
Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via
Geolocation API

Xiao Han
University of South Florida

Tampa, FL, USA
xiaoh@usf.edu

Junjie Xiong
University of South Florida

Tampa, FL, USA
junjiexiong@usf.edu

Wenbo Shen
Zhejiang University

Hangzhou, Zhejiang, China
shenwenbo@zju.edu.cn

Zhuo Lu
University of South Florida

Tampa, FL, USA
zhuolu@usf.edu

Yao Liu
University of South Florida

Tampa, FL, USA
yliu21@usf.edu

ABSTRACT
Location spoofing attack deceiving a Wi-Fi positioning system has
been studied for over a decade. However, it has been challenging
to construct a practical spoofing attack in urban areas with dense
coverage of legitimate Wi-Fi APs. This paper identifies the vulnera-
bility of the Google Geolocation API, which returns the location
of a mobile device based on the information of the Wi-Fi access
points that the device can detect. We show that this vulnerability
can be exploited by the attacker to reveal the black-box localization
algorithms adopted by the Google Wi-Fi positioning system and
easily launch the location spoofing attack in dense urban areas with
a high success rate. Furthermore, we find that this vulnerability can
also lead to severe consequences that hurt user privacy, including
the leakage of sensitive information like precise locations, daily
activities, and demographics. Ultimately, we discuss the potential
countermeasures that may be used to mitigate this vulnerability
and location spoofing attack.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; Web appli-
cation security; • Networks → Wireless access points, base stations
and infrastructure.

KEYWORDS
Wi-Fi Localization; Localization Attacks; Geolocation APIs

ACM Reference Format:
Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu. 2022. Location
Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560623

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560623

1 INTRODUCTION
Wi-Fi positioning systems have been commercialized and widely
used as a complement to conventional GPS-based positioning sys-
tems. Specifically, a mobile device relies on its 802.11a/b/g compat-
ible wireless interface to collect Wi-Fi information, e.g., Medium
Access Control (MAC) addresses about Wi-Fi access points (APs)
in its vicinity. The mobile device sends this information to a Wi-Fi
positioning system, which then looks up a database table that maps
collections of Wi-Fi information to geographic locations and replies
to the mobile device with a corresponding location.

Spoofing attacks against Wi-Fi positioning systems have been
studied for over a decade. The basic idea is simple and straightfor-
ward. In particular, when at location B, an attacker simply broad-
casts theWi-Fi information collected from locationA. Consequently,
a mobile device at location B is deceived and obtains a wrong po-
sition estimate of location A from the Wi-Fi positioning system.
Although this type of spoofing attack is easy to implement and
seems to be effective, surprisingly, past research and practice show
that such an attack can trivially impact a Wi-Fi positioning system,
especially in urban environments with dense coverage of Wi-Fi
APs. For example, the SkyLift, a low-cost Wi-Fi device that spoofs
locations by using Wi-Fi microchip ESP8266, “may have little or
no ability to spoof locations in dense urban environments where
there are dozens of Wi-Fi networks” [18], and [52] mentions that
spoofing attacks failed to spoof a victim device from its current lo-
cation to a location far away, where the current location is covered
by multiple public Wi-Fi APs.

Traditional attacks assume that the victim device is located in
environments surrounded by few visible Wi-Fi APs (i.e., less than
5) . In practice, however, a victim device normally receives Wi-Fi
information from both the attacker and dozens of legitimate APs
nearby, and reports all collected Wi-Fi information to the Wi-Fi
positioning system. This implies that the existence of legitimate APs
may interfere with the attacker’s fake information in the decision-
making process at the Wi-Fi positioning system. Tippenhauer el al.
[52] proposes to remove Wi-Fi signals from legitimate Wi-Fi APs
by using physical-layer jamming, such that the spoofing attack can
achieve a better success rate. Nevertheless, jamming attacks require
additional wireless equipment that is programmable at the physical
layer. This can further complicate the practical implementation of
the attack. Moreover, the victim device may be aware of jamming

https://doi.org/10.1145/3548606.3560623
https://doi.org/10.1145/3548606.3560623

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

signals, and detecting the presence of jamming attacks has been
extensively studied in the literature [54, 63].

In this paper, we aim to address the following research questions.
First, is it possible to spoof a Wi-Fi positioning system in dense
urban areas without physical-layer jamming? If yes, what are the
critical conditions that an attacker must meet? The main research
challenge that we face to answer both questions is that location
estimation algorithms that are adopted by a typical Wi-Fi position-
ing system are not public information. In other words, it is unclear
how a Wi-Fi positioning system determines the position estimate
when it receives Wi-Fi information from different locations. Using
the example of Google, assume that the Google Wi-Fi positioning
system receives mixed Wi-Fi information collected from Hamilton
Park in New Jersey and Empire State Building in Manhattan in the
same request. How does Google determine the location? Where is
the position estimate result from Google?

We aim to resolve this challenge and unveil the key factors
that can significantly affect the success of the spoofing attack. We
focus on the Google Wi-Fi positioning system, because it is the
mainstream and most widely adopted system that supports the nav-
igation and localization needs for over 1 billion people worldwide
[15]. We find that Google provides the Geolocation API that en-
ables a mobile device to obtain its location estimate by submitting
collected Wi-Fi information to Google. Upon the request from this
API, Google searches a location look-up table (LLT), which contains
the locations of Wi-Fi APs in the connected world.

We find that an attacker can exploit the Geolocation API to re-
veal the location data residing in LLT at a negligible cost. We refer
to this attack as LLT inference attack. Specifically, assume that the
attacker detects multiple APs from the geographic location that he
is currently at. Without the LLT inference attack, the attacker can
only know that these APs are close to his current location. Nev-
ertheless, by launching the LLT inference attack, the attacker can
further identify the precise locations recorded by LLT for these APs.
Knowing this information is important for the attacker because it
can enable the attacker to launch successful spoofing attacks in
dense urban environments without physical-layer jamming. In par-
ticular, given the revealed locations of Wi-Fi APs in LLT, an attacker
is capable of identifying the black-box localization algorithms used
by the Google Wi-Fi positioning system. We discover four criteria
enforced by Google in determining the position estimate when it
receives mixed Wi-Fi information from multiple locations. These
criteria can guide an attacker to intelligently craft malicious Wi-Fi
information that deceives a victim device. The contributions of this
paper are summarized below.

• We create the LLT inference attack that is capable of stealing
the location data from the Google location database by ex-
ploiting the Google Geolocation API. It enables the attacker
to obtain the precise locations of APs in LLT, nomatter where
these APs are located. We thoroughly validate this attack
and point out the restrictions on conducting this attack.

• We demonstrate that an attacker can figure out the black-
box localization algorithms used by Google based on the
precise locations of APs revealed by the LLT inference attack.
Specifically, the attacker can know how Google generates

1.

3.Client
Server

2.
Wi-Fi APs

Figure 1: Localization process of Wi-Fi positioning system: 1.
The client device detects Wi-Fi APs in its reception range. 2.
The client device queries the LLT server. 3. The server returns
a position estimate based on the received Wi-Fi information.

a position estimate in the response to an API request that
includes mixed Wi-Fi information from multiple locations.

• We further show that an attacker can construct a highly
efficient location spoofing attack against the Google Wi-
Fi positioning system with the knowledge of the precise
locations of APs and the localization algorithms used by
Google. Unlike the traditional location spoofing attack, the
discovered attack is more lightweight and stealthy, because
it does not need to jam the Wi-Fi signals from legitimate
APs for a good success rate in most cases.

• In addition to the location spoofing attack, we discover that
the LLT inference attack can raise other severe privacy con-
cerns. For example, the precise location of an AP enables an
attacker to know the exact address of the apartment, house,
building, office, etc that hosts this AP. As a result, the attacker
is able to infer sensitive information (e.g., precise locations,
video content that they watch, and demographics) through
Wi-Fi traffic analysis targeting a specific household. Besides
the Google location service, we further study the vulnerabil-
ity of other location services (e.g., Mozilla, SkyhookWireless,
and WiGLE) and identify that the Mozilla location service is
vulnerable to the LLT inference attack.

• We evaluate the performance of the location spoofing attack
using public APs collected in the city where we conducted
this research. The result shows that an attacker can success-
fully fool a victim device with a success rate of 0.99 (i.e. 693
out of 696 trials) compared to that of 0.5 achieved by the tra-
ditional spoofing attack without jamming. We also discuss
the potential countermeasures to mitigate the discovered
location spoofing and the LLT inference attacks.

2 BACKGROUND
In this section, we introduce the preliminaries of Wi-Fi positioning
systems, then the Google Geolocation API, and finally present an
overview of our work.

2.1 Wi-Fi Positioning Systems
The most widespread techniques of Wi-Fi positioning systems in-
clude range-based mode and range-free mode. Both modes use

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Wi-Fi APs as localization stations that broadcast service announce-
ment beacons from known locations at a fixed interval (e.g., 102.4
milliseconds). In range-based mode, a mobile device detects localiza-
tion signals transmitted by nearby Wi-Fi APs, records the Received
Signal Strength (RSS) measurements, and sends the aggregated
Wi-Fi information to the Wi-Fi positioning system, which then
converts these RSS values into ranges and estimates the position
of the client device based on these ranges. In range-free mode, the
client device scans Wi-Fi APs in its reception range. The Wi-Fi
positioning system then estimates the position of the client device
based on the known locations of these visible Wi-Fi APs. Typically,
both modes achieve a positioning accuracy in the order of meters.

Location lookup table (LLT).GoogleWi-Fi positioning system
is a metropolitan area positioning system. It is a software-only
system that requires a mobile device to have a WLAN-capable
chipset and Internet connection. Google maintains the LLT, which
contains estimated location data of Wi-Fi APs in the connected
world. Google updates and extends its LLT by correlating GPS
location data and the Wi-Fi information uploaded by a mobile
device. For each Wi-Fi AP available in LLT, Google records its MAC
address and an estimated geographic location.

Localization process. The localization process of Wi-Fi posi-
tioning systems can be divided into three steps as seen in Figure
1. In step 1, a mobile device scans all 802.11a/b/g channels for vis-
ible Wi-Fi APs. Meanwhile, it records their MAC addresses and
corresponding signal strengths once detects these APs. In step 2,
the mobile device queries the Google LLT server with the recorded
MAC addresses and corresponding signal strengths over an en-
crypted channel. In step 3, the LLT server compares the reported
MACs to the data residing in its LLT, computes a position estimate
leveraging the estimated geographic locations of these MACs in
LLT, and finally returns the position estimate to the mobile device.

2.2 Google Geolocation API
Geolocation API is one of the Places APIs hosted by Google Maps
Platform. It returns a localization result based on the information
about cell towers and Wi-Fi nodes that a mobile client can detect.
The communication is done over HTTPS using Power-On Self-Test
(POST). Both request and response are formatted as JSON (an open
standard file format). In this paper, each API request is composed of
information about Wi-Fi APs. Due to privacy concerns of leaking
location data of Wi-Fi APs, the request payload wifiAccessPoints
must contain at least two Wi-Fi access point objects. For each Wi-
Fi AP object, the field of macAddress is required, and all other
fields are optional, including signalStrength, age, channel, and
signalToNoiseRatio. A successful geolocation request returns a
JSON-formated response containing the fields of location and
accuracy, where location consists of an estimated geographic
location with latitude and longitude, and accuracy indicates the
accuracy of the estimated location in meters and represents the
radius of a circle around the given location. In the case of an error,
the API returns a JSON-formated error response. The error could be
related to various reasons. For example, no location data in LLT for
the received Wi-Fi MAC addresses would result in an error indicat-
ing no results were found even the request was valid. In most cases,

Google Geolocation API is adopted to provide accurate position
estimates for web services, such as restaurant recommendations.

