence of natural noise and sudden environmental
changes, which may cause similar disturbances to appear
different or vice versa. It is similarly able to continue inferring
letters in the presence of non-alphabetical characters such as
punctuation, navigation arrows, delete and backspace keys, etc.
Our attack analyzes disturbances in a wireless signal, which

can penetrate through obstacles, so it does not require line-of-
sight between the attacker and the victim. External wireless
devices controlled by the attacker are used to collect the signal
disturbances, so there is no need for exploits to install malware
on the target computer. The attack is especially suitable for the
wireless scenario, since the wireless channel is time-varying
and it can quickly determine the disturbance-key relation-
ship. Within a short time window, the attacker can apply
this relationship to infer the remaining keystrokes, including
typed words not in the dictionary. Except for English, our
attack can also be utilized to infer other languages, such
as source code. To defend against the attack, we propose a
reactive jamming scheme called TypeGuard which prevents
the eavesdropper from obtaining enough CSI information for
keystroke inference.
We implement the proposed attack and defense on Universal

Software Radio Peripherals (USRPs) X300 platform. Exper-
imental results show that for a sample input of 150 words,
the proposed attack can recognize an average of 95.3% of
these words, whereas frequency analysis can only recognize
less than 2.4%. We also note that the attacker only needs
1-2 minutes to collect 50 words to identify the disturbance-key
relationship that allows a word recovery rate of 94.3%.
Besides, we verify the feasibility of inferring Linux kernel
source code with the proposed attack. Furthermore, we show
that the attacker can effectively decrease the entropy of a
9-character password from 54.8 bits to as low as 5.4 bits,
vastly reducing the maximum brute-force attempts required
for breaking the key from 31.08 quadrillion to just 42. On the
other hand, TypeGuard can jam 97% of the user’s typing
duration on average so that the attacker is unable to infer
keystrokes without insufficient CSI waveforms.
In summary, our contributions are as follows:

• We propose a novel wireless keystroke eavesdropping
attack, which requires no training.

• We develop a dictionary-assisted demodulation algorithm
to establish the mapping between typing each letter and
its respective environmental change.

• We design a defense technique to defend against the
proposed attack.

• We implement real-world prototypes of both the proposed
attack and defense techniques using USRPs, evaluating

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 3

II. PRELIMINARIES

As wireless signals can penetrate through obstacles
[18]–[21], we monitor this environment for our training-
agnostic attack to remove the line-of-sight requirement.

A. Channel State Information

Wireless signal disturbances can be quantified by the
CSI measurement, which describes how the wireless channel
impacts the radio signal that propagates through the channel
(e.g., amplitude attenuation and phase shift) [22].
The orthogonal frequency-division multiplexing (OFDM)

technique is widely used in modern wireless communication
systems (e.g., 802.11a/g/n/ac/ad). OFDM utilizes multiple
subcarrier frequencies to encode a packet, and the channel
frequency responses measured from the subcarriers form the
CSI of OFDM. The channel frequency response at time t is
denoted by H(f, t), where f represents a particular subcarrier
frequency, and it is usually estimated by using a pseudo-noise
sequence that is publicly known [23]. Specifically, a transmit-
ter sends a pseudo-noise sequence over the wireless channel,
and the receiver estimates the channel frequency response from
the received, distorted copy and the publicly known original
sequence. Let X(f, t) denote the transmitted pseudo-noise
sequence. Based on the received signal Y (f, t), H(f, t) can
be calculated by H(f, t) = Y (f,t)

X(f,t) . Existing work utilizes
the amplitude of CSI to extract keystroke waveforms [3], [4].
In this paper, we also explore the amplitude of CSI and refer
to this as just “CSI” in the following.

B. Existing Work on CSI-Based Keystroke Inference

Researchers have proposed to utilize CSI to recognize
subtle human activities, including mouth movements [24] and
keystrokes [3], [4]. Existing techniques [3], [4] on CSI-based
keystroke inference assume that the attacker typically sets
up a wireless transmitter and receiver in close proximity of
the target keyboard. If the keyboard is part of a computer
like a laptop that can connect to wireless networks, the
computer itself transmits the wireless signal whenever it needs
to exchange information with the WiFi router, and thus it can
play the role of the transmitter for the attacker. The receiver
can then be a malicious 802.11 access point that provides free
WiFi service to attract victim computers to connect to it. In a
general case, the attacker can also create a custom transmitter
and receiver using software-defined radio platforms such as
USRPs. The transmitter transmits the wireless signal to create
a radio environment, and the receiver receives the signal and
computes the CSI.
These techniques normally use three steps to infer

keystrokes, namely, pre-processing, training, and testing.
Pre-processing removes noise from the CSI, reduces compu-
tational complexity, and segments the time series of the CSI
into individual samples that correspond to keystrokes. The
training phase records each keystroke and the correspond-
ing CSI so that a training model for classification can be

which keystroke it corresponds to. Our attack uses the same
pre-processing step as these existing techniques.

III. ATTACK DESIGN

A. System Overview

We consider a general attack scenario, where the attacker
uses a customized transmitter and receiver pair to launch this
attack. The attacker constantly transmits the wireless signal,
or just whenever typing activity is detected. In the latter
case, a WiFi packet analyzer can detect when a user starts to
type [4]. We assume the typed content is in English, though
the attack can target other languages just as easily.
The receiver needs to collect the CSI, so the attacker

implements a channel estimation algorithm such as the one
mentioned in Section II-A. The estimated CSI stream is
divided by the pre-processing step into individual segments
that correspond to the actions of pressing a key. In this paper,
we refer to a segment as a CSI sample. After pre-processing,
unlike the existing methods, the training-agnostic attack takes
three different important steps to infer keystrokes, namely CSI
word group generation, dictionary demodulation, and alphabet
matching.
CSI word group generation partitions the CSI samples into

groups corresponding to each typed word. The attacker will
explore the correlation among and order of unique letters in
each word to infer keystrokes, and thus needs to separate the
stream into words. This step performs this task by identifying
the CSI samples caused by pressing the space key, since
words are almost always separated by a space. Dictionary
demodulation aligns the correlation of CSI samples to that of
letters in a word, so as to find the corresponding word for a
CSI word group. Based on the demodulation result, potential
mappings are formed between CSI samples and keystrokes,
with which the attacker can infer the remaining typed words,
including those not appearing in the dictionary.

B. CSI Word Group Generation

CSI word group generation involves classification, sorting,
and word segmentation.
1) Classification: Dynamic Time Warping is a classical

technique to measure the similarity between two temporal
sequences [25], and it has been widely used to identify the
spatial similarity between the signal profiles of two wireless
links [3], [4], [26], [27]. Thus, to quantify the similarity
between two CSI samples, we utilize the Dynamic Time
Warping technique to calculate the distance between them.
A small distance indicates that both CSI samples are simi-
lar and accordingly that they originate from the same key.
Conversely, a large distance indicates that they deviate from
each other, and that they are caused by two different keys.
We assume that the victim user presses a single key at a time,
since this is the common typing behavior for most keyboard
users.
2) Sorting: Since the space character is used to connect

consecutive words, it normally appears more frequently than

4 IEEE/ACM TRANSACTIONS ON NETWORKING

than other CSI samples. The classification outcome includes
multiple sets, each consisting of similar CSI samples. We sort
the sets according to size and associate the space key with
the largest set, so that all CSI samples in this set are assumed
to be caused by pressing the spacebar. If this association is
incorrect, we will ultimately not be able to recover meaningful
English words. In that case, we continue on, associating the
space key to the second-largest set and reattempting the same
recovery process. We try these sets from largest to smallest
cardinality until we successfully recover meaningful English
words or exhaust all sets.
3) Word Segmentation: Once the set of CSI samples asso-

ciated with the space key is identified, we can start the word
segmentation process to find the CSI samples comprising each
word of the typed content. Everything between two successive
CSI samples from the space-associated set is grouped together.
In the following, we refer to such a group as a CSI word group,
and this does not include the spaces at either end. CSI word
groups will be used as the input of the dictionary demodulation
method to eventually establish the complete mapping between
the CSI samples and keystrokes.