2.3 Overview of the Attack
In this section, we present an overview of our attacks. Our work
can be categorized as follows:

First, we demonstrate the LLT inference attack in Section 3, which
is capable of discovering the geographic location of each AP avail-
able in LLT from the Google location database. We validate this
attack and present the restrictions on launching it. In Section 4, we
show the privacy concerns raised by the LLT inference attack.

Second, in Section 5, we show how the revealed locations of APs
in LLT enable an attacker to launch a successful location spoofing
attack in dense urban areas without jamming. Our findings are
summarized into four criteria. In Section 6, we evaluate the effec-
tiveness of our spoofing attack under different scenarios. We also
show the weakness of the traditional spoofing attacks even under
optimal conditions. Finally, we discuss the potential countermea-
sures mitigate our spoofing attack in Section 7.

3 LLT INFERENCE ATTACK
As mentioned earlier, we discover that an attacker can use the
LLT inference attack to reveal the geographic locations of APs in
LLT from the Google location database. We thoroughly discuss the
privacy threat raised by this technique. Eventually, it enables an
attacker to construct the location spoofing attack without relying
on jamming techniques in dense urban areas.

Brief overview of the LLT inference attack. Assume that the
attacker is at location 𝐿1 and he detects 𝑛 APs from this location,
namely 𝐴𝑃1, 𝐴𝑃2, ..., 𝐴𝑃𝑛 . As discussed earlier, the attacker wants
to know the precise locations that are recorded by LLT for these
APs. Towards this goal, we find that the attacker can simply use
an AP that its coarse location is far away from location 𝐿1 (e.g.,
over 300 meters), and makes 𝑛 API requests with this faraway AP
and each of the detected APs (this faraway AP must be available in
LLT, but the attacker does not need to know its precise location).
In particular, the attacker sends 𝑛 API requests with (𝐴𝑃1, faraway
AP), (𝐴𝑃2, faraway AP), ..., and (𝐴𝑃𝑛 , faraway AP) individually, and
accordingly Google returns the attacker with 𝑛 position estimates
𝑅1,𝑅2, ...,𝑅𝑛 . We discover that, under certain conditions (see Section
3.3), these position estimates can leak the LLT to the attacker. In
what follows, we discuss these conditions and the details of the
attack. Note that, for each API request, the attacker only needs to
fill in the fields of macAddress and signalStrength for each of the
two APs. Other fields such as channel and signalToNoiseRatio
are optional and they do not impact on the localization results. The
attacker can just rule out these fields.

3.1 Range-free Mode
We start by demonstrating the LLT inference attack using the range-
free mode as shown in Figure 2(a). For the range-free mode, the
payload wifiAccessPoints of a Geolocation API request only con-
tains the field of macAddress of each AP. Recall that the range-free
mode localizes a mobile device based on the known locations of APs
in the reception range of the mobile device. The range-free mode
does not use RSS values to localize a device, nor does it provide

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

{
"considerIp": "false",
"wifiAccessPoints": [

{
"macAddress": "00:24:7C:XX:XX:99"

},
{

"macAddress": "00:24:7C:XX:XX:0A"

}
]

}

{
"considerIp": "false",
"wifiAccessPoints": [

{
"macAddress": "00:24:7C:XX:XX:99",
"signalStrength": -45

},
{

"macAddress": "00:24:7C:XX:XX:0A",
"signalStrength": -55

}
]

}

(a) Range-free mode (b) Range-based mode

Figure 2: Examples of the Google Geolocation API requests
with two APs using the range-free mode and the range-based
mode, respectively.

the estimated distances between APs and a mobile device in the
response to an API request.

We find that Google returns a position estimate that is the middle
point on the line between the geographic locations of two APs in
LLT by making an API request with these APs using the range-free
mode. This means that even without the estimated distances, an
attacker can compute the locations of APs in LLT using the position
estimates obtained by making API requests with pairwise APs. In
particular, as shown in Figure 3(a), let 𝐴𝑃𝐴 , 𝐴𝑃𝐵 , and 𝐴𝑃𝐶 denote
three APs detected from three different locations 𝐿𝐴 , 𝐿𝐵 , and 𝐿𝐶 ,
respectively. By making API requests with pairwise APs, i.e., (𝐴𝑃𝐴 ,
𝐴𝑃𝐵), (𝐴𝑃𝐵 , 𝐴𝑃𝐶), and (𝐴𝑃𝐴 , 𝐴𝑃𝐶) using the range-free mode, the
Geolocation API returns the position estimates 𝑅𝐴𝐵 , 𝑅𝐵𝐶 , and 𝑅𝐴𝐶 ,
respectively, where 𝑅𝐴𝐵 , 𝑅𝐵𝐶 , and 𝑅𝐴𝐶 are the midpoints between
the geographic locations of 𝐴𝑃𝐴 , 𝐴𝑃𝐵 , and 𝐴𝑃𝐶 , respectively. Then
the attacker is able to compute the geographic locations of three
APs in LLT by solving the following equation:

𝑋𝐴 + 𝑋𝐵 𝑌𝐴 + 𝑌𝐵
𝑋𝐵 + 𝑋𝐶 𝑌𝐵 + 𝑌𝐶
𝑋𝐴 + 𝑋𝐶 𝑌𝐴 + 𝑌𝐶

 = 2 ·

𝑋𝐴𝐵 𝑌𝐴𝐵
𝑋𝐵𝐶 𝑌𝐵𝐶
𝑋𝐴𝐶 𝑌𝐴𝐶

 (1)

where 𝑋𝐴 , 𝑋𝐵 , and 𝑋𝐶 represent the latitude of𝐴𝑃𝐴 ,𝐴𝑃𝐵 , and𝐴𝑃𝐶
respectively, 𝑌𝐴 , 𝑌𝐵 , and 𝑌𝐶 represent the longitude of 𝐴𝑃𝐴 , 𝐴𝑃𝐵 ,
and 𝐴𝑃𝐶 respectively, 𝑋𝐴𝐵 , 𝑋𝐵𝐶 , and 𝑋𝐴𝐶 is the latitude of 𝑅𝐴𝐵 ,
𝑅𝐵𝐶 , and 𝑅𝐴𝐶 respectively, and 𝑌𝐴𝐵 , 𝑌𝐵𝐶 , and 𝑌𝐴𝐶 is the longitude
of 𝑅𝐴𝐵 , 𝑅𝐵𝐶 , and 𝑅𝐴𝐶 respectively. The six unknowns 𝑋𝐴 , 𝑋𝐵 , 𝑋𝐶 ,
𝑌𝐴 , 𝑌𝐵 , and 𝑌𝐶 can be directly solved from Equation (1). They form
the geographic locations of these APs residing in LLT.

Validation.We validate the conjecture that the above position
estimate is the middle point leveraging the accuracy field of each
Geolocation API response. For each API request, in addition to
the position estimate, Google also returns an accuracy value that
describes how accurate the localization is. The physical location
of the mobile device falls in a circle that centers at the position
estimate with a radius of the accuracy value. Assume that 𝐴𝑃𝐴 and
𝐴𝑃𝐵 indeed lie on the circle and the distance between 𝐴𝑃𝐴 and
𝐴𝑃𝐵 is the diameter of this circle as seen in Figure 3(b). As a result,
the returned accuracy value must be equal to half of the distance
between the inferred geographic locations of 𝐴𝑃𝐴 and 𝐴𝑃𝐵 . To
validate our conjecture, we perform a trial of experiments using

𝑅𝐵𝐶

𝐴𝑃𝐶𝐴𝑃𝐴

𝐴𝑃𝐵

𝑅𝐴𝐶

𝑅𝐴𝐵

𝐴𝑃𝐵

𝐴𝑃𝐴
𝐴𝑃𝐶

𝑅𝐵𝐶

𝑅𝐴𝐶

𝑅𝐴𝐵

𝐴𝑃𝐵

𝐴𝑃𝐴

𝑅𝐴𝐵

(a) (b)

Figure 3: LLT inference attack: (a) The geographic locations
of 𝐴𝑃𝐴, 𝐴𝑃𝐵 , and 𝐴𝑃𝐶 in LLT calculated using the position
estimates 𝑅𝐴𝐵 , 𝑅𝐵𝐶 , and 𝑅𝐴𝐶 from API requests with pairwise
APs, i.e., (𝐴𝑃𝐴, 𝐴𝑃𝐵), (𝐴𝑃𝐵 , 𝐴𝑃𝐶), and (𝐴𝑃𝐴, 𝐴𝑃𝐶) using the
range-free mode and (b)𝐴𝑃𝐴 and𝐴𝑃𝐵 lie on the circle around
the position estimate 𝑅𝐴𝐵 given the accuracy field.

1,590 public APs, which are collected while driving 1.6 miles along a
route starting from location 𝐿𝐴 where we detect𝐴𝑃𝐴 . We thenmake
API requests with pairwise APs between each of the 1,590 APs and
𝐴𝑃𝐴 using the range-free mode and obtain the position estimate and
the accuracy value of each API request. The geographic location
of 𝐴𝑃𝐴 in LLT is calculated using Equation (1).

Our intuition is that, given the known location of 𝐴𝑃𝐴 and the
position estimates by making API requests with pairwise APs be-
tween 1,590 APs and 𝐴𝑃𝐴 , the distance between the location of
𝐴𝑃𝐴 and each position estimate must be equal to the corresponding
accuracy value if the position estimate is indeed the midpoint be-
tween two APs according to our conjecture. We then calculate such
a distance and compare it with the accuracy value. We observe
from experimental results that the accuracy value is almost equal
to the distance between each position estimate and the location of
𝐴𝑃𝐴 with negligible error. For example, the maximum difference
that we have measured between the distance and the accuracy
value is only about 0.95 meters even the measured distance is over
1,000 meters. Such a result demonstrates that the position estimate
is the middle point on the line between two APs by making an
API request with 2 APs using the range-free mode. Therefore, we
conclude that an attacker is capable of inferring the geographic
locations of APs in LLT using Equation (1).

Update.We noticed that Google gradually changed the returned
values of the Geolocation API in early October 2021. Consequently,
after October 2021, instead of returning the middle point between
two APs as the position estimate for an API request with these APs,
the Geolocation API directly returns the geographic location of one
out of two APs by making the same API request. We know this
because we had already discovered the locations of multiple APs in
LLT by solving Equation (1) before October 2021. For example, we
have obtained the locations of 𝐴𝑃𝐴 and 𝐴𝑃𝐵 in LLT detected from
location 𝐿𝐴 and 𝐿𝐵 before October 2021, respectively. By making
an API request with the same APs using the range-free mode after
October 2021, the Geolocation API returned the position estimate
𝑅𝐴𝐵 that is only 0.86 meters away from the location of𝐴𝑃𝐴 inferred
before October 2021. We start with the LLT inference attack created

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

before October 2021 because we can not validate the up-to-date
LLT inference attack alone. In the meantime, the inferred locations
of APs before October 2021 provide ground truth reference to the
up-to-date LLT inference attack valid since October 2021.

3.2 Range-based Mode
Although the Google Geolocation API directly returns the geo-
graphic location of one out of two APs in response to an API request
with both APs using the range-free mode, the Geolocation API does
not provide information regarding which AP is at the location of the
position estimate. Nevertheless, by using the range-based mode, an
attacker can discover this information. To be specific, the attacker
can make an API request with pairwise APs using the range-based
mode as seen in Figure 2(b). For each AP in this API request, the at-
tacker also includes a field of signalStrength that is the RSS value
of the Wi-Fi signals sent from this AP. According to our tests, we
find that the Geolocation API returns a position estimate that is equal
to the geographic location of the AP with a larger signalStrength
value in the range-based mode.