C. Dictionary Demodulation

Dictionary demodulation converts CSI word groups to cor-
responding English words. We begin by developing a feature
to apply to these CSI word groups suitable for narrowing down
the search space of possible candidates.
1) Feature Selection: Ideally, a feature extracted from each

CSI word group would enable us to uniquely determine the
corresponding word. Our strategy is thus to find a feature that
can divide all words in the dictionary into as many sets as
possible, to achieve high distinguishability.
Without knowing the exact letters in a word, but having

a CSI sample for each letter, we can determine the number
of constituent letters and whether or not any letters in the
word are repeated. These two pieces of information yield
two features to partition words, and we utilize a top 1,500
most frequently used word list [17] as the dictionary to
calculate the number of sets divided by each. To quantify
the distinguishability of a feature, we define a new metric,
called the uniqueness rate, as the ratio Tp/T , where T is the
number of considered words, and Tp represents the number of
sets obtained by dividing T words according to the selected
feature. The uniqueness rate should be maximized for the best
partitioning of the words. We next evaluate the uniqueness
rates for our two features:
Length:We empirically find that all words in this dictionary

are 1-14 characters long. If we choose length as the only
feature, we can divide all words into 14 sets, the members
of each set having the same length. On average, each set
has 1, 500/14 ≈ 107 words. This means that an input CSI
word group will have an average of 107 possible candidate
words based on the length feature. The uniqueness rate is then
14/1, 500 ≈ 0.009.
CSI Sample Repetition:We also count the number of distinct

Fig. 1. Uniqueness rate for words of different length.

Otherwise, we denote Sr by (t1, · · · , tr), where r is the
number of distinct letters that repeat, and ti (i ∈ {1, · · · , r})
denotes how many times the corresponding letter repeats. For
example, the repetition information for the word “level” should
be (2, 2), because 2 different letters (‘l’ and ‘e’) repeat, and
both letters repeat twice respectively. Considering a word of
length L, we can quantify the repetition information using
(L, Sr). Using this repetition information, we can then divide
all 1,500 words into a total of 63 sets, such that members of
each set share the same value of (L, Sr). On average, each
set has 1, 500/63 ≈ 24 words, so an input CSI word group
will be mapped to one of 24 words based on this feature. The
uniqueness rate is then 63/1, 500 ≈ 0.042.
The repetition feature has better distinguishability than the

length feature, because its larger uniqueness rate yields a
reduced search space to map an input CSI word group to
a word. The repetition feature only provides the result of
repeated letters in a word, however, and does not consider
the position information of these letters. We expect that the
uniqueness rate can be further increased if we construct a
feature that not only employs the word length and repetition
information, but also distinguishes the positions of repeated
letters from non-repeated letters.
2) Inter-Element Relationship Matrix: We define a new data

structure to represent the structure of every word/CSI word
group. Specifically, we denote a word or a CSI word group by
a vector [x1, . . . , xn] of n elements, each of which is a letter
(CSI sample). We then define its inter-element relationship
matrix as

M : [x1, . . . , xn] �→

⎡
⎢⎢⎣

r1,1 r1,2 r1,3 . . . r1,n

r2,1 r2,2 r2,3 . . . r2,n

. .
rn,1 rn,2 rn,3 . . . rn,n

⎤
⎥⎥⎦ .

For a CSI word group, we set ri,j =1 if xi and xj are similar
CSI samples as classified in the CSI word group generation
step (Section III-B). Otherwise, we set ri,j =0. The diagonal
elements are always 1 and the matrix is symmetric.
We build the inter-element relationship matrix for each word

and ultimately partition the 1,500 most commonly used words
into 337 sets. The words in a particular set have the same
inter-element relationship matrix. On average, each set has
about 1, 500/337 ≈ 4 words which are possible candidates
for the CSI word group having that inter-element relationship
matrix. The corresponding uniqueness rate is 337/1, 500 ≈

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 5

Fig. 2. Uniqueness rate for joint words.

Empirically, we find the uniqueness rates for words of
different lengths are not evenly distributed, and this fact
actually enables our scheme. Figure 1 presents the uniqueness
rates for the inter-element relationship matrix as well as the
repetition feature for comparison, respective to word length.
The relationship matrix clearly performs much better than
the repetition feature in all cases, but very evident also is as
words become larger, they become more uniquely structured,
leading to high uniqueness rates for the relationship matrix.
For example, the uniqueness rate for a 3-letter word is 0.025,
while that for a 10-letter word is 0.940.
Indeed, a phrase comprised of multiple words can be

considered as one “long word” for the purpose of generating
an inter-element relationship matrix, though the dictionary
must also expand to contain these combinations. Assuming
a phrase formed by N words, the new dictionary will include
T1T2 · · ·TN phrases, where Ti (1 ≤ i ≤ N) is the size of
the set of candidate words having a length equal to the i-th
CSI word group. Figure 2 illustrates how the uniqueness rate
benefits from the combination of each pair of two words from
the dictionary of 1,500 most used words. The words in each
pair range from 2 to 13 characters in length, for a possible total
of 4-26 characters. The uniqueness rate jumps as the length
of these word pairs increases, and after 18 total characters,
the pair of words has a fully unique structure. This indicates
within a few words it should always be possible to narrow
down to the specific content the victim types, giving rise to
our joint demodulation method.
3) General Joint Demodulation Method: After CSI word

group generation, assume that the attacker obtains from the
eavesdropped typing m CSI word groups denoted by S =
{S1, S2, . . . , Sm}. We further use W1, W2, . . . , Wq to denote
the q words in the dictionary W. Our goal is to find a phrase
of m words that correspond to the m CSI word groups.
Clearly, while each individual CSI word group could have
several candidate dictionary words with matching structure,
each candidate will impose a mapping of some CSI samples
and letters on some successive words, and several of these
possible mappings will result in successive words that are
not real, so the below technique works to rule out these
impossible mappings. The full method includes two steps: 1)
demodulation of each single CSI word group; and 2) joint
demodulation of multiple CSI word groups.
Step 1: This step finds initial candidate words for each CSI

word group or determines if a word cannot be immediately

in our dictionary W. We next iterate over each Si ∈ S,
creating its inter-element relationship matrix and considering
the subset W′ of W whose entries are of the same length as
Si. We compare the relationship matrix of Si to that of each
Wj ∈W′ and mark that Wj as a candidate if the two matrices
are equal. If no candidates match, the word must not appear
in the collection of English words comprising our dictionary,
so we add Si to the “undemodulated set” U.
Step 2: This step works to build up a mapping between CSI

samples and letters that works for multiple CSI word groups
simultaneously, successively ruling out the many candidates
established by the first step, until (ideally) only one candi-
date remains for each word and the message is uncovered.
Conceptually, we iterate over the word groups not in the
undemodulated set U,

(a) concatenating each with all those previous,
(b) applying each possible mapping thus far constructed,
(c) ruling out all candidates that cannot coexist with any

mappings,
(d) and adding any new CSI sample/character mapping infor-

mation from the remaining candidates.

Specifically, we name Ti the concatenation of the first i − 1
CSI word groups {S1, . . . , Si−1}, 1 < i ≤ m, excluding any
Sk ∈ U. In other words, while considering Si, we concatenate
all the previous CSI word groups which have candidates into
Ti. Candidates for Ti, or groups of valid words satisfying the
structures of the CSI samples comprising Ti, are denoted by
TiC = {Ti1 , Ti2 , . . . , Tip}. Further, candidates for Si, as deter-
mined by Step 1, are denoted by SiC = {Si1 , Si2 , . . . , Siq}.
With Ti||Si signifying the concatenation of Ti and Si, we cal-
culate the inter-element relationship matrix for Ti||Si, as well
as that for every Tij ||Sik

, Tij ∈ TiC , Sik
∈ SiC . We note that

this is p × q matrices to be compared and that this series
of comparisons happens at each iteration; we analyze the
time complexity in Section V-C, and our experiments show
the number of comparisons converges quickly over successive
iterations. Then, if the relationship matrix for one such Tij ||Sik

matches that for Ti||Si, we know that the CSI sample/character
mapping of the candidate Sik

will work in concordance with
the mapping established for Tij while maintaining the structure
stipulated by Ti||Si. Each such Tij ||Sik

is therefore a new
candidate for Ti+1.
In the event that no Tij ||Sik

has a relationship matrix match-
ing that for Ti||Si, this means that no CSI sample/character
mappings satisfying the structure of Ti result in valid words
within our dictionary when applied to Si. Such Si are placed
in U and execution skips to Si+1. Pseudocode for this step
is shown in Algorithm 1. In this manner, we iterate over i
and gradually build up Ti until all distinct CSI samples are
mapped to characters in the alphabet. At this time, the mapping
can be applied to the remaining word groups, including those
in U, for which no matches were found in the dictionary
used. An example of this final alphabet matching is visible
in Figure 3.
4) Error Tolerance: Wireless channel noise may cause CSI

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1 Joint Demodulation
1: procedure JOINT_DEMOD(Si, TiC , SiC , U)
2: T(i+1)C

← ∅ (i > 0)
3: for Tij in TiC do
4: for Sik

in SiC do
5: if M(Ti||Si)=M(Tij ||Sik

) then
6: T(i+1)C

← T(i+1)C
∪ Tij ||Sik

7: end if
8: end for
9: end for
10: if T(i+1)C

= ∅ then � no candidates, skip Si

11: U← U ∪ Si

12: T(i+1)C
← TiC

13: end if
14: return T(i+1)C

, U
15: end procedure

Fig. 3. Assume a simple dictionary of three words “apple,” “hat,” and “old,”
typed in that order by the user. The alphabet of this dictionary consists of
8 letters “a,” “p,” “l,” “e,” “h,” “t,” “o,” and “d.” Dictionary demodulation
maps each letter in this alphabet to the corresponding CSI sample, and any
further CSI word groups may simply have this mapping applied to them.
After matching, suppose the user then types the word “deed,” the attacker
can directly demodulate the observed CSI word group, which did not appear
in the dictionary. Next, assume instead the second typed word is “would.”
Since “w” and “u” do not appear in the alphabet of this simple dictionary,
the attacker cannot decode them but can continue decoding the other letters
“o,” “l,” and “d.”

may appear like a different character. Otherwise, CSI samples
may be classified correctly but a typo by the user may mean a
word is misspelled and will not appear in the dictionary. This
can cause a concatenated set of CSI word groups to have an
incorrect inter-element relationship matrix, which may match
with invalid words or have no candidates at all. The latter is the
ideal case as the word group having the CSI sample in question
will simply be added to the undemodulated set and skipped.
However, if invalid words are incorporated into the candidates
for joint demodulation, incorrect relationship matrices will
continue to be used as the joint demodulation progresses,
and the content recovery will fail. We have observed in
experiments that even if a wrong matrix matches other word
sequences, cascading discovery failures inevitably happen for
successive words.
The attacker may employ this observation to work around

the presence of typos or CSI classification errors. If a CSI word

Algorithm 2 Error Handling
1: [T(i+1)C

,U] = JOINT_DEMOD(Si,TiC , SiC ,U)
2: if T(i+1)C

= TiC then � demodulation success
3: F ← allowable failure threshold
4: flag ← true
5: for j ∈ {i + 1, · · · , i + F} do
6: [T(j+1)C

,U]=JOINT_DEMOD(Sj ,TjC , SjC ,U)
7: if T(j+1)C

=TjC then � demodulation success
8: flag ← false; break � reset failure count
9: end if
10: end for
11: if flag then � reached failure threshold
12: U← U ∪ Si � skip Si

13: T(i+1)C
← TiC

14: end if
15: end if

undemodulated set and skipped in favor of proceeding with
the next word. Further word groups are thus less likely to
be processed with an incorrect portion of the relationship
matrix, and a correct mapping is more probable. Algorithm 2
shows how to check for cascading errors at each step i
based on the demodulation result for Si. Finally, when the
mapping is complete and applied to the CSI word groups in
the undemodulated set, any errors in CSI classification or typos
will persist, but not further damage the results. The attacker
can use some common knowledge to work out these errors
and any other ambiguities.
In the event the cascading errors do not seem to be avoid-

able, this is evidence that the wireless channel has changed,
because as previously mentioned the channel is time-varying.
In this case, the dictionary demodulation may be begun anew,
so that the attack can adapt to the changes.
5) Impact of Non-Alphabetical Characters: Users mostly

type alphabetical characters and spaces, but also occasionally
use numbers and punctuation, which obviously cannot be
matched by examining word structures. If these appear during
alphabet mapping construction, they will cause cascading
demodulation errors, be added to the undemodulated set, and
be skipped, similar to typos or CSI classification errors as just
discussed. If the mapping has already been constructed, the
CSI samples for these numbers or punctuation will not appear
in the mapping and will be left as unknown. In both cases, the
attacker can use some common knowledge to infer or narrow
down candidates for these characters.
For example, users press the backspace key to remove

multiple characters before the cursor and then continue typing.
For a CSI word group that is recovered as “abab××out,” the
attacker may recognize that the unidentified character “×”
corresponds to the backspace key and that the word should
be “about.” In another case, a user may press the left arrow
key to move the cursor backward, insert some text, and then
press the right arrow key to return the cursor to the original
position. Hence, the left and right arrow keys often appear

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 7

recovered as “aut��bo��,” with unidentified samples “�” and
“�” corresponding to left and right arrow keys, respectively.

IV. COUNTERMEASURES

The proposed keystroke inference attack explores the
inter-element relationship matrix to eavesdrop typing content
via intercepted wireless signals. Intuitively, to defend against
such an attack, we should disrupt the attacker from obtaining
the correct relationship. The user may manually encrypt the
words to be typed by using some traditional substitution and
permutation ciphers. However, this approach is impractical,
because it requires the user to calculate and type in the cipher-
text, an unintelligible string of random appearance which
would take much more time to type and incur numerous input
errors. The encryption also brings an extreme computational
burden to the user.
Instead, we investigate two privacy preservation directions

to protect typing content, i.e., hardware based and fake input
based defenses. We begin by developing TypeGuard, a hard-
ware based technique that introduces a selective jamming
mechanism to obfuscate the received signals at the eavesdrop-
per. Then we discuss how to construct fake input to fail the
keystroke inference.

A. TypeGuard

Ideally, a constant jammer is able to make the attacker fail
to obtain accurate CSI, which is required for all wireless-based
keystroke eavesdropping attacks, including the proposed one.
However, it is quite inefficient and expensive to utilize jam-
ming which never stops. Compared to constant jamming,
reactive jamming is not only cost effective, but also hard
to track and compensate against [28]. With TypeGuard, the
legitimate user deploys a wireless reactive jamming device,
which listens to signals from the wireless channel and also
transmits noise signals to the wireless channel to interfere
with the attacker’s transmissions once the typing is detected.
As a result, the attacker will not be able to collect enough
accurate CSI to analyze self-contained structures of words,
leading to the failure of launching the proposed wireless-based
keystroke eavesdropping attack. Figure 4 illustrates the defense
mechanism of TypeGuard.
Determination of Jamming Starting Point: A reactive

jammer (i.e., defender) needs to take a reactive time to detect
the typing and initialize the jamming. To detect the typing (i.e.,
the event of at least one keystroke), the defender needs to col-
lect the waveform of the first keystroke in the typing session.
Thus, the ending point of the first keystroke waveform would
trigger the jamming. Each keystroke normally corresponds to
a sharp fall and rise pattern in the CSI waveform, which
in turn facilitates the detection of each keystroke duration,
as described in Section V-A.
Stop Jamming: To obfuscate received signals at the

attacker, TypeGuard transmits high-power noise signals, which
can become dominant at the attacker side. TypeGuard then
needs to return to the inactive mode once it identifies the end
of the typing session.