We form an API request using 𝐴𝑃𝐴 and 𝐴𝑃𝐵 . We fill in the fields
of signalStrength for𝐴𝑃𝐴 and𝐴𝑃𝐵 with -45 and -55, respectively.
By making this API request with these APs, the Geolocation API
returns a position estimate that is the same as the geographic loca-
tion of 𝐴𝑃𝐴 . Again, we make the same API request while switching
the signalStrength values by using -55 and -45 for 𝐴𝑃𝐴 and 𝐴𝑃𝐵 ,
respectively. The returned position estimate is at the location of
𝐴𝑃𝐵 . We further make use of 17 unique APs with the SSID (Service
Set Identifier) of "McDonalds Free WiFi" from 10 different McDon-
ald’s restaurants in the city where we perform this research. For
each AP, we make an API request with 𝐴𝑃𝐴 , while assigning the
fields of signalStrength for this AP and 𝐴𝑃𝐴 with -45 and -55,
respectively. As a result, we successfully discover the geographic
locations of all APs at 10 different McDonald’s restaurants. By con-
trast, when we assign the field of signalStrength for each AP
and 𝐴𝑃𝐴 with -55 and -45, respectively, all API requests return the
position estimates that are the same as the location of 𝐴𝑃𝐴 .

3.3 Restrictions on the LLT Inference Attack
We also look into the restrictions on conducting the LLT inference
attack, especially using the range-based mode. We first describe
the usage limits of the Google Geolocation API enforced by Google.
We show that an attacker is capable of obtaining the geographic
locations of a large number of APs in LLT eachmonth at a negligible
cost. Next, we demonstrate how the distance between the locations
of two APs in an API request influences the effectiveness of the
LLT inference attack. Finally, we present the conditions for the field
of signalStrength of each AP in an API request to obtain a valid
response in the range-based mode.

3.3.1 Usage of Google Geolocation API. Google Maps Platform
products (e.g., the Geolocation API) are secured from unauthorized
use by accepting API calls with valid authentication credentials.
These credentials are in the form of an API key, which is a unique
alphanumeric string associated with a Google billing account. To
enable the Geolocation API, an attacker needs to apply a valid API
key using one of its Google billing accounts and associate this API
key with the Geolocation API.

The Geolocation API applies a pay-as-you-go pricing model.
For each API key associated with a billing account, Google Maps
Platform each month provides free credits of $200, which are auto-
matically applied to qualified products such as the Geolocation API
[32]. Google charges $5 per 1,000 API requests when one makes
within 100,000 requests using the same API key each month, and
the charge decreases to $4 per 1,000 API requests when an API key
exceeds 100,000 API requests. Hence, a valid API key can make up
to 40,000 free requests each month. This means that an attacker
is capable of revealing the geographic locations of 40,000 APs in
LLT for free by conducting the LLT inference attack using a single
valid API key each month. To make more API requests for free each
month, the attacker can apply as many valid API keys as it needs.
Google Maps Platform does not restrict the maximum number of
the Geolocation API requests per day. Nevertheless, each API key
is limited to 100 Geolocation API requests per second.

3.3.2 Restriction on the Distance between Two APs. Google returns
the location of the AP with a larger signalStrength in response
to an API request with pairwise APs using the range-based mode.
However, we observe in some rare cases that an API request returns
a position estimate that is different from the location of the AP with
a larger signalStrength. For example, although 𝐴𝑃𝐴 is assigned
with a larger signalStrength value, by making an API request
with 𝐴𝑃𝐴 and 𝐴𝑃𝐶 , the AP that we detect from location 𝐿𝐶 in
the neighborhood of location 𝐿𝐴 , we obtain the position estimate
𝑅𝐴𝐶 that is about 54 meters away from the revealed location of
𝐴𝑃𝐴 . The distance between the locations of 𝐴𝑃𝐴 and 𝐴𝑃𝐶 is about
213.1 meters, and the distance between 𝐴𝑃𝐴 and 𝐴𝑃𝐵 is about
335.5 meters. This observation motivates us to investigate which
conditions exactly enable the Geolocation API to return the location
of the AP with a larger signalStrength value.

To address this question, we again make use of 1,590 public APs
in Section 3.1. For each AP, we make an API request with𝐴𝑃𝐴 while
assigning the signalStrength of 𝐴𝑃𝐴 and this AP with -45 and
-55, respectively. As a result, we observe the following scenarios:

(1) The Geolocation API returns the position estimate equal to
the location of 𝐴𝑃𝐴 when the accuracy is 180 meters.

(2) The Geolocation API returns a different position estimate
close to the location of 𝐴𝑃𝐴 when the accuracy is less than
180 meters.

We then further examine when the Geolocation API returns
the accuracy of 180 meters by making API requests with two APs
using the range-basedmode. In particular, we calculate the distances
between the revealed locations of 1,590 APs and 𝐴𝑃𝐴 . We observe
that the Geolocation API returns an accuracy of 180 meters when
the distance between two AP is over 300 meters. And it returns an
accuracy less than 180 meters when the distance is less than 300
meters. For example, an API request with𝐴𝑃𝐴 and an AP randomly
selected from the 1,590 APs obtains the accuracy of 97.1 meters and
the distance between these APs is about 297.3 meters. By contrast,
the distance between another randomly chosen AP and 𝐴𝑃𝐴 is
about 312.3 meters, and the Geolocation API returns the accuracy
of 180 meters. Note that the accuracy of 180 meters is an empirical
observation from Google according to our extensive tests. We never
obtain an accuracy that is greater than 180 meters by making an
API request with two APs. We determine the distance in meters

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

between two geographic locations using the haversine formula,
which is used to determine the great-circle distance between two
points on a sphere given their latitudes and longitudes [60].

All aforementioned observations seem to imply that there is no
maximum distance between two APs to obtain the location of one
out of two APs by making an API request with pairwise APs using
the range-based mode. To further validate this implication, wemake
use of APs that are thousands of meters away from 𝐴𝑃𝐴 . These
Wi-Fi APs are extracted from Wireless Geographic Logging Engine
(WiGLE), a website that collects Wi-Fi APs that are used in the real
world [59]. For each AP we obtain from WiGLE, we again make
an API request with 𝐴𝑃𝐴 while assigning this AP with a larger
signalStrength value. As a result, we successfully discover the
geographic locations of these APs that we choose from WiGLE and
are available in LLT, even though some APs are over 2,000 miles
away from 𝐴𝑃𝐴 . This may indicate that the Google Geolocation
API does not enforce a maximum distance between the locations of
two APs for a valid response.

3.3.3 Restriction on RSS. The signalStrength is used to indicate
the amplitude of radio signal measured by a wireless receiver like
a mobile device. For example, an Atheros Wi-Fi chipset can return
an RSS value ranging from 0 to -127 [61]. We aim to examine if
all available RSS values are suitable for the LLT inference attack
under the range-based mode. According to our testing results, we
notice that, by making an API request with pairwise APs using
the range-based mode, Google returns a valid response when both
signalStrength values are over -100 but less than -35. Otherwise,
it returns an error indicating no results were found.

4 IMPLICATION OF THE LLT INFERENCE
ATTACK ON USER PRIVACY

Our results show the effectiveness of the LLT inference attack in
discovering the geographic locations of APs in LLT by making API
requests with two APs, especially without the restriction on the
maximum distance between these APs. In this section, we discuss
the privacy issues that may be raised by the LLT inference attack.

4.1 Privacy Threat Example I: Monitoring Daily
Activities of Residents

The feasibility of discovering the geographic location of an AP
using the LLT inference attack also implies that the attacker knows
the address of the apartment, house, building, office, etc that hosts
this AP. We show that the attacker can achieve this by using the
Google reverse-geocoding API, which is one of the core features of
the Geocoding API provided by Google Maps Platform and converts
a geographic location described by latitude and longitude into a
human-readable address.

Experimental verification. We perform a trial of experiments
to demonstrate the effectiveness of obtaining the correct street ad-
dress given the revealed geographic location of an AP using Google
reverse-geocoding API. Each reverse-geocoding API request must
contain at least a field of latlng, consisting of the latitude and
longitude values specifying the location on the map. A successful
reverse-geocoding API request returns a JSON-formated response

Starbucks Tropical CAFE

T-Mobile

𝑨𝑷𝜶
𝑨𝑷𝜷

𝑨𝑷𝜸

Figure 4: The geographic locations of 𝐴𝑃𝛼 , 𝐴𝑃𝛽 , and 𝐴𝑃𝛾
from Starbucks, Tropical Smoothie Cafe, and T-Mobile in
the Google location database, respectively.

containing the field of formated_address, including a street ad-
dress, postal code, and political entity (city, state, and country). In
our experiments, we first discover the location of an AP using the
LLT inference attack and then obtain the street address of the AP
by feeding the inferred location into the reverse-geocoding API.

To avoid the ethical issues, we take public Wi-Fi APs with rec-
ognizable Service Set Identifier (SSID), such as "McDonalds Free
Wi-Fi", "Walmartwifi", and "Chick-fil-A Guest Wi-Fi". We detect 137
unique APs from 62 different locations in the city where we conduct
this experiment. For each AP, we obtain the geographic location in
LLT using the LLT inference attack, as well as the corresponding
street address by making a reverse-geocoding API request with the
revealed location. As a result, we successfully identify the exact
street addresses for 135 out of 137 APs. For a particular example,
let 𝐴𝑃𝛼 , 𝐴𝑃𝛽 , and 𝐴𝑃𝛾 denote 3 APs with SSIDs "Starbucks WiFi",
"Tropical Smoothie", and "T-Mobile" from 3 stores in the same build-
ing of a mall, respectively. We can still accurately differentiate these
stores using the revealed locations of their respective APs in LLT as
shown in Figure 4. Among the 137 APs, the locations of 2 APs are
not successfully converted by the reverse-geocoding API to valid
addresses because both APs are located in areas under construction
and Google did not update its Maps on time.

Potential privacy threat via the LLT inference attack. Exist-
ing research works have shown that the attacker can infer sensitive
information (e.g., precise locations, video content that they watch,
and demographics) through Wi-Fi traffic analysis [6, 13, 16, 30, 47,
48, 56]. Given the capability of inferring the correct street address
that hosts the AP, the LLT inference attack further deteriorates
these attacks in that it enables the attacker to link the Wi-Fi traffic
to the precise street address of a private household and discover
the daily activities of its residents. For example, assume that the
target AP is for a private household in the community with other
households nearby. Without the LLT inference attack, an attacker
who does not know the street address of this AP can only associate
the inferred sensitive information to all households in the same
community. Otherwise, to localize this AP, the attacker may have to
utilize specialized hardware (e.g., a directional antenna) to measure
the Angle-of-Arrival (AoA) or the Received Signal Strength (RSS)
of Wi-Fi signals emitted from this AP on the scene. By contrast, the
LLT inference attack directly infers the correct street address of
each AP given its Wi-Fi MAC address with negligible costs.

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

4.2 Privacy Threat Example II: Monitoring
Relocation and Travel

The attacker can keep track of the location of an AP no matter
where it moves to by using the LLT inference attack. Consequently,
the attacker can discover the relocation or travel of the user who
carries and uses this AP.

For example, we first found such a movement in November 2021
while we were trying to discover the geographic locations of APs
from the Meta headquarters in California using the LLT inference
attack. These APs were initially made public in 2016 and are now
publicly accessible in [18]. Other than obtaining the locations of APs
at the Meta headquarters in California, we surprisingly obtained
the location of an AP in Eppstein, Germany. Given that this AP was
initially detected at the Meta headquarters in California 6 years ago
by [18], we infer that it was moved from California to Germany by
its owner. Then Google updated its location in LLT to Germany.

Similarly, we also detected such movements for hundreds of APs.
These APs were collected in January 2022 from a limited region
near the university campus where we conduct this research. At that
time, we obtained the locations of these APs in LLT. All APs were
located close to the campus. However, in March 2022, we discovered
that they were moved to different locations far away from where
we detected them. For example, 237 APs were moved to different
cities in the same state, and 36 APs were moved to different states
across the U.S. We also noticed that an AP was moved to Malaysia.
Because Wi-Fi MAC address is a global unique identifier assigned
to each AP, we infer that these APs were potentially relocated with
their owners during the last two months.