Fig. 4. TypeGuard acts as a reactive jamming device, which first determines
starting point of jamming based on the first keystroke event of each typing
event and then emits jamming signals until the channel becomes stable (i.e.,
the user stops typing).

typing session when TypeGuard is launched. However, with
only one keystroke waveform, the attacker can only guess the
first typed character and is unable to infer the whole typing
content without knowing the inner structure of the typing
content. Therefore, the proposed attack fails. TypeGuard has
hardware demands, however, the jammer does not need to be
a sophisticated high-end device, and it can be any low-cost
wireless device (e.g., BladeRF [29] or nRF24L01+ [30])
that can perform basic wireless communication function (e.g.,
transmitting jamming signals).

B. Fake Input Based Defense

In a more expedient fashion, based on the target input,
the user may first construct a set of characters that are
uncommonly used, and then disrupt the inter-element relation-
ship among letters by randomly inserting a large number of
characters in such a set while typing. For common English
sentences, characters such as \, <, >, and & are rarely used.
While if the target input is source code, such characters,
as the basic components of the code, become common. Thus,
inserting them may disrupt the integrity of the input. In that
case, the user may have to find other uncommon characters
based on the category of the source code and the content of
input. Specifically, if the user inserts uncommon characters
before the first word, the matrix of the first observed CSI
word group will either match an incorrect word or not match
with any word in the dictionary, so the demodulation algorithm
will return incorrect or no candidates. In the former case, the
attacker can still correctly demodulate the following word if
it shares no letters with the previous. If no candidates are
returned, the attacker will discard the first observed CSI word
group and start the demodulation algorithm at the second
observed CSI word group. Clearly in both cases, to confuse
subsequent words, the user must continue inserting uncommon
characters in each word.
To further mislead the attacker, the user can also con-

struct sequences of uncommon characters with the same
inter-element relationship matrices as various words in the

8 IEEE/ACM TRANSACTIONS ON NETWORKING

fake words periodically. The fake words can not only feed the
attacker with wrong mappings but also mislead the attacker
with incorrect eavesdropping results. To prevent the fake words
from interfering with the meaningful content, the user may
employ a computer program that automatically searches for
and removes the uncommon characters or fake words from
the input text.

V. EXPERIMENT RESULTS

We implement the training-agnostic keystroke eavesdrop-
ping attack using USRPs. The prototype attack system
includes a wireless transmitter and a receiver. Each node
is a USRP X300 with 40 MHz bandwidth CBX daughter-
boards [31]. The channel estimation algorithm runs at the
receiver to extract the CSI for key inference.
The target user operates a desktop computer with a Dell

SK-8115 USB wired standard keyboard. The transmitter and
the receiver are placed at opposite positions relative to the
keyboard. We place the transmitter at a distance of 3 meters
away from the keyboard, and the receiver under the 2 cm-thick
desk, at a distance of 50 cm away from the keyboard. Also,
there is a 4 cm-thick wooden barrier between the transmitter
and the keyboard. Thus, both the transmitter and the receiver
are not within line-of-sight of the target user. We also form a
dictionary using the top 1,500 most frequently used English
words [17].

A. Example Recovery Process

In this section, we will demonstrate the process of recover-
ing a sample user’s typed text.
CSI Sample Extraction: To extract the CSI samples from

the CSI time series, we utilize the same pre-processing step as
these existing techniques [3], [4]. Correspondingly, this step
has three phases, i.e., noise removal, Principle Component
Analysis (PCA) [32], and segmentation.
We observe the frequency of the CSI influenced by key-

strokes always lies within a low-frequency range of 2 to 30 Hz.
We thus utilize a Butterworth low-pass filter [33] to mitigate
the impact of high-frequency noise. Initially, the receiver
obtains CSI from all subcarriers. We then apply the PCA
technique to decrease computational complexity by converting
the received CSI into a set of orthogonal components, called
principle components [32], which most represent the effects
of the keystrokes. The segmentation phase separates the full
CSI time series into the individual CSI samples corresponding
to single unknown keystrokes. Looking at the CSI waveform,
we can observe a sharp fall and rise whenever a key is pressed
and released. Therefore, we search over the data for shapes
having sharp fall-and-rise features. We utilize Ai to denote
the amplitude of the ith extremum of the CSI time series.
Suppose the local minima and maxima appear alternately, and
the local minima appear first. We use the following steps for
segmentation.

• Find all local minima A2i−1 and local maxima A2i within

Fig. 5. The CSI word group for the word “sense.”

Fig. 6. The evolution of the amount of candidates returned.

• Calculate the fluctuation Δj = |Aj+1 −Aj | (j ∈
{1, . . . , 2N−1}) and the mean value of the fluctuation
Δ̄=

∑2N
j=2 Δj/(2N−1). If Δj > Δ̄, we consider this a

noteworthy fluctuation caused by a keystroke. Otherwise,
it is likely an inconsequential fluctuation caused by noise.

• When we observe n continuous fluctuations (i.e.,Δj , · · · ,
Δj+n,n ≥ 2), and they are all larger than Δ̄, we mark
Aj and Aj+n+1 as the beginning and end of a keystroke,
respectively, and the CSI values between Aj and Aj+n+1

are grouped as a CSI sample.

After the receiver assigns the space character to the most
frequently appearing CSI sample group, the remaining samples
are grouped into CSI word groups. Figure 5 shows the CSI
word group for the word “sense.” The full data contains five
CSI samples caused by pressing the keys ‘s,’ ‘e,’ ‘n,’ ‘s,’ and
‘e’ as visible on the figure. With Dynamic Time Warping,
we classify the five samples into three sets, including the pair
of the first and fourth samples, the pair of the second and fifth
samples, and the third sample alone.
Next, we illustrate how the collected CSI word groups can

be narrowed down to the typed content. We choose the Harvard
sentences [34] to be typed in for our experiments; these are
phonetically balanced sentences commonly used for testing
speech recognition techniques. For this example recovery,
we randomly select five sentences from these representative
English sentences, with a total of 41 words. We record Csingle,
which is the number of words that have the same inter-element
relationship matrix as the current CSI word group under
processing, and Cjoint, which is the number of candidates
returned by the joint demodulation algorithm for each CSI
word group.
Figure 6 shows Csingle and Cjoint during the processing

of this sentence. To facilitate understanding, we also mark

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 9

Fig. 7. Example paragraph recovery.

Fig. 8. WRR vs. word count.

letters ‘t,’ ‘h,’ ‘e,’ respectively. We can see that Csingle is
112 for three-letter words, and consequently Cjoint increases
dramatically from 112 to 6,944 and then to 210,963 as the
second and third CSI word groups are added, as these word
groups share no common CSI samples. However, as more CSI
word groups are added, the joint demodulation algorithm finds
more common CSI samples, which shrinks the search space.
Cjoint drops sharply from 210,963 to 3,304 after the fourth
CSI word group is processed, and further reduces to 15 as the
remaining CSI word groups are processed.
The demodulation phase returns two candidates, as shown

in Figure 7. They differ by only one word; the second word is
either “boy” or “box.” Even for the wrong candidate, 97.6%
of the words are successfully recovered, and all characters
except one. The example paragraph also contains five words
(“rod,” “pink,” “salmon,” “kick,” and “feet”) that are not in
the dictionary. These are still successfully inferred, however,
because their constituent CSI samples also appear in other
words, and their sample/letter mappings have already been
determined by the matching phase.

B. Eavesdropping Accuracy

We define the word recovery ratio as the ratio of success-
fully recovered words to the total number of input words.
We employ this metric to ascertain the accuracy of our
attack using 100 online articles randomly selected from CNN,
New York Times, and Voice of America. For comparison,
we also apply the traditional frequency analysis technique to
the segmented CSI samples.

Fig. 9. Comparing distributions.

Fig. 10. Recovered words.

Suppose the demodulation algorithm returns N candidates for
the typed content. We use WRRi (i ∈ {1, · · · , N}) to denote
the word recovery ratio for the ith candidate. We consider the
overall word recovery ratio WRR of the proposed attack to
be calculated as the average of these word recovery ratios for
each candidate: WRR =

∑N
i=1

WRRi

N .
Figure 8 shows the overall word recovery ratio as a function

of the number of typed words. We can observe for the first
couple of typed words, the ratio is less than 0.17, because
these words are not in the dictionary or the joint demodulation
algorithm returns wrong candidates. As more words are typed
in, the ratio increases significantly and fluctuates, since newly
typed words may or may not be identified correctly in the var-
ious candidates. After a sufficient number of words are typed,
the mapping between CSI samples and the letters converges
to only one candidate. As a result, the word recovery ratio
stabilizes at a high value. As shown in Figure 8, when more
than 52 words have been typed, the overall word recovery ratio
remains above 0.96.
For meaningful results, we apply the frequency analysis

recovery technique to compare with our method. Figure 9(a)
shows the typical distribution of frequencies of English let-
ters [15], while Figure 9(b) shows the distribution of letters
in the typed text. Because the typed text is short and not
representative of the whole English language, the sample
distribution is not perfectly equal to the typical distribution.
This difference is highlighted in Figure 9(c) and causes the
word recovery ratio for the frequency analysis to be as low
as 0.07. Figure 10 shows parts of the recovery results using
the frequency analysis and our method. The content recovered

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. WRR vs. classification errors.

Fig. 12. CDFs of LWRR>0.8 and LWRR>0.9 .

Impact of CSI sample classification errors and dictio-
nary size: As discussed in Section III-C4, errors in grouping
CSI samples during pre-processing may occasionally lead to
a failure in demodulating a CSI word group when the word’s
pattern is not correctly detected. To test the impact of this on
the overall word recovery ratio, we artificially introduce errors
into the groupings and attempt the demodulation algorithm
using the intentionally incorrect data. Specifically, we vary the
number of correctly grouped CSI samples from 40% to 100%
in intervals of 5%, and measure the resulting overall word
recovery ratio. We also examine the effects of dictionaries of
three different sizes, including the 500, 1000, and 1500 most
frequently used words.
We repeat this experiment 10 times and present the average

results in Figure 11. Intuitively, more correctly classified CSI
samples result in higher word recovery ratios, as do larger
dictionaries. Nonetheless, we also note that only 80% of CSI
samples need to be correctly classified for the overall word
recovery ratios to achieve 0.86, 0.81, and 0.7 for the various
dictionary sizes.

2) Average Article Recovery: We repeat the above exper-
iment for 100 online articles. Intuitively based on the dis-
cussed observations, the proposed attack should achieve a high
word recovery ratio for a long text. Considering a desired
overall word recovery ratio of 0.8 or 0.9, let LWRR>0.8

and LWRR>0.9 denote the required number of typed words
from each article to satisfy those ratios, respectively. Figure 12
shows the empirical cumulative distribution functions (CDFs)
of LWRR>0.8 and LWRR>0.9, indicating conclusively longer

Fig. 13. Comparison with frequency analysis.

ratio is greater than 0.8 and 0.9 when the number of these
words is greater than 27 and 42, respectively.
Figure 13 compares the efficacy of our attack and the fre-

quency analysis technique. Our attack can achieve a 0.82 word
recovery ratio after 50 typed words, whereas the frequency
analysis requires typing 150 words before any can be suc-
cessfully recovered. Indeed, the highest ratio achieved by the
frequency analysis in these online articles is around 0.1, after
450 words, while in stark contrast our attack stabilizes around
0.95 after 150 words.

C. Time Complexity Analysis

The comparison of inter-element relationship matrices is
the dominant part of the dictionary demodulation phase,
so we count the required comparisons to calculate complexity.
We use three different dictionaries, which contain the top 500,
1000, and 1500 most frequently used words [17].
During the 100 experiments in Section V-B, we count

the comparisons to generate candidates for the typed content
each time a new CSI word group is added to the dictionary
demodulation process. Figure 14 shows the average compari-
son number for each newly typed word, on a log scale. This
number greatly increases for the first few typed words but
promptly decreases to a low value below 10 as more words
are typed. This was seen for a single sentence in Figure 6 and
holds for these 100 trials as well. The addition of more unique
letters results in a vastly enlarged search space, while the later
inclusion of more repeated letters imposes a structure to the
words and quickly reduces the search space.
Interestingly, the search space for a larger dictionary shrinks

faster than that of a smaller dictionary as more words are
typed, despite being larger after the first few words. For
example, for the 45th word, the average numbers of required
comparisons for the 1500-, 1000-, and 500-word dictionar-
ies are 20.6, 39.7, and 70.1, respectively. At first, a larger
dictionary will find more matches for the word structures
searched, but this quickly narrows down as repeated letters are
added. Conversely, a smaller dictionary has a lower probability
of finding candidate words for a particular structure, leading
to skipped words, and therefore requiring more typed words
before repeated letters can appear and reduce the search space.
Figure 15 shows the cumulative average comparison num-

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 11

Fig. 14. New comparisons vs. word count.

Fig. 15. Total comparisons vs. word count.

total time complexity stabilizes. This trend is the same for
all dictionaries, though larger dictionaries see distinctly more
total comparisons and consequently higher time complexity.
Larger dictionaries also stabilize faster, however; the 1500-,
1000-, and 500-word dictionaries stabilize at 8, 11, and
15 typed words, respectively.

D. An Example of the Attack

We recruited 10 volunteers and asked each to type a
paragraph of “secret” content for us to attempt to infer. For
ethical reasons, we did not ask them to type actual secrets
that they would wish to keep private, but simply to type
comprehensible English content which we did not provide
them. While each volunteer typed, the receiver continuously
collected CSI data and processed them. The eavesdropping
result was presented to the volunteer, who compared the
recovered content with their typed content to quantify the
word recovery rate. Figure 16 shows the resulting average
word recovery ratios as each word is typed and with the three
different dictionary sizes. Our attack achieves a word recovery
ratio of more than 0.8 after 28 words are typed, regardless
of dictionary size. Additionally, a larger dictionary yields a
higher word recovery ratio. With more than 40 typed words
and a dictionary of 1,500 words, the ratio exceeds 0.94. This
demonstrates our attack can recover typed secrets effectively
and efficiently in a real-world setting.

E. Steal Source Code

Except for English, the proposed attack can also target other

Fig. 16. Recovery of “secrets.”

Fig. 17. Source code inference example (‘*’ is an unidentified character).

programs are written exclusively via a keyboard and are of
interest to corporate espionage, etc. Without loss of generality,
we utilize Linux kernel source code as an example.
To launch the proposed attack, we first explore the specific

properties that Linux kernel source code has for inferring cod-
ing. A programming token (e.g., constant, identifier, operator,
reserved words, separator) is the basic component of the source
code. When typing codes, we often use the space character
to separate tokens in a line, and use the semicolon character
to close an expression and a line. To begin a new line, the
“Enter” key is pressed. Besides, the parentheses characters are
often used to indicate function calls and function parameters.
Based on those properties, we first try to identify the space,
semicolon, “Enter,” and parentheses characters, and use them
as token dividers.
First, we build a token dictionary that includes C language

keywords in ANSI C, extended keywords which do not exist in
ANSI C, and function names of kernel modules (e.g., printk,
init_module, cleanup_module) [36]. Note that each language
should have its specific dictionary.
We select a piece of source code, as shown in Figure 17,

and let the user type it. The receiver continually collects the
CSI samples and processes them. Based on the aforementioned
rule of source code, we first identify the CSI samples corre-
sponding with the space, semicolon, “Enter,” and parentheses
characters from the observed CSI samples. With such token

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 18. Ratio of letters vs. key length.

demodulation is launched. The recovered code is presented in
Figure 17. We see that our attack can successfully recover all
tokens that are in the pre-established dictionary. Meanwhile,
for tokens that are not in the dictionary, the proposed may still
recover the characters in them as long as the characters also
appear in the identified tokens.