We further performed an experiment using the AP owned by
one of the authors to test how long it takes Google to update the
location of an AP. We first obtained the geographic location of this
AP using the LLT inference attack in March 2022. We then brought
it to a building 6.1 miles away from the original place. Next, we
monitored the location of this AP in LLT each day and found that
Google updates the location of the AP in six days.

According to reports, about 24% of U.S. adults moved within
the country in the past five years [12]. In 2021, new remote work
opportunities further enabled an estimated number of 14-23 million
Americans to relocate [40]. In addition, many people relocate while
carrying the same APs they have already configured with the SSIDs
and the passwords. Thus, the LLT inference attack can impose a
practical threat against users’ location privacy on a large scale.

4.3 Privacy Threat Example III: Getting the
Location without Requesting Permission

It has been shown that an application installed on a smart de-
vice running Android 9 or lower can obtain the MAC address of
a Wi-Fi AP it associates with without requesting any permission
[46, 66]. Thus, even if a malicious app is denied permission to ac-
cess to location (e.g., GPS, Wi-Fi positioning system, or Cellular),
it can still use the LLT inference attack to discover the precise
location of a smart device using the Wi-Fi MAC address it con-
nects to. However, for Android 10 or higher, applications must have
the ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION permis-
sions to access the MAC address of a Wi-Fi AP it connects to [33].

Therefore, this location privacy leakage is prevalent for smart de-
vices running Android 9 or lower.

4.4 LLT Inference Attack Via Other Location
Services

We also study the privacy promise of Wi-Fi positioning systems
from other location service providers, such as WiGLE, Mozilla, and
SkyhookWireless. In other words, besides the Google location data-
base, we investigate if these location services are also vulnerable to
the LLT inference attack.

4.4.1 WiGLE. We note that WiGLE can return the coarse locations
of APs in its database but the accuracy of these locations is low
compared to that of the LLT inference attack discovered from the
Google location database.

Similar to the Google Wi-Fi positioning system, WiGLE extends
its Wi-Fi location database by allowing volunteers using theWiGLE
app to upload GPS locations andWi-Fi information, including SSIDs
and MAC addresses. Note that WiGLE only has about 365,000 reg-
istered users actively collecting Wi-Fi APs [59].

WiGLE is the only Wi-Fi location database that allows a single
MAC address lookup. By providing the MAC address of one Wi-
Fi AP, WiGLE API returns the estimated location of the AP if it
is available in its database. However, we found that many Wi-Fi
APs available in the Google location database are not recorded by
WiGLE. For example, among 274 relocated APs in Section 4.2, we
only obtain the geographic locations of 140 APs from WiGLE. We
also notice that WiGLE does not update its database as frequently
as Google. Only 13 out of 140 APs available in WiGLE show similar
relocation of the APs according to the obtained relocation of these
APs from Google. Thence, WiGLE is not suitable to discover the
relocation of a user who carries and uses the same AP.

In addition, we find that the accuracy of the location provided by
WiGLE for an AP is extremely low. For 137 public APs available in
the Google location database mentioned in Section 4.1, we obtain
the geographic locations of 88 APs from WiGLE. However, we
can only obtain the correct street addresses for 24 APs using their
geographic locations from WiGLE. For a particular example, the
geographic locations of 𝐴𝑃𝛼 , 𝐴𝑃𝛽 , and 𝐴𝑃𝛾 from WiGLE are about
547.8meters, 161.6meters, and 533.5meters away from the locations
of these APs obtained from the Google location database shown
in Figure 4, respectively. Hence, we are not able to differentiate
these stores by leveraging the locations of their respective APs from
WiGLE. Besides, WiGLE API only allows a maximum of 20 queries
daily. Therefore, an attacker can not utilize WiGLE to infer users’
location privacy on a large scale like our LLT inference attack using
the Google Geolocation API.

4.4.2 Mozilla Location Service. We identify that the Mozilla loca-
tion service is vulnerable to the LLT inference attack.

The Mozilla Location Service (MLS) is an open geolocation ser-
vice that localizes its customers based on visible Wi-Fi APs via its
Geolocation API. It has recorded over 2.3 billion Wi-Fi APs world-
wide in July 2022 [38]. Identical to Google, each API request to
Mozilla must contain at least two available APs for a valid response.
Otherwise, an error is returned indicating no results were found.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

We notice that the Mozilla location database returns a position
estimate that is the middle point between the geographic locations
of two APs in its database by making an API request with these APs
using the range-free mode. Therefore, it is feasible for an attacker
to infer the geographic locations of APs in the Mozilla location
database by leveraging the position estimates returned from API
requests with pairwise APs.

Validation. We again validate this vulnerability using our con-
jecture about the accuracy value as discussed in Section 3.1. That
is, assume Mozilla indeed returns the middle point between the
locations of two APs as the position estimate by making an API
request with these APs. The locations of these APs must lie on the
circle that centers at the position estimate, and the accuracy value
as the radius must be equal to the distance between the position es-
timate and the inferred location of each AP. Let𝐴𝑃𝐴 ,𝐴𝑃𝐵 , and𝐴𝑃𝐶
indicate three APs available in the Mozilla location database, respec-
tively. By making API requests with pairwise APs, i.e., (𝐴𝑃𝐴 , 𝐴𝑃𝐵),
(𝐴𝑃𝐵 , 𝐴𝑃𝐶), and (𝐴𝑃𝐴 , 𝐴𝑃𝐶) using the range-free mode, Mozilla
returns the position estimate 𝑅𝐴𝐵 , 𝑅𝐵𝐶 , and 𝑅𝐴𝐶 , respectively. We
then calculate the locations 𝐿𝐴 , 𝐿𝐵 , and 𝐿𝐶 of 𝐴𝑃𝐴 , 𝐴𝑃𝐵 , and 𝐴𝑃𝐶
in the database by solving Equation (1), respectively. The distance
between 𝐿𝐴 and 𝑅𝐴𝐵 is about 233.4 meters, and the corresponding
accuracy value obtained from an API request with 𝐴𝑃𝐴 and 𝐴𝑃𝐵
is about 232.6 meters. The difference is only about 0.8 meters. Simi-
larly, the distance between 𝐿𝐴 and 𝑅𝐴𝐶 is about 87.2 meters, and
the accuracy value is about 86.9 meters resulting in a difference of
0.3 meters. We further validate our conjecture by making use of 216
APs available in the Mozilla location database. All these APs are
collected on campus. For each AP, we make an API request with
𝐴𝑃𝐴 using the range-free mode and obtain the position estimate.
We then calculate the distance between each position estimate and
𝐿𝐴 and compare it with the corresponding accuracy value. We ob-
serve that the accuracy value is always equal to the distance with
negligible error. The maximum difference that we have measured is
only about 1.5 meters. Thus, we conclude that the Mozilla location
service is also vulnerable to the LLT inference attack.

Restrictions. According to our experimental results, we notice
that the Geolocation API from Mozilla returns a valid response
when the distance between the geographic locations of two APs is
less than 500 meters. Otherwise, an error is returned. The usage of
the Geolocation API is free of charge. However, the Mozilla location
service sets a daily limit of 100,000 requests for each valid API key.

4.4.3 Other Location Services. We also attempt to investigate other
location services, like Combain Positioning Service [4], Unwired
Labs [34], and Skyhook Wireless [44]. However, none of these lo-
cation service providers grant us access to their Geolocation APIs.
Combain Positioning Service has discontinued its Wi-Fi position-
ing service for outdoor wide area positioning for new customers.
Unwired Labs enable Wi-Fi positioning only for commercial im-
plementations because of their privacy concerns regarding Wi-Fi
location data. Skyhook Wireless was recently acquired by Qual-
comm. Amidst the acquisition, they are only serving enterprise
partnerships at the time of writing.

Nevertheless, according to their API documentations, all the
above location services offer Geolocation APIs similar to the Google
and Mozilla Geolocation APIs. In other words, they all require at

least two APs available in their databases for a valid response, and
they all accept API requests using either the range-free mode or
the range-based mode. Considering the common weakness in the
Google and Mozilla location services, it is urgent for these location
service providers to be aware of the LLT inference attack.

5 MANIPULATION OF GOOGLE WI-FI
POSITIONING SYSTEM

As mentioned earlier, given the locations of APs in LLT, an attacker
can intelligently conduct a location spoofing attack against the
Google Wi-Fi positioning system without physical-layer jamming
even dozens of legitimate APs are present. Our findings are sum-
marized into four criteria, satisfying which can enable an attacker
to maximize its success rate in dense urban environments.

A mobile device usually provides all APs that it detects to Google
to seek its location. Thus, unlike the LLT inference attack, an Ge-
olocation API request for localization can include more than two
APs. We assume that the API request consists of𝑀𝑅 legitimate APs
and𝑀𝑆 falsified APs at the same time, where𝑀𝑅 and𝑀𝑆 contain
at least two different APs available in LLT individually. We adopt
the range-based mode for each Geolocation API request. Note that
in this section, the range-based mode and the range-free mode
yield similar results, and we adopt the range-based mode because
it provides a better location accuracy.

5.1 Initialization of the Attack
The manipulation of the Google Wi-Fi positioning system is moti-
vated by the following question: Is it practical to launch a spoofing
attack against the Google Wi-Fi positioning system in dense urban
areas with dozens of legitimate Wi-Fi APs? We first study the con-
straints of existing attacks when a victim device carries out active
scans or passive scans.

Active Scanning. A mobile device that uses an active scan
broadcasts probe requests on a Wi-Fi channel and expects to re-
ceive probe requests from APs on this channel [1]. Consequently,
an attacker is able to target this channel and replay the localization
signals of falsified APs when the channel is idle or block the sig-
nals transmitted by legitimate APs when it senses activities on the
channel. However, it is suspicious to the victim device if it cannot
detect any Wi-Fi APs on a most occupied channel (e.g., Channel 1,
6, and 11), especially in dense urban areas.

Passive Scanning. In contrast to an active scan, a passive scan
silently waits for signals broadcast by APs and a victim device does
not actively send probe requests on any channel. This means that
the attacker has to block all channels simultaneously. In the past
before IEEE802.11n was adopted, there were only 11 channels with
approximately 80MHz bandwidth and it may be possible for an
attacker to jam all channels at the same time. However, with the
wide adoption of IEEE802.11n, an AP can use over 30 channels with
1GHz bandwidth nowadays, including channels on 2.4GHz and
5GHz bands [1]. Jamming all channels concurrently can cause a
non-trivial cost for the attacker even if the attacker adopts reactive
jammers [42, 53]. Moreover, jamming signals on Wi-Fi bands can
significantly increase the chance for an attacker to be detected.

To sum up, passive scanning imposes a practical hurdle against
existing Wi-Fi location spoofing attacks. Unfortunately, although

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Android and Apple iOS do not provide a handler to switch between
active scanning and passive scanning, both Android and Apple
devices scan Wi-Fi passively if a user disables the Wi-Fi option, ac-
cording to our observations. Such findings can force the attacker to
perform location spoofing attacks in the context of passive scanning
by jamming all possible Wi-Fi channels.

5.2 Criterion I
Assume Google receives the aggregated Wi-Fi information about𝑀𝑅

legitimate APs from location 𝐿𝑅 and𝑀𝑆 falsified APs from location
𝐿𝑆 in the same API request. Satisfying 𝑀𝑆 ≥ 𝑀𝑅 + 1 is sufficient
enough for Google to return a position estimate at location 𝐿𝑆 rather
than location 𝐿𝑅 .