F. Password Entropy Reduction

Modern passwords include letters, numbers, and special
characters. The password strength lies in its resistance to brute-
force attacks. Our attack focuses on letters, but it can still
greatly decrease password strength. As users normally type
both passwords and English content during computer usage,
we can apply the alphabet matching afforded by the latter to
infer significant portions of the former.
Typical users usually pick fewer non-letter characters in

their password to make it easy to remember, leaving the
password more vulnerable to these attacks. We did prelim-
inary experiments to evaluate the entropy reduction impact
using the password list, which contains 342,508 passwords
leaked from Yahoo! Voices [37]. Figure 18 shows the average
ratios of letter characters in passwords with different lengths.
We observe that the ratio of letters in a password with a length
ranging from 6 to 12 lies between 0.65 to 0.73, and also with
the key length increasing, the ratio of letters slightly increases.
We find that 98.42% of the leaked passwords are 12 characters
or fewer, and people utilize an average of 8.72 letters for a
12-character password. This means that the difficulty for
guessing a 12-character random password is reduced to that
for guessing an extremely weak password of 3-4 characters.
Furthermore, the attacker knows these 3-4 characters are not
English letters.
We quantify the damage our attack can inflict on pass-

word entropy, the typical measure of password strength.
The entropy of a password X is defined as H(X) =
−∑n

i=1 P (xi)·log2 P (xi), where xi (i ∈ {1, 2, · · · , n}) is one
of n possible values of X and P (xi) represents the probability
that X = xi holds. Considering a keyboard housing N
characters, a password with length l selected at random has
N l possible values and l · log2 N bits of entropy. Suppose this
password has l′ letter characters and l−l′ non-letter characters.
The keyboard with N characters necessarily contains 26 letters
and N−26 non-alphabetical characters. Having successfully
established a full CSI sample/letter mapping and applying this

Fig. 19. The PMFs of password entropies.

In our experiment, we randomly select 1000 9-character
passwords from the Yahoo! Voices dataset. 32 non-
alphanumerical characters are allowed in passwords, yielding
42 non-alphabetical characters when factoring in numbers.
However, we find that an average of 6.38 of 9 characters were
letters, meaning their discovery will vastly reduce entropy.
Each of these 1000 passwords was added to the end of the
text typed by volunteers in the previous experiment, and
the resulting CSI sample/letter map was applied to each.
We compare the inferred password information to the original
password, to identify the correctly recovered characters and
calculate the difference in password entropy.
Figure 19 plots the empirical probability mass func-

tions (PMFs) of the password entropies before and after the
proposed attack is applied. A randomly selected 9-character
password with the assumed keyboard layout provides 54.8 bits
of entropy and requires a maximum of 31.08 quadrillion brute
force attempts. With our attack, the password entropy can
be decreased to within a range of 5.4 to 27.0 bits, such
that breaking a 9-character password is reduced to guessing
1-5 non-letter characters. The maximum number of brute-force
attack attempts targeting a password with an entropy of 5.4 bits
is just 42. In fact, 89.0% of the randomly selected passwords
have less than 16.2 bits of entropy after our attack, meaning
at most 74,000 brute-force attack attempts are required for the
vast majority of these passwords. Evidently, the security of
these passwords is decreased by several orders of magnitude
courtesy of the proposed attack.

G. Evaluation of TypeGuard

To evaluate the effectiveness of TypeGuard against our
attack, we add a third USRP X300 as the jammer, which starts
to transmit noise signals when it detects the type event, and
stops when it detects that the typing session ends. We consider
two scenarios: (1) when the user types without other moving
objects around; and (2) when the user types with other users
moving around from time to time.
Figure 20 presents an example of the pre-processed CSI

waveforms with and without TypeGuard, where the user types
a word “apple.” We can see that at the time of 1.8 seconds,
TypeGuard initiates, and the jamming signals successfully
obscure the keystroke associated patterns in the CSI wave-
form, demonstrating the effectiveness of TypeGuard. Besides,
to further evaluate effectiveness and efficiency, we utilize the
following two metrics respectively:

J

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 13

Fig. 20. An example of observed CSI waveforms after pre-processing at the
eavesdropper with and without TypeGuard.

Fig. 21. Jamming rate δ vs. N (without nearby interference).

Fig. 22. Inefficiency rate β vs. N (without nearby interference).

and T represents the entire duration of the typing session.
A higher δ indicates that the eavesdropper would observe
less useful CSI information.

• Inefficiency rate β: We define β = Jie

J , where Jie is the
duration of the jammed portion of the non-typing period,
and J denotes the whole jamming duration (i.e., J =
Jie + Je). Since no jamming is needed for non-typing
periods, a lower β then implies that the jamming scheme
is more efficient.

We let the user type an English sentence with N words for
each typing session. N varies from 2 to 10 with increments
of 2. The user types each sentence 10 times. With recorded
durations T , Je, and Jie for each typing session, we compute
corresponding jamming rate δ and inefficiency rate β.
Figures 21 and 22 present δ and β across different word

count N in the environment without inference from nearby
movement. We can see that the jamming rate is always above
0.93, and the average jamming rate is 0.97 for all typing
sessions. Also, the median jamming rate slightly increases
with the word count. This is because TypeGuard normally
only leaves the first keystroke waveform unjammed and thus

Fig. 23. Jamming rate δ vs. N (with nearby interference).

Fig. 24. Inefficiency rate β vs. N (with nearby interference).

word count lies in the range of 0.05 to 0.14. We observe that
hand movement not for typing may also trigger the jamming
by accident. Such incidents would increase the value of β.
Overall, the average inefficiency rate decreases with the word
count. These results show that TypeGuard can effectively and
efficiently disrupt the signal reception at the eavesdropper,
and thus successfully defend against the proposed wireless
keystroke inference attack.
Figures 23 and 24 depict measured δ and β over differentN

in the environment with interference from nearby movement.
We can see that the jamming rate is at least 0.95, and the aver-
age jamming rate is 0.98 for all typing sessions, slightly higher
than the case without the inference. This appears because
the interference introduced by nearby movement may trigger
TypeGuard to even jam the first keystroke waveform. Mean-
while, compared with the case without the interference, the
median inefficiency rates for all N are consistently increased,
ranging from 0.16 to 0.25. These increases are caused by false
triggering of TypeGuard brought by the nearby movement-
induced interference.

VI. LIMITATIONS

Environmental Movement: Usually, a user is more focused
with less body movement during typing. The movement of
the typist or other movements in the environment may bring
the variation of CSI, and thus introduce interference for CSI
associated with keystrokes. This is a general issue to all
wireless-based keystroke inference attacks. There are several
tolerance methods to reduce the impact of human movements.
For example, [3] applies noise reduction algorithms to improve
keystroke recognition accuracy. Also, unlike omni-directional
antennas which have a uniform gain in each direction, direc-
tional antennas have a different antenna gain in each direction.
Thus, [4] adopts directional antennas to eliminate CSI noises

14 IEEE/ACM TRANSACTIONS ON NETWORKING

to the target keyboard, e.g., under the victim’s desk, to reduce
surrounding impact.
Auto-correction and Auto-complete: Auto-correction uses

a dictionary to spellcheck typed words and correct misspelled
ones; auto-complete predicts the rest of a word that a user
types. In both cases, due to inefficient CSI information, the
attacker is often unable to directly demodulate the incomplete
CSI word group via comparing inter-element relationship
matrices. However, as no candidates match, the formed CSI
word group would be added to the undermodulated set. When
the sample/letter mappings are built, they can be applied to the
CSI word groups in the undemodulated set. With the recovered
misspelled word or partial letters of the word, the attacker can
further utilize the public auto-correction and auto-complete
applications to infer the exact word that the user intends to
input.

VII. RELATED WORK

Existing non-invasive attacks to infer keystrokes fall into
the following categories:
Vibration based attacks: Typing on a keyboard can cause

vibrations on the surface where the keyboard rests, with subtle
differences depending on keys typed [5], [6]. The accelerom-
eter of a nearby phone or tablet on the same surface can
capture the vibrations. With training, an attacker can establish
the relationship between the keystroke and the acceleration
disturbance caused by the vibration. In the detection phase,
the attacker can then recover the typed content by applying
this relationship.
Acoustic signal based attacks: It has been observed typing

on a keyboard can produce sounds unique to each key.
Researchers extract features from these sounds and then train
a classifier to reconstruct the keystrokes [7]–[9], [13]. The
requirement for training is relaxed in [8], which uses a
statistical unsupervised training method to design a supervised
classifier. However, the proposed method is faster than the
method based on the Hidden Markov Model (HMM) in [8].
The HMM method requires collecting 10 minutes worth of
keystrokes (around 340 words) for a word recovery rate of
87.6%. This minimized training method may not function for
wireless based attacks, as due to the time-varying nature of
the wireless channel, a training time of 10 minutes may be
too long to generate a useful mapping between observed CSI
samples and letters. Unlike [8], frequency analysis, and all
other statistical methods, the proposed method explores the
self-contained structures of words, which can be observed for
each word immediately as it is typed, rather than probabilistic
statistics among words, which require many words to estab-
lish. Thus, the proposed attack only needs 50 words within
1-2 minutes for a word recovery rate of 94.3%.
Zhou et al. discovers that the recorded audio signals can

be used to infer the victim’s finger movement and thus
crack Android pattern locks [38]. Such an attack, however,
is invasive as it requires installing malware on the victim’s
smartphone. An adversary may use a triangulation localization
technique to localize the sound source and accordingly infer

distance, and also requires line-of-sight between the keyboard
and equipment. Both requirements hinder attack plausibility
and application. Also, the attenuation of acoustic signals
can be used to localize each keystroke during inputs [41].
However, this method requires placing a smartphone close
(within 60 cm) to the victim’s keystroke, and the alignment
between the devices of the adversary and the victim affects
the accuracy of keystroke localization. Berger et al. infer
keystrokes with the observation that similar sounds are highly
likely to come from keys positioned close to each other on the
keyboard [42]. This technique aims to reconstruct a single long
(7-13 characters) word in the dictionary, whereas the goal of
the proposed attack is to reconstruct the entire typed content
regardless of whether or not all its constituent words are in
the dictionary.
Timing based attacks: Keystroke timing patterns can be

another source to infer keystrokes [10]–[12]. For example, [10]
infers keystroke sequences by using the inter-keystroke timing
information collected from the arrival times of the SSH
packets. However, these timing-based attacks all require a
training process to statistically generate the attack models.
Wireless signal based attacks: There are emerging research

efforts performing keystroke eavesdropping attacks using wire-
less signals due to the ubiquitous deployment of wireless
infrastructures, the radio signal nature of invisibility, and
the elimination of the line-of-sight requirement. In partic-
ular, [2] infers keystrokes by examining the amplitude and
phase changes of the wireless signal; [3], [4], [14] utilize
the channel condition extracted from the observed wireless
signal to distinguish keystrokes; [43] proposes an LTE-based
keystroke inference attack, which has a longer operational
distance than previous attacks via WiFi signals. All these
works require training to construct the relationship between
the observed signal feature and the typing.
Camera-based attacks: An intuitive method to infer key-

strokes is to use cameras to record the typing process
and then identify keystrokes by analyzing the recorded
video. Researchers have found that video recording of hand
movement [44]–[46], eye movement [47], tablet backside
motion [48], or the shadow around fingertips [49], is also able
to aid the keystroke inference. However, when the movement
of interest does not happen in the presence of a camera,
keystroke activities cannot be detected.
Cryptanalysis based attacks: Cryptanalysis is a technique

of discovering secrets. Cryptanalysis attacks can be in the
form of known-plaintext or ciphertext-only attacks. If we
consider the CSI sample as the ciphertext and the typed
content as the plaintext, the training-based keystroke inference
attacks [3], [4] are indeed known-plaintext attacks, as the
attacker must know some plaintext (i.e., typed content) and
the corresponding ciphertext (i.e., CSI) for training. Our attack
does not require training data. Thus it is a ciphertext-only
attack. Existing ciphertext-only attacks attempting to decode
the ciphertext of natural language are largely based on the sta-
tistical information about the ciphertext [50], [51]. For exam-
ple, [50] regards the author of an instant message conversation

YANG et al.: WIRELESS TRAINING-FREE KEYSTROKE INFERENCE ATTACK AND DEFENSE 15

recovers the plaintext by using a statistical language model
and a dynamic programming algorithm.
Nevertheless, collecting statistical information implies

acquiring a large amount of ciphertext. This may not be
suitable for the wireless based keystroke inference, because
collecting the wireless statistics does require a long period of
observation. As mentioned earlier, this can prevent the attacker
from collecting sufficient reliable statistics for keystroke infer-
ence. Our method is based on the self-contained feature
of words instead and thus does not require the long-time
observation about wireless statistics.

VIII. CONCLUSION

We identify a new type of keystroke eavesdropping attack.
Compared with all previously discovered attacks, the attack
can bypass (1) the requirement of the training phase, (2) the
requirement to deceive the user or bypass the user’s anti-virus
and firewall software to install malware on the target device,
and (3) the requirement of line-of-sight between the attacker’s
device and the keyboard. This attack is constructed based on
the CSI extracted from the wireless signal. We also propose
defense techniques against this attack. We implement the
discovered attack and the developed defense called TypeGuard
on the USRP X300 platform, and conduct experiments to
validate both. Experiment results demonstrate the feasibility
of the proposed attack to infer English words and source
code, as well as the effectiveness and efficiency of TypeGuard
against the attack.

REFERENCES

[1] S. Fang, I. Markwood, Y. Liu, S. Zhao, Z. Lu, and H. Zhu, “No
training hurdles: Fast training-agnostic attacks to infer your typing,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018,
pp. 1747–1760.

[2] B. Chen, V. Yenamandra, and K. Srinivasan, “Tracking keystrokes using
wireless signals,” in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl.,
Services, May 2015, pp. 31–44.

[3] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recognition
using WiFi signals,” in Proc. 21st Annu. Int. Conf. Mobile Comput.
Netw., Sep. 2015, pp. 90–102.

[4] M. Li et al., “When CSI meets public WiFi: Inferring your mobile
phone password via WiFi signals,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 1068–1079.

[5] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iPhone: Decod-
ing vibrations from nearby keyboards using mobile phone accelerome-
ters,” in Proc. 18th ACM Conf. Comput. Commun. Secur. (CCS), 2011,
pp. 551–562.

[6] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password inference using accelerometers on smartphones,” in Proc. 12th
Workshop Mobile Comput. Syst. Appl. (HotMobile), 2012, pp. 9:1–9:6.

[7] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Proc.
IEEE Symp. Secur. Privacy, May 2004, pp. 3–11.

[8] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” in Proc. 12th ACM Conf. Comput. Commun. Secur. (CCS),
2005, pp. 373–382.

[9] J. Wang, K. Zhao, X. Zhang, and C. Peng, “Ubiquitous keyboard
for small mobile devices: Harnessing multipath fading for fine-grained
keystroke localization,” in Proc. 12th Annu. Int. Conf. Mobile Syst.,
Appl., Services, Jun. 2014, pp. 14–27.

[10] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. 10th Conf. USENIX Secur. Symp.
(SSYM), vol. 10, 2001, pp. 1–17.

[11] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third party compute

[12] K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems,” in Proc. 18th Conf. USENIX
Secur. Symp. (SSYM), 2009, pp. 17–32.

[13] A. Compagno, M. Conti, D. Lain, and G. Tsudik, “Don’t skype & type!:
Acoustic eavesdropping in voice-over-IP,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., Apr. 2017, pp. 703–715.

[14] Z. Zhang et al., “WiPOS: A POS terminal password inference system
based on wireless signals,” IEEE Internet Things J., vol. 7, no. 8,
pp. 7506–7516, Aug. 2020.

[15] J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman
& Hall/CRC Cryptography and Network Security Series). London, U.K.:
Chapman & Hall, 2007.