To demonstrate Criterion I, we detect 48 and 25 APs from loca-
tions 𝐿𝐴 and 𝐿𝐵 , respectively. The distance between location 𝐿𝐴
and 𝐿𝐵 is over 300 meters. Let𝑀𝐴 and𝑀𝐵 denote the numbers of
APs from location 𝐿𝐴 and 𝐿𝐵 in each API request, respectively. We
examine when the Geolocation API returns a position estimate at
location 𝐿𝐴 by controlling𝑀𝐴 and𝑀𝐵 . More concretely, each API
request contains 25 APs from location 𝐿𝐵 , which means𝑀𝐵 = 25.
In the meantime, we cumulatively add an AP from𝑀𝐴 to each API
request. The field of signalStrength of each AP is assigned with
a random RSS value. By making these API requests, we observe the
following scenarios:

(1) The Geolocation API returns a position estimate at location
𝐿𝐵 when𝑀𝐵 > 𝑀𝐴 . The position estimate remains the same
when we make an API request with𝑀𝐵 alone.

(2) The Geolocation API returns a position estimate at location
𝐿𝐴 when𝑀𝐴 > 𝑀𝐵 . The position estimate remains the same
when we make an API request with𝑀𝐴 alone.

(3) The Geolocation API returns a position estimate at a location
between 𝐿𝐴 and 𝐿𝐵 when𝑀𝐴 = 𝑀𝐵 .

The above results indicate that the number of APs plays a domi-
nant role for Google to determine the position estimate when it
receives mixed Wi-Fi information from different locations. We fur-
ther study if these results can be modified by changing the fields of
signalStrength. Technically, we make API requests with the same
set of APs but assign each AP with a designed signalStrength
value. For example, suppose an API request consists of 𝑀𝐴 = 25
and 𝑀𝐵 = 24 APs. By intentionally assigning 𝑀𝐴 APs with the
signalStrength values of -80while assigning the signalStrength
values of𝑀𝐵 APs with -40, we wonder if such an API request will re-
turn a position estimate at location 𝐿𝐵 rather than 𝐿𝐴 . However, the
position estimate is slightly shifted away from location 𝐿𝐴 (e.g., less
than 50 meters) rather than switching to 𝐿𝐵 . All the above scenarios
still hold no matter how we modify the field of signalStrength.

We also perform an experiment to demonstrate Criterion I in real-
world scenarios. We take a Google Nexus 6 smartphone running
Android 7 to an open area without surrounding Wi-Fi APs. The
Nexus 6 smartphone uses cellular networks for internet connection.
We turn off its GPS and thus Google Maps switch to the Wi-Fi
positioning whenWi-Fi signals are detected. According to our tests,
Google Maps shows the localization results with the best accuracy
among GPS, Wi-Fi positioning system, and Cellular. Therefore, it
shows the locations from the Wi-Fi positioning system when we
turn off the GPS because the localization accuracy of Cellular is over

1,000 meters. Next, we impersonate 3 APs from location 𝐿𝐴 and 4
APs from location 𝐿𝐵 by using a low-cost Wi-Fi microchip ESP8266,
respectively. As a result, Google Maps on the Nexus 6 smartphone
is spoofed to location 𝐿𝐵 . The distance between location 𝐿𝐵 and
the open area is over 1,000 meters.

5.3 Criterion II
Assume Google receives mixed Wi-Fi information from different loca-
tions. In order to localize the client device, Google first clusters APs
using a radius of 200 meters and then determines the position estimate
based on a cluster with the maximum number of APs.

Although satisfying 𝑀𝑆 ≥ 𝑀𝑅 + 1 is sufficient enough for an
attacker to spoof a victim device to a location different from its
current location without physical-layer jamming. It is still possible
that an attacker does not have sufficient falsified APs from the
spoofing location against legitimate APs. For instance, suppose the
victim device is physically at location 𝐿𝐵 surrounded by 48 real APs.
The goal of an attacker is to spoof the victim device from location
𝐿𝐵 to location 𝐿𝐴 by impersonating 25 APs against 48 legitimate
APs. Is it still feasible to fool the victim device without jamming?

The most straightforward way to address this problem is to
impersonate additional APs detected at different locations close
to the spoofing location. For example, we notice that the Google
Geolocation API returns the position estimate at location 𝐿𝐴 rather
than location 𝐿𝐵 when it receives 48 APs from location 𝐿𝐵 , 25 APs
from location 𝐿𝐴 , and 24 APs from location 𝐿𝐶 at the same time,
where 𝐿𝐶 is close to 𝐿𝐴 . Interestingly, the position estimate is at
location 𝐿𝐴 , even though the distance between location 𝐿𝐴 and
𝐿𝐶 is about 120 meters. By contrast, the distance between location
𝐿𝐵 and 𝐿𝐶 is about 330 meters. This observation raises another
question, i.e., how does Google determine the position estimate
when it receives Wi-Fi information from multiple locations? Is it
practical for the attacker to understand the localization routines
adopted by Google and then intelligently impersonate APs from
the spoofing location against legitimate APs?

We address this question leveraging Criterion I. Specifically,
given 𝑀𝑅 legitimate APs from location 𝐿𝑅 and 𝑀𝑆 falsified APs
from location 𝐿𝑆 , where 𝑀𝑅 = 𝑀𝑆 , the Geolocation API returns
a position estimate between the two locations by making an API
request with𝑀𝑅 and𝑀𝑆 using the range-based mode. Our goal is
to find out, under which circumstance, the Geolocation API returns
the position estimate at location 𝐿𝑆 rather than a location between
𝐿𝑅 and 𝐿𝑆 by adding an additional falsified AP close to location 𝐿𝑆 .

We start by demonstrating the radius of 200 meters in Criterion
II. We take 𝑀𝐴 = 2 APs around location 𝐿𝐴 as falsified APs. 𝑀𝐴

consists of 𝐴𝑃𝐴 and 𝐴𝑃𝐶 shown in Figure 5. Meanwhile, We take
𝑀𝑍 = 2 APs from location 𝐿𝑍 as legitimate APs. The distance
between location 𝐿𝐴 and 𝐿𝑍 is over 2,000 miles, and the distance
between two legitimate APs is about 8.6 meters. 𝐴𝑃𝑖 , an additional
falsified AP close to location 𝐿𝐴 , is taken from the 1,590 public APs
detected while driving 1.6 miles along a route starting from location
𝐿𝐴 , i.e. 𝑖 = 1, 2, ..., 1, 590. For each additional falsified AP, we make
an API request with 5 APs, including 𝐴𝑃𝑖 , APs in𝑀𝐴 (i.e., 𝐴𝑃𝐴 and
𝐴𝑃𝐶), and APs in 𝑀𝑍 . The signalStrength values of the 5 APs
are assigned with the random RSS values. As a result, we observe
the following scenarios:

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

𝐴𝑃𝐴
𝐴𝑃𝐶

199.3m

𝐴𝑃1

193.6m

306.5m

206.7m
𝐴𝑃𝐴𝐴𝑃2 𝐴𝑃𝐶

199.3m

(a) (b)

Figure 5: Geolocation API requests with 5 APs, including 𝐴𝑃𝑖
close to 𝐿𝐴,𝑀𝐴 = 2APs (i.e.𝐴𝑃𝐴 and𝐴𝑃𝐶) from 𝐿𝐴, and𝑀𝑍 = 2
APs from 𝐿𝑍 : (a) returns a position estimate at location 𝐿𝐴 by
taking𝐴𝑃1 as𝐴𝑃𝑖 and (b) returns a position estimate between
location 𝐿𝐴 and 𝐿𝑍 by taking 𝐴𝑃2 as 𝐴𝑃𝑖 .

(1) The Geolocation API returns the position estimate at location
𝐿𝐴 if at least two mutual distances among the locations of
𝐴𝑃𝐴 , 𝐴𝑃𝐶 , and 𝐴𝑃𝑖 are less than 200 meters.

(2) The Geolocation API returns the position estimate between
location 𝐿𝐴 and 𝐿𝑍 if two mutual distances among the loca-
tions of 𝐴𝑃𝐴 , 𝐴𝑃𝐶 , and 𝐴𝑃𝑖 are greater than 200 meters.

For example, in Figure 5(a), if we take 𝐴𝑃1 as an additional falsified
AP in an API request, the Geolocation API returns the position
estimate at location 𝐿𝐴 . The distances between 2 APs of two pairs
i.e., (𝐴𝑃1, 𝐴𝑃𝐴) and (𝐴𝑃1, 𝐴𝑃𝐶) are about 193.6 meters and 199.3
meters, respectively. By contrast, in Figure 5(b), the Geolocation API
returns a position estimate between location 𝐿𝐴 and 𝐿𝑍 by taking
𝐴𝑃2 as an additional falsified AP. In this case, only the distance
between 𝐴𝑃𝐴 and 𝐴𝑃𝐶 is less than 200 meters. Obviously, 3 APs in
Figure 5(a) form a cluster of falsified APs �̂�𝐴 around location 𝐿𝐴 as
both 𝐴𝑃1 and 𝐴𝑃𝐶 are within a radius of 200 meters from 𝐴𝑃𝐴 . As
a result, Geolocation API returns the position estimate at location
𝐿𝐴 because �̂�𝐴 > 𝑀𝑍 in the same API request.

To further demonstrate our observation, we perform a trial of ex-
periments using dozens of APs, shown in Figure 6. Our strategy still
leverages Criterion I. We take𝑀𝐴 = 60 falsified APs from location
𝐿𝐴 and𝑀𝑍 = 60 legitimate APs from location 𝐿𝑍 , respectively. All
APs in𝑀𝑍 fall into a circle that has a radius of 200 meters centers
at the location of one AP. In the meantime, Figure 6(a) shows the
distribution of APs in𝑀𝐴 from location 𝐿𝐴 . We can see that 58 APs
fall in the circle that centers at 𝐴𝑃3 and has a radius of 200 meters.

First, we make sure that the Geolocation API returns a position
estimate between the location 𝐿𝐴 and 𝐿𝑍 by making an API request
with𝑀𝐴 and𝑀𝑍 . We then take an additional falsified AP 𝐴𝑃𝑖 close
to location 𝐿𝐴 from the 1,590 APs. For each additional falsified AP
𝐴𝑃𝑖 , we again make an API request with𝑀𝐴 falsified APs and𝑀𝑍

legitimate APs using the range-based mode. As a result, we notice
that given APs from different locations, Google likely adopts a clus-
tering algorithm (e.g., DBSCAN [14]) to cluster APs using a radius
of 200 meters and then determines the position estimate based on a
cluster with the maximum number of APs. For instance, in Figure
6(b), an API request returns the position estimate at location 𝐿𝐴 by
taking 𝐴𝑃5 as an additional falsified AP 𝐴𝑃𝑖 . The distance between
𝐴𝑃4 and𝐴𝑃5 is about 188.2 meters, and𝐴𝑃4 is one of the 60 falsified

-400 -200 0 200 400

-200

0

200

400

-400 -200 0 200 400

-200

0

200

400

(a) (b)

Figure 6: Geolocation API requests with 121 APs, including
𝐴𝑃𝑖 close to 𝐿𝐴, 𝑀𝐴 = 60 APs from 𝐿𝐴, and 𝑀𝑍 = 60 APs
from 𝐿𝑍 : (a) the distribution of𝑀𝐴 APs from 𝐿𝐴 and (b) API
requests by taking 𝐴𝑃5 and 𝐴𝑃6 as an additional falsified AP
𝐴𝑃𝑖 individually.

APs in𝑀𝐴 . Nevertheless, an API request taking 𝐴𝑃6 as additional
falsified AP 𝐴𝑃𝑖 returns the position estimate between location
𝐿𝐴 and 𝐿𝑍 because the distance between 𝐴𝑃4 and 𝐴𝑃6 is over 200
meters. The red circle is the circle centers at 𝐴𝑃4 with a radius of
200 meters. Only 12 out of 60 APs in𝑀𝐴 fall in this circle.

However, we can not explicitly identify the black-box localization
algorithms adopted by the Google Wi-Fi positioning system using
the Google Geolocation API. Ultimately, in Section 6, we show
that the radius of 200 meters is sufficient enough for an attacker
to maximize its success rate of location spoofing attacks in dense
urban areas without jamming.