[16] (2017). Statistical Distributions of English Text. [Online]. Available:
http://www.data-compression.com/english.html

[17] M. Davies. (2017). Word Frequency Data From the Corpus of Con-
temporary American English (COCA). [Online]. Available: http://www.
wordfrequency.info/free.asp

[18] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proc. 19th Annu. Int. Conf. Mobile
Comput. Netw. (MobiCom), 2013, pp. 27–38.

[19] S. Fang, Y. Liu, W. Shen, and H. Zhu, “Where are you from: Confusing
location distinction using virtual multipath camouflage,” in Proc. 20th
Annu. Int. Conf. Mobile Comput. Netw., Sep. 2014, pp. 225–236.

[20] F. Adib and D. Katabi, “See through walls with WiFi!” in Proc. ACM
SIGCOMM Conf. SIGCOMM, Aug. 2013, pp. 75–86.

[21] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, “Capturing the
human figure through a wall,” ACM Trans. Graph., vol. 34, no. 6, p. 219,
Oct. 2015.

[22] S. Fang, I. Markwood, and Y. Liu, “Manipulatable wireless key estab-
lishment,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Oct. 2017,
pp. 1–9.

[23] A. Goldsmith, Wireless Communications. New York, NY, USA: Cam-
bridge Univ. Press, 2005.

[24] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni, “We can hear you with
Wi-Fi!” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., Sep. 2014,
pp. 593–604.

[25] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580,
2007.

[26] J. Wang and D. Katabi, “Dude, where’s my card?: RFID positioning that
works with multipath and non-line of sight,” in Proc. ACM SIGCOMM
Conf. (SIGCOMM), Aug. 2013, pp. 51–62.

[27] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “LTE radio analytics
made easy and accessible,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 211–222.

[28] S. Fang, Y. Liu, and P. Ning, “Wireless communications under broad-
band reactive jamming attacks,” IEEE Trans. Depend. Sec. Comput.,
vol. 13, no. 3, pp. 394–408, May/Jun. 2016.

[29] K. Parlin, M. M. Alam, and Y. L. Moullec, “Jamming of UAV remote
control systems using software defined radio,” in Proc. Int. Conf. Mil.
Commun. Inf. Syst. (ICMCIS), May 2018, pp. 1–6.

[30] SparkFun Electronics. (2022). Sparkfun Transceiver Breakout nrf24l01+
(RP-SMA). [Online]. Available: https://www.sparkfun.com/products/705

[31] M. Ettus, USRP User’s and Developer’s Guide. Santa Clara, CA, USA:
Ettus Research LLC, 2005.

[32] J. Shlens, “A tutorial on principal component analysis,” 2014,
arXiv:1404.1100.

[33] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[34] E. H. Rothauser, W. D. Chapman, N. Guttman, H. R. Silbiger,
M. H. L. Hecker, G. E. Urbanek, K. S. Nordby, and M. Weinstock,
“IEEE recommended practice for speech quality measurements,” IEEE
Trans. Audio Electroacoust., vol. AU-17, no. 3, pp. 227–246, Sep. 1969.

[35] (2017). London Attack: Assailant Shot Dead After 4 Killed Near Parlia-
ment. [Online]. Available: http://www.cnn.com/2017/03/22/europe/U.K.-
parliament-firearms-incident/index.html

[36] P. J. Salzman, The Linux Kernel Module Programming Guide. Para-
mount, CA, USA: CreateSpace, 2009.

[37] (2017). 2012 Yahoo! Voices Hack. [Online]. Available: https://en.
wikipedia.org/wiki/2012_Yahoo!_Voices_hack

[38] M. Zhou et al., “Stealing your Android patterns via acoustic signals,”
IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1656–1671, Apr. 2021.

[39] T Zhu Q Ma S Zhang and Y Liu “Context free attacks using

16 IEEE/ACM TRANSACTIONS ON NETWORKING

[40] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snooping
keystrokes with mm-level audio ranging on a single phone,” in Proc.
21st Annu. Int. Conf. Mobile Comput. Netw., Sep. 2015, pp. 142–154.

[41] J. Yu, L. Lu, Y. Chen, Y. Zhu, and L. Kong, “An indirect eavesdropping
attack of keystrokes on touch screen through acoustic sensing,” IEEE
Trans. Mobile Comput., vol. 20, no. 2, pp. 337–351, Feb. 2021.

[42] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard
acoustic emanations,” in Proc. 13th ACM Conf. Comput. Commun. Secur.
(CCS), 2006, pp. 245–254.

[43] K. Ling, Y. Liu, K. Sun, W. Wang, L. Xie, and Q. Gu, “SpiderMon:
Towards using cell towers as illuminating sources for keystroke moni-
toring,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 666–675.

[44] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on
keyboard input from video,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2008, pp. 170–183.

[45] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2014, pp. 904–917.

[46] Q. Yue, Z. Ling, W. Yu, B. Liu, and X. Fu, “Blind recognition of
text input on mobile devices via natural language processing,” in Proc.
Workshop Privacy-Aware Mobile Comput., Jun. 2015, pp. 19–24.

[47] Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “EyeTell: Video-
assisted touchscreen keystroke inference from eye movements,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2018, pp. 144–160.

[48] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang, “VISIBLE:
Video-assisted keystroke inference from tablet backside motion,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1–15.

[49] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2014, pp. 1403–1414.

[50] A. Orebaugh, “An instant messaging intrusion detection system frame-
work: Using character frequency analysis for authorship identification
and validation,” in Proc. 40th Annu. Int. Carnahan Conf. Secur. Technol.,
Oct. 2006, pp. 160–172.

[51] J. Mason, K. Watkins, J. Eisner, and A. Stubblefield, “A natural language
approach to automated cryptanalysis of two-time pads,” in Proc. 13th
ACM Conf. Comput. Commun. Secur. (CCS), 2006, pp. 235–244.

Edwin Yang received the M.S. degree from Yonsei
University, Seoul, South Korea, in 2017. He is cur-
rently pursuing the Ph.D. degree in computer science
with The University of Oklahoma. His research
interests are in the area of mobile system security
and the Internet of Things (IoT) security.

Song Fang received the Ph.D. degree in computer
science from the University of South Florida in
2018. He is currently an Assistant Professor with
the School of Computer Science, The University of
Oklahoma. His research interests include wireless
and mobile system security, cyber physical systems
and the IoT security, and mobile computing. He is
also interested in applying machine learning in
security.

Ian Markwood received the Ph.D. degree in com-
puter science from the University of South Florida
in 2018. He is currently a Security Researcher
with BlackHorse Solutions, contracting for the
U.S. Government.

Yao Liu (Senior Member, IEEE) received the Ph.D.
degree in computer science from North Carolina
State University in 2012. She is currently an Asso-
ciate Professor at the Department of Computer Sci-
ence and Engineering, University of South Florida.
Her research is related to computer and network
security, with an emphasis on designing and imple-
menting defense approaches that protect emerg-
ing wireless technologies from being undermined
by adversaries. Her research interests also lie in
cyber-physical systems security, especially smart
grid security.

Shangqing Zhao received the Ph.D. degree in
electrical engineering from the University of South
Florida in 2021. He is currently an Assistant Profes-
sor with the School of Computer Science, The Uni-
versity of Oklahoma, Tulsa Campus. His research
primarily focuses on novel mobile system design
and mobile and network security. His recent research
is equally focused on machine learning for network
and security applications.

Zhuo Lu (Senior Member, IEEE) received the Ph.D.
degree in computer engineering from North Car-
olina State University, Raleigh, NC, USA, in 2013.
He is currently an Associate Professor with the
Department of Electrical Engineering, University of
South Florida. His research interests include net-
work science, cyber security, data analytics, cyber-
physical systems, mobile computing, and wireless
networking. He is a member of ACM and USENIX.

Haojin Zhu (Senior Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from the University of Waterloo, Canada, in 2009.
He is currently a Professor with the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China. His current research inter-
ests include network security and privacy-enhancing
technologies. He is a member of ACM.