5.4 Criterion III
Given a number of APs with identical geographic locations in LLT,
Google treats these APs as a single AP in determining the position
estimate when Google receives them in one Geolocation API request.

We find that Google enforces this restriction starting from Octo-
ber 2021. Recall that each Geolocation API request must contain
at least two APs available in LLT for a valid response. The Ge-
olocation API returns an error if the request consists of multiple
APs located at one unique geographic location since October 2021.
However, the API used to treat such a request as valid and returned
the location of the APs before October 2021. It seems that Google is
trying to mitigate the leakage of Wi-Fi location data by enforcing
this restriction, which, however, makes it easier for an attacker to
launch the location spoofing attack. It is possible that the attacker
can successfully deceive the localization of a victim device even
with a fewer number of falsified APs than that of legitimate APs
around the victim device. For example, assume 24 legitimate APs
are located at 3 unique geographic locations near location 𝐿𝐴 . To
spoof the victim device from location 𝐿𝐴 to 𝐿𝐵 , the attacker only
needs to impersonate 4 APs at different geographic locations near
location 𝐿𝐵 . In other words, the attacker can successfully spoof a
victim device by using 4 falsified APs against 24 legitimate APs.

Google assigns the same location to Wi-Fi APs hosted by the
same hardware device with slightly different Wi-Fi MAC addresses.
For example, APs with MAC addresses of "00:a2:ee:a3:xx:2c",
"00:a2:ee:a3:xx:5f", and "00:a2:ee:a3:xx:17" are associated

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

with the same geographic locations in LLT. All MAC addresses are
intentionally modified for anonymity and ethical concerns.

5.5 Criterion IV
Google discards APs not timely recorded in LLT in determining the
position estimate due to the missing geographic locations.

We find that the Geolocation API provides helpful information
to an attacker on whether an AP is recorded by Google LLT. The
attacker can simply make an API request with an AP that is known
to be available in LLT while assigning an unknown AP with a
greater signalStrength value. The Geolocation API returns the
geographic location of this unknown AP if it is recorded in LLT.
Otherwise, the Geolocation API returns an error "valid request
format but no results were found". This information is important
for the attacker because it enables the attacker to filter APs not
recorded by Google LLT and construct a much more effective AP
set to launch the location spoofing attack.

5.6 Attack Methodology
Given the LLT inference attack and 4 Criteria discovered from the
Google Wi-Fi positioning system, it is straightforward for an at-
tacker to construct the location spoofing attack against the Google
Wi-Fi positioning system in dense urban areas without physical-
layer jamming. The goal of the attacker is to spoof a victim device
from its current location 𝐿𝑅 to the spoofing location 𝐿𝑆 . The spoof-
ing attack consists of 3 stages as discussed below:

Stage 1. The attacker detects legitimate APs around location 𝐿𝑅
and then discovers the geographic locations of these APs using the
LLT inference attack. The attacker also identifies effective legitimate
APs, which are recorded in Google LLT and have unique geographic
locations. Let𝑀𝑅 indicate the number of these APs.

Stage 2. Similarly, the attacker uses the LLT inference attack
to discover the falsified APs around location 𝐿𝑆 and identifies the
effective falsified APs by discarding APs that are not in LLT and
treating APs with duplicated locations as a single AP. From the set
of effective falsified APs, the attacker further identifies APs that
fall in the circle that centers at location 𝐿𝑆 and has a radius of 200
meters. Let𝑀𝑆 indicate the number of these APs. We use a radius
of 200 meters as a conservative way to intelligently select falsified
APs from location 𝐿𝑆 according to Criterion II.

Stage 3. The attacker crafts Wi-Fi signals of 𝑀𝑆 falsified APs
from location 𝐿𝑆 . It then broadcasts crafted signals to mimic 𝑀𝑆

falsified APs at location 𝐿𝑅 .
In case that 𝑀𝑅 > 𝑀𝑆 , we argue that jamming attacks are still

necessary to conduct a successful attack. Nevertheless, in Section
6.2, we state that 𝑀𝑆 > 𝑀𝑅 is common in real-world scenarios
according to our experimental results. In addition, we discuss the
pros and cons of the traditional location spoofing attack and the
one discovered in this paper in Section 6.2.

6 SPOOFING ATTACK EVALUATION
We evaluate the effectiveness of our location spoofing attack dis-
covered in this paper in dense urban areas without jamming. We
collect public APs by conducting Wi-Fi scans every 5 seconds while
driving 20 different routes in the city where we conduct this re-
search. These routes contain 10 different routes around a university

campus and 10 different routes in the downtown area. The distance
between the downtown and the campus is about 9 miles.

6.1 Evaluation of the Traditional Attack
We start by evaluating the traditionalWi-Fi location spoofing attack
demonstrated in [18, 52]. Our strategy is that, given legitimate and
falsified APs from location 𝐿𝑅 and 𝐿𝑆 , respectively, we evaluate if
the attacker is able to fool a victim device from location 𝐿𝑅 to 𝐿𝑆 by
making an API request to Google with both legitimate and falsified
APs using the range-based mode.

We take APs detected from 10 different routes close to the univer-
sity campus as legitimate APs. For each route, we conduct 𝑛 Wi-Fi
scans. Let 𝑀𝑖

𝑅
denote the set of legitimate APs visible during the

𝑖-th scan along this route, where 𝑖 = 1, 2, ..., 𝑛. In the meantime, we
take𝑀𝑖

𝑆
as the set of falsified APs visible during the 𝑖-th scan along

a route in the downtown area. Let 𝐿𝑖
𝑅
and 𝐿𝑖

𝑆
indicate the locations

where we detect the APs in𝑀𝑖
𝑅
and𝑀𝑖

𝑆
, respectively. To maximize

the success rate of this attack, we make the size of𝑀𝑖
𝑆
twice that of

𝑀𝑖
𝑅
. For each trial of the experiments, we then make 𝑛 API requests

with the corresponding APs in𝑀𝑖
𝑆
and𝑀𝑖

𝑆
for 1 ≤ 𝑖 ≤ 𝑛.

As a result, we make 348 API requests in total and only 187 out
of 348 API requests return the position estimates in the downtown
area. We obtain the precise locations of these APs using the LLT
inference attack, and we find that many APs from the downtown
area have the same geographic locations in LLT. For a particular
example, an API request with ∥𝑀𝑖

𝑅
∥ = 24 and ∥𝑀𝑖

𝑆
∥ = 48 returns

the position estimate around the university campus. This means
that the attacker fails to deceive the victim device around campus
to get a spoofed position estimate chosen by the attacker in the
downtown area. By looking into the locations of these APs in LLT,
we find that the 24 legitimate APs are composed of 18 APs with
different geographic locations, 3 APs associated with one unique
geographic location, and 3 APs that are not recorded in LLT. Hence,
24 legitimate APs form a set with 19 effective APs. By contrast,
the 48 falsified APs consist of 11 APs with different geographic
locations, 24 APs located at 7 unique geographic locations, and 13
APs are not recorded in LLT. Namely, 48 falsified APs form a set
with 18 effective APs. Consequently, the Geolocation API returns
the position estimate close to the university campus.

6.2 Evaluation of the Discovered Attack
To evaluate the effectiveness of the discovered attack, we first obtain
the geographic locations of APs using the LLT inference attack. We
then discard APs that do not exist in the LLT and select APs with
unique locations in LLT. As a result, 6,871 out of 19,993 APs are
chosen as eligible APs for the evaluation.We further choose falsified
APs according to the attack methodology discussed in Section 5.6.

Again, our goal is to fool the victim device from its current loca-
tion around campus to a faraway location near the downtown area.
We thus take APs detected from different routes close to the univer-
sity campus and in the downtown area as legitimate and falsified
APs, respectively. For each trial of our experiments, we make 𝑛 API
requests with the corresponding APs in𝑀𝑖

𝑅
and𝑀𝑖

𝑆
. Consider the

overwhelming number of APs in the downtown area, we limit the
number of falsified APs by setting ∥𝑀𝑖

𝑆
∥∥ − ∥𝑀𝑖

𝑅
∥ < 10 in each API

request. As a result, all the 348 API requests return the position

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

estimates in the downtown area. We also switch the legitimate and
falsified locations, i.e., we use APs detected from routes close to the
downtown area and the university campus as legitimate and falsi-
fied APs, respectively. We find that 3 trials of attacks fail because
of the insufficient number of falsified APs. For example, in one out
of three failed trials, location 𝐿𝑆 is around an industrial park with
𝑀𝑆 = 52 falsified APs, whereas the corresponding location 𝐿𝑅 in
the downtown area has𝑀𝑅 = 64 legitimate APs.

The above results show that the attacker has sufficient falsified
APs against legitimate APs in most trials (e.g., 693 out of 696 trials).
In rare cases that𝑀𝑅 > 𝑀𝑆 , we argue the traditional attack needs
to block as many legitimate APs as it can to maximize its success
rate. According to our collections, 70% APs are transmitting on 6
different channels on both 2.4GHz and 5GHz bands in most trials.
Consequentially, the traditional attack has to jam at least 6 chan-
nels by using multiple jammers simultaneously. In comparison to
the traditional attack, the one discovered in this paper allows the
attacker to ensure𝑀𝑆 > 𝑀𝑅 by jamming fewer wireless channels at
the same time. For example, the attacker may only need to eliminate
legitimate APs by jamming channels 1 on the 2.4GHz band using a
single jammer (20% APs occupy Channel 1 in our collections).

7 DISCUSSION AND COUNTERMEASURES
For traditional location spoofing attacks against Wi-Fi positioning
systems, one effective defense would be detecting suspicious jam-
ming signals. The location spoofing attacks discovered in this paper,
however, cannot be addressed in this way because the attacker does
not need to jam Wi-Fi signals from legitimate APs. In what follows,
we describe potential countermeasures to mitigate this attack.

7.1 Using Reference APs
A victim device detects mixed Wi-Fi information from two distinct
locations for each Wi-Fi scan if an attacker is present. To detect
the presence of an attack, instead of making an API request with
detected APs solely, a mobile device can make an API request with
nearby APs that are detected at its current location, and a set of ref-
erence APs, which are pre-collected by the device from a reference
location far away from its current location. Let 𝑁𝐶 and 𝑁𝑉 indicate
the numbers of nearby and the reference APs in an API request,
respectively, where 𝑁𝐶 = 𝑁𝑉 + 1. Note that the reference APs, 𝑁𝐶 ,
and the corresponding location should be kept confidential.

Recall that when Google receives the Wi-Fi information from
two locations in an API request, Google returns a position estimate
that is the location with a larger number of APs. If there is no
attack, the API request with nearby and reference APs will return
a correct position estimate around the current location rather than
the reference location because 𝑁𝐶 > 𝑁𝑉 . In the presence of the
attack, as long as the number of falsified APs is equal to or larger
than 2 and so does the number of legitimate APs, the API request
will return a position estimate that is in the vicinity of the reference
location. To explain the reason, we know that𝑁𝐶 = 𝑁𝑉 +1 = 𝑛1+𝑛2,
where 𝑛1 and 𝑛2 are the numbers of detected legitimate and falsified
APs from two distinct locations, respectively. We can derive that
𝑛1 = 𝑁𝑉 + 1 − 𝑛2 < 𝑁𝑉 and 𝑛2 = 𝑁𝑉 + 1 − 𝑛1 < 𝑁𝑉 if 𝑛1 ≥ 2
and 𝑛2 ≥ 2. Hence, the Google Geolocation API returns a position

estimate around the reference location because 𝑁𝑉 , 𝑛1, and 𝑛2 form
this request and 𝑁𝑉 > 𝑛1 and 𝑁𝑉 > 𝑛2.

This defense method is simple and easy to implement, but it
requires at least 2 legitimate and falsified APs (i.e., 𝑛1 ≥ 2 and
𝑛2 ≥ 2) and may generate a high false alarm rate because some APs
from the nearby or reference set may not be recorded by the LLT.

7.2 Using Physical Layer Features
One key application of the location spoofing attack is to mislead
a car navigation system, which usually relies on GPS and Wi-Fi
signals for localization results. Past research has shown that it is
possible for an attacker to spoof the GPS localization of a navigation
system (e.g., [65]). An attacker may also want to subvert the Wi-Fi
localization by launching the location spoofing attack discovered
in this paper. In the context of car navigation, one may differentiate
legitimate and falsified APs leveraging the physical-layer charac-
teristics of Wi-Fi signals.

We assume that the spoofer is placed in the same car as the nav-
igation system. Therefore, we may detect the attack by measuring
the time-of-flight (ToF) and angle-of-arrival (AoA) of receivedWi-Fi
signals using channel state information. ToF and AoA have been
extensively studied for indoor localization. For example, Tadayon et
al. [50] explored the feasibility of decimeter ranging using channel
state information with 20 MHZ bandwidth. Kotaru et al. [26] first
demonstrated how to accurately compute AoA of multipath com-
ponents using three antennas. The navigation system may measure
ToF and AoA to identify the existence of the attack because the ToF
and AoA measured from crafted signals emitted by the spoofer are
more stable than those from legitimate APs.

Alternatively, it may be possible to detect the attack by exam-
ining the Doppler effect. In particular, the frequency of the Wi-Fi
signals from a legitimate AP that received by the navigation system
decreases as the car moves away from this AP, and increases as
the car moves towards the AP. On the other hand, because the
spoofer is placed within the same vehicle as the navigation system,
such Doppler effect does not exist due to the lack of relative ve-
locity between the spoofer and the navigation system. Thus, the
navigation system may attempt to observe the Doppler effect to
detect whether Wi-Fi signals are from the spoofer or legitimate APs.
These defense methods assume the scenarios of car navigation and
require additional hardware to measure the physical layer features
like ToF, AoA, and the Doppler shift.

7.3 Mitigation of the LLT Inference Attack
The attacker leverages the LLT inference attack to enable the loca-
tion spoofing attack in dense urban areas. Thus, mitigating the LLT
inference attack can be helpful in dealing with the location spoofing
attack. Google may mitigate the LLT inference attack by slightly
randomizing the position estimate such that the position estimate is
no longer equal to the location of a certain AP in an API request. In
particular, for an API request with two APs using the range-based
mode, a client gets the location estimate that is close to the AP with
the larger value of signalStrength but not exact the same as the
precise location of this AP in LLT. The drawback of this method is
that it may be hard to determine appropriate randomization offset
that can achieve both desired security and localization accuracy.

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

8 RELATEDWORK
Location spoofing attacks targetingmobile navigation systemswere
first discussed in [55]. The authors pointed out that malicious in-
terference to the civilian GPS signals can be a serious problem.
Nowadays, it becomes increasingly feasible to build low-cost GPS
spoofers that can generate fake GPS signals for any chosen loca-
tion (e.g., [2, 3]). For example, recent studies show that the cost to
create a portable and programmable spoofer can be less than $300
[36, 41, 51]. Zeng et al. [65] first demonstrated the feasibility of
stealthy fooling GPS-based road navigation systems. The attacker
takes over the GPS signals of the victim device and manipulates
the shape of a route shown on the navigation software to avoid
being detected. One defense approach to deal with this attack is
to use inertial sensors to keep track of a vehicle’s movement pat-
terns. However, Sashank et al. [39] revealed attacks against this
approach. The attacker can fool the victim to drive on a route that
yields inertial sensors readings similar to these from the original
path. In general, both cryptographic and non-cryptographic coun-
termeasures were proposed to address GPS spoofing attacks (e.g.,
[20, 27, 57], [5, 10, 22, 23, 43, 45, 58, 64]). However, these techniques
do not target the aforementioned advanced attacks (i.e, [39, 65])
and some of them need modifications to existing GPS infrastructure.
Liu et al. [31] presented a new defense method to localize a GPS
spoofer by iteratively moving towards the incoming angle of fake
GPS signals leveraging the receiver’s rotation and significant signal
attenuation caused by the physical blockage.

TheWi-Fi positioning system is a complement to GPS when GPS
signals are weak in urban canyon environments [37]. According to
our study, Google Maps shows the position estimate from GPS or
Wi-Fi positioning systems according to the localization accuracy.
It shows the position estimate from the Wi-Fi positioning system
when the accuracy of GPS is worse than that of the Wi-Fi position-
ing system. Therefore, to fool a victim in dense urban areas without
raising alarms, it is equally important for an attacker to stealthily
launch location spoofing attacks on GPS and Wi-Fi positioning sys-
tems at the same time. Otherwise, the victim can be notified of the
attacks as he/she is aware of the contradiction between localization
results from GPS and Wi-Fi positioning systems.

The location spoofing attack against Wi-Fi positioning was first
systematically investigated and discussed in [52]. Skylift, an online
project, further demonstrates the possibility of launching this attack
by using a low-cost Wi-Fi microchip ESP8266 [17]. Packetbridge
also explores the vulnerability of Wi-Fi positioning systems by
simulating network situations from different infrastructures [49].
Jamming is usually considered necessary to make these attacks
successful. In this paper, we identify the LLT inference attack which
provides the precise locations of APs in the location databases,
and this information enables an attacker to discover the black-
box localization algorithms used by the Google Wi-Fi positioning
system and intelligently craft the location spoofing attack with a
significantly reduced effort of jamming.

On the other hand, several countermeasures have been proposed
to detect unauthorized Wi-Fi APs [11, 24, 28, 29, 35, 62]. Kohno
et al. [25] first proposed the use of the clock skew of a computer
on a network for the purpose of authenticating Wi-Fi APs. The
authors showed that the clock skew of a device remains consistent

over time but it varies significantly across different devices, and
thereby it can be used as a reliable fingerprint to identify Wi-Fi
APs. On the wireless side, Jana et al. [21] proposed to determine
the clock skew using Time Synchronization Function (TSF) times-
tamps in IEEE 802.11 beacon/probe response frames sent by Wi-Fi
APs. It has been shown that it is possible to fool this fingerprinting
mechanism by modifying the device driver of a Wi-Fi AP [7]. Al-
ternatively, Hua et al. [19] proposed to fingerprint wireless devices
using Carrier Frequency Offset (CFO) inferred from channel state
information. The authors mention that CFO is an ideal fingerprint
because it is attributed to the oscillator drift caused by the hardware
imperfection and cannot be spoofed by any software [8], [9]. This
mechanism needs to collect CFO from 5,000 frames in 10 seconds
for constructing a high-precision fingerprint, and therefore may
not be able to detect fake APs against Wi-Fi positioning since an
AP usually only broadcasts 10 beacon frames in one second.

9 ETHICAL DISCLOSURE
Since the LLT inference attack exploits a design bug inside the Ge-
olocation APIs from Google and Mozilla, we responsibly disclosed
our attacks to them through their security disclosure portals in
July 2022. Mozilla confirmed its vulnerability to the LLT inference
attack on August 18. But they determined this vulnerability as low
risk and decided to close it without fix. Google did not respond to
the vulnerability report before the camera-ready deadline.

We perform the experiments in a confined way that does not
affect other legitimate users. Specifically, we perform the location
spoofing attacks in a virtual environment with simulated victim
users instead of real-world users. For the LLT inference attack,
we only passively examine the geographic locations of APs in the
location databases but never used any active method to profile the
users/locations that use/host APs. All Wi-Fi MAC addresses are
collected from publicly accessible Wi-Fi channels rather than any
private networks. The number of API requests that we send to
Google is within the normal range allowed by Google. We did not
cause any levels of denial-of-service to a Google server, nor did we
attempt to modify the LLT maintained by Google.

10 CONCLUSION
In this paper, we demonstrate the LLT inference attack that can
find out the precise locations of Wi-Fi APs, and we show that this
attack enables an attacker to significantly impact on user privacy
from various perspectives, and to successfully spoof the Google
Wi-Fi positioning system in urban areas with a massive number
of legitimate APs. We further evaluate the effectiveness of the
discovered location spoofing attack against the traditional location
spoofing attack via experiments.

ACKNOWLEDGMENTS
The authors would like to thank all anonymous reviewers for their
insightful comments. This research was supported by the National
Science Foundation under grants CNS-1553304 and CNS-2044516.
Any opinions, findings, conclusions, or recommendations expressed
in this paper are those of the author(s) and do not necessarily reflect
the views of the NSF.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiao Han, Junjie Xiong, Wenbo Shen, Zhuo Lu, and Yao Liu

REFERENCES
[1] IEEE Standard for Information technology – Local and metropolitan area net-

works – Specific requirements – Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements
for Higher Throughput. 2009.

[2] Open source software-defined GPS signal simulator. https://github.com/osqzss/
gps-sdr-sim, 2018.

[3] WALB (Wireless Attack Launch Box). https://github.com/crescentvenus/WALB,
2018.

[4] Combain Mobile AB. "Combain - Locate Everything Everywhere". https://
combain.com/, 2022.

[5] Dennis M. Akos. Who’s afraid of the spoofer? GPS/GNSS spoofing detection via
automatic gain control (AGC). Annual of Navigation, 2012.

[6] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A smart home is no castle:
Privacy vulnerabilities of encrypted IoT traffic. arXiv preprint arXiv:1705.06805,
2017.

[7] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and David Kotz. On the
reliability of wireless fingerprinting using clock skews. In Proceedings of the Third
ACM Conference onWireless Network Security (WiSec). Association for Computing
Machinery, 2010.

[8] Jean. Armstrong. Analysis of new and existing methods of reducing intercarrier
interference due to carrier frequency offset in OFDM. IEEE Transactions on
Communications, 1999.

[9] Helmut. Bolcskei. Blind estimation of symbol timing and carrier frequency offset
in wireless OFDM systems. IEEE Transactions on Communications, 2001.

[10] Ali Broumandan, Ali Jafarnia-Jahromi, Vahid Dehghanian, John Nielsen, and
Gérard Lachapelle. GNSS spoofing detection in handheld receivers based on
signal spatial correlation. In in Proceedings of the IEEE Position Location and
Navigation Symposium (PLANS), 2012.

[11] Yingying Chen, Wade Trappe, and Richard P. Martin. Detecting and localizing
wireless spoofing attacks. In 2007 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2007.

[12] D’vera Cohn. "About a fifth of U.S. adults moved due to COVID-19 or know
someone who did". https://www.pewresearch.org/fact-tank/2020/07/06/about-a-
fifth-of-u-s-adults-moved-due-to-covid-19-or-know-someone-who-did/, 2020.

[13] Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe. Is anybody home?
inferring activity from smart home network traffic. In 2016 IEEE Security and
Privacy Workshops (SPW), 2016.

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, KDD’96. AAAI Press, 1996.

[15] Dane Glasgow. "Google Maps updates to get you through the hol-
idays". https://blog.google/products/maps/google-maps-updates-get-you-
through-holidays/, 2020.

[16] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. Walls have ears: Traffic-based
side-channel attack in video streaming. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, 2018.

[17] Adam Harvey. "Data Pools: Wi-Fi Geolocation Spoofing". https://ahprojects.com/
datapools/, 2016.

[18] Adam Harvey. Skylift: Wi-Fi Geolocation Spoofing with the ESP8266. https:
//github.com/adamhrv/skylift, 2016.

[19] Jingyu Hua, Hongyi Sun, Zhenyu Shen, Zhiyun Qian, and Sheng Zhong. Accurate
and efficient wireless device fingerprinting using channel state information. In
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018.

[20] Todd E Humphreys. Detection strategy for cryptographic GNSS anti-spoofing.
IEEE Transactions on Aerospace and Electronic Systems, 2013.

[21] Suman Jana and Sneha K. Kasera. On fast and accurate detection of unauthorized
wireless access points using clock skews. IEEE Transactions on Mobile Computing,
2010.

[22] Kai Jansen, Matthias Schäfer, Daniel Moser, Vincent Lenders, Christina Pöpper,
and Jens Schmitt. Crowd-GPS-Sec: Leveraging Crowdsourcing to Detect and
Localize GPS Spoofing Attacks. In IEEE Symposium on Security and Privacy (SP
’18), 2018.

[23] Kai Jansen, Nils Ole Tippenhauer, and Christina Pöpper. Multi-receiver gps
spoofing detection: Error models and realization. In Proceedings of the 32nd
Annual Conference on Computer Security Applications, ACSAC ’16, 2016.

[24] Taebeom Kim, Haemin Park, Hyunchul Jung, and Heejo Lee. Online detection of
fake access points using received signal strengths. In 2012 IEEE 75th Vehicular
Technology Conference (VTC Spring), 2012.

[25] Tadayoshi. Kohno, Andre. Broido, and Kimberly. Claffy. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure Computing, 2005.

[26] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. SpotFi:
Decimeter level localization usingWiFi. In Proceedings of the 2015 ACMConference
on Special Interest Group on Data Communication (SIGCOMM), 2015.

[27] Markus G Kuhn. An asymmetric security mechanism for navigation signals. In
International workshop on information hiding, 2004.

[28] Fabian Lanze, Andriy Panchenko, Benjamin Braatz, and Thomas Engel. Letting
the puss in boots sweat: Detecting fake access points using dependency of clock
skews on temperature. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security (ASIA CCS). Association for Computing
Machinery, 2014.

[29] Fabian Lanze, Andriy Panchenko, Benjamin Braatz, and Andreas Zinnen. Clock
skew based remote device fingerprinting demystified. In 2012 IEEE Global Com-
munications Conference (GLOBECOM), 2012.

[30] Huaxin Li, Zheyu Xu, Haojin Zhu, Di Ma, Shuai Li, and Kai Xing. Demographics
inference through Wi-Fi network traffic analysis. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, 2016.

[31] Shinan Liu, Xiang Cheng, Hanchao Yang, Yuanchao Shu, Xiaoran Weng, Ping
Guo, Kexiong (Curtis) Zeng, GangWang, and Yaling Yang. Stars can tell: A robust
method to defend against GPS spoofing attacks using off-the-shelf chipset. In
30th USENIX Security Symposium (USENIX Security). USENIX Association, 2021.

[32] Google LLC. Geolocation API: Usage and Billing. https://developers.google.com/
maps/documentation/geolocation/usage-and-billing, 2022.

[33] Google LLC. Privacy changes in Android 10. https://developer.android.com/
about/versions/10/privacy/changes#proc-net-filesystem, 2022.

[34] Unwired Labs (India) Pvt. Ltd. "Unwired Labs Location API". https://unwiredlabs.
com/, 2022.

[35] Mahabub Hasan Mahalat, Shreya Saha, Anindan Mondal, and Bibhash Sen. A
PUF based light weight protocol for secure WiFi authentication of IoT devices.
In 2018 8th International Symposium on Embedded Computing and System Design
(ISED), 2018.

[36] SteveMarkgraf. osmo-fl2k: Using cheap USB 3.0 VGA adapters as SDR transmitter.
https://osmocom.org/projects/osmo-fl2k/wiki/Osmo-fl2k, 2015.

[37] Krista Merry and Pete Bettinger. Smartphone GPS accuracy study in an urban
environment. PloS one, 2019.

[38] Mozilla. "Mozilla Location Service". https://location.services.mozilla.com/, 2022.
[39] Sashank Narain, Aanjhan Ranganathan, and Guevara Noubir. Security of GPS/INS

based on-road location tracking systems. In 2019 IEEE Symposium on Security
and Privacy (S&P), 2019.

[40] North American Van Lines, Inc. "Where Are Americans Moving in 2021?".
https://www.northamerican.com/migration-map, 2022.

[41] Parmy Olson. Hacking A Phone’s GPS May Have Just Got Eas-
ier. https://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-
defcon/?sh=e73fe954efbf, 2015.

[42] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev, and Srdjan Capkun. In-
vestigation of signal and message manipulations on the wireless channel. In
Computer Security – ESORICS 2011, 2011.

[43] Mark L. Psiaki, Steven P. Powell, and Brady W. O’Hanlon. GNSS spoofing
detection using high-frequency antenna motion and carrier-phase data. In
proceedings of the 26th international technical meeting of the satellite division of
the Institute of Navigation (ION GNSS+), 2013.

[44] Inc Qualcomm Technologies. Skyhook | Location Technology Provider. https:
//www.skyhook.com/, 2022.

[45] Aanjhan Ranganathan, Hildur Ólafsdóttir, and Srdjan Capkun. SPREE: A spoofing
resistant GPS receiver. In Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, 2016.

[46] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system. In 28th USENIX Security
Symposium (USENIX Security), Santa Clara, CA, 2019.

[47] Ignacio Sanchez, Riccardo Satta, Igor Nai Fovino, Gianmarco Baldini, Gary Steri,
David Shaw, and Andrea Ciardulli. Privacy leakages in smart home wireless
technologies. In 2014 International Carnahan Conference on Security Technology
(ICCST), 2014.

[48] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the burst: Remote
identification of encrypted video streams. In 26th USENIX Security Symposium
(USENIX Security), 2017.

[49] Bengt Sjölen and Gordan Savicic. "Packetbridge: Wireless geographical network
intervention". https://criticalengineering.org/projects/packetbridge/, 2012.

[50] Navid Tadayon, Muhammed Tahsin Rahman, Shuo Han, Shahrokh Valaee, and
Wei Yu. Decimeter ranging with channel state information. IEEE Transactions on
Wireless Communications, 2019.

[51] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan
Capkun. On the requirements for successful gps spoofing attacks. In Proceedings
of the 18th ACM Conference on Computer and Communications Security, CCS ’11,
2011.

[52] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pöpper, and Srdjan
Čapkun. Attacks on public WLAN-Based Positioning Systems. In Proceedings
of the 7th International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2009.

[53] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi attacks using commodity
hardware. In Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC). Association for Computing Machinery, 2014.

https://github.com/osqzss/gps-sdr-sim
https://github.com/osqzss/gps-sdr-sim
https://github.com/crescentvenus/WALB
https://combain.com/
https://combain.com/
https://www.pewresearch.org/fact-tank/2020/07/06/about-a-fifth-of-u-s-adults-moved-due-to-covid-19-or-know-someone-who-did/
https://www.pewresearch.org/fact-tank/2020/07/06/about-a-fifth-of-u-s-adults-moved-due-to-covid-19-or-know-someone-who-did/
https://blog.google/products/maps/google-maps-updates-get-you-through-holidays/
https://blog.google/products/maps/google-maps-updates-get-you-through-holidays/
https://ahprojects.com/datapools/
https://ahprojects.com/datapools/
https://github.com/adamhrv/skylift
https://github.com/adamhrv/skylift
https://developers.google.com/maps/documentation/geolocation/usage-and-billing
https://developers.google.com/maps/documentation/geolocation/usage-and-billing
https://developer.android.com/about/versions/10/privacy/changes#proc-net-filesystem
https://developer.android.com/about/versions/10/privacy/changes#proc-net-filesystem
https://unwiredlabs.com/
https://unwiredlabs.com/
https://osmocom.org/projects/osmo-fl2k/wiki/Osmo-fl2k
https://location.services.mozilla.com/
https://www.northamerican.com/migration-map
https://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/?sh=e73fe954efbf
https://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/?sh=e73fe954efbf
https://www.skyhook.com/
https://www.skyhook.com/
https://criticalengineering.org/projects/packetbridge/

Location Heartbleeding: The Rise of Wi-Fi Spoofing Attack Via Geolocation API CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

[54] Triet Dang Vo-Huu, Tien Dang Vo-Huu, and Guevara Noubir. Interleaving
jamming in Wi-Fi networks. In Proceedings of the 9th ACM Conference on Security
& Privacy in Wireless and Mobile Networks (WiSec), 2016.

[55] John A. Volpe. Vulnerability assessment of the transportation infrastructure
relying on Global Positioning System. https://rosap.ntl.bts.gov/view/dot/8435,
2001.

[56] Chen Wang, Chuyu Wang, Yingying Chen, Lei Xie, and Sanglu Lu. Smartphone
privacy leakage of social relationships and demographics from surrounding
access points. In 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), 2017.

[57] Kyle Wesson, Mark Rothlisberger, and Todd Humphreys. Practical cryptographic
civil GPS signal authentication. NAVIGATION, Journal of the Institute of Naviga-
tion, 2012.

[58] Kyle D Wesson, Daniel P Shepard, Jahshan A Bhatti, and Todd E Humphreys.
An evaluation of the vestigial signal defense for civil GPS anti-spoofing. In
Proceedings of the 24th International Technical Meeting of the Satellite Division of
The institute of navigation (ION GNSS), 2011.

[59] WiGLE.NET. "WiGLE: Wireless Network Mapping". https://wigle.net/index,
2022.

[60] Wikipedia contributors. Haversine formula — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=
1075414115, 2022.

[61] Wikipedia contributors. Received signal strength indication — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=Received_signal_
strength_indication&oldid=1080897329, 2022.

[62] Bin Xu, Min Peng, Qing F. Zhou, and Xusheng Cheng. Fake access point localiza-
tion based on optimal reference points. In 2018 IEEE 4th International Conference
on Computer and Communications (ICCC), 2018.

[63] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The feasibility
of launching and detecting jamming attacks in wireless networks. In Proceed-
ings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc). Association for Computing Machinery, 2005.

[64] Nian Xue, Liang Niu, Xianbin Hong, Zhen Li, Larissa Hoffaeller, and Christina
Pöpper. Deepsim: Gps spoofing detection on uavs using satellite imagery match-
ing. In Annual Computer Security Applications Conference, ACSAC ’20, 2020.

[65] Kexiong (Curtis) Zeng, Shinan Liu, Yuanchao Shu, Dong Wang, Haoyu Li, Yanzhi
Dou, Gang Wang, and Yaling Yang. All your GPS are belong to us: Towards
stealthy manipulation of road navigation systems. In 27th USENIX Security
Symposium (USENIX Security), 2018.

[66] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. Identity, location,
disease and more: Inferring your secrets from android public resources. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, 2013.

https://rosap.ntl.bts.gov/view/dot/8435
https://wigle.net/index
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=1075414115
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=1075414115
https://en.wikipedia.org/w/index.php?title=Received_signal_strength_indication&oldid=1080897329
https://en.wikipedia.org/w/index.php?title=Received_signal_strength_indication&oldid=1080897329

	Abstract
	1 Introduction
	2 Background
	2.1 Wi-Fi Positioning Systems
	2.2 Google Geolocation API
	2.3 Overview of the Attack

	3 LLT Inference Attack
	3.1 Range-free Mode
	3.2 Range-based Mode
	3.3 Restrictions on the LLT Inference Attack

	4 Implication of the LLT Inference Attack on User Privacy
	4.1 Privacy Threat Example I: Monitoring Daily Activities of Residents
	4.2 Privacy Threat Example II: Monitoring Relocation and Travel
	4.3 Privacy Threat Example III: Getting the Location without Requesting Permission
	4.4 LLT Inference Attack Via Other Location Services

	5 Manipulation of Google Wi-Fi Positioning System
	5.1 Initialization of the Attack
	5.2 Criterion i
	5.3 Criterion ii
	5.4 Criterion iii
	5.5 Criterion iv
	5.6 Attack Methodology

	6 Spoofing Attack Evaluation
	6.1 Evaluation of the Traditional Attack
	6.2 Evaluation of the Discovered Attack

	7 Discussion and Countermeasures
	7.1 Using Reference APs
	7.2 Using Physical Layer Features
	7.3 Mitigation of the LLT Inference Attack

	8 Related Work
	9 Ethical Disclosure
	10 Conclusion
	Acknowledgments
	References

