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Abstract—Network tomography is an important tool to estimate link metrics from end-to-end network measurements. An implicit

assumption in network tomography is that observed measurements indeed reflect the aggregate of link performance (i.e., seeing

is believing). However, it is not guaranteed today that there exists no anomaly (e.g., malicious autonomous systems and insider

threats) in large-scale networks. Malicious nodes can intentionally manipulate link metrics via delaying or dropping packets to affect

measurements. Will such an assumption render a vulnerability when facing attackers? The problem is of essential importance in that

network tomography is developed towards effective network diagnostics and failure recovery. In this paper, we demonstrate that the

vulnerability is real and propose a new attack strategy, called measurement integrity attack, in which malicious nodes can substantially

damage a network (e.g., delaying packets) and at the same time maliciously manipulate end-to-end measurement results such that a

legitimate node is misleadingly identified as the root cause of the damage (thereby becoming a scapegoat) under network tomography.

We formulate three basic attack approaches and show under what conditions attacks can be successful. We also reveal conditions to

detect and locate such attacks in a network. Our theoretical and experimental results show that simply trusting measurements leads to

measurement integrity vulnerabilities. Thus, existing methods should be revisited accordingly for security in various applications.

Index Terms—Network tomography; measurement integrity; scapegoating; security; attack feasibility; attack detection and localization.
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1 INTRODUCTION

Accurate and timely monitoring of network performance
is vital to ensure a reliable and efficient network environ-
ment. To this end, network operators may use network
management protocols to monitor the network. For ex-
ample, tools based on the simple network management
protocol (SNMP) [2] can be used to periodically query
individual network components to find potential anoma-
lies or malfunctions. However, such a way of directly
measuring the performance of internal components is
not always feasible due to the lack of support func-
tionality at network components, measurement traffic
overhead, or prohibition in autonomous systems.

Network tomography has emerged as an alterna-
tive measurement algorithm primarily used for network
monitoring, diagnosis and failure localization (e.g., [3],
[4], [5], [6], [7]) inside a network, where directly mea-
suring the performance of individual components is not
always possible. In network tomography, monitoring
nodes (also known as monitors) send packets between
each other. A network link’s quality metric, such as delay
or packet loss, is inferred from the end-to-end mea-
surements based on the knowledge of how packets are
routed over end-to-end paths between these monitors.
Therefore, it avoids directly measuring the performance
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of individual network links and has enabled wide ap-
plications in both wireline networks (e.g., [7], [8], [9],
[10]) and wireless networks (e.g., [11], [12], [13]) without
special cooperation from internal nodes.

By nature, network tomography does not directly
observe network link metrics, but “tele-measure” them
via measurements over end-to-end paths. Each path
consists of a few or more links. Existing work mainly
focused on algorithm design and applications (e.g., [7],
[8], [9], [10], [11], [12], [13]); and some recent papers also
considered the problems of placement of monitors and
identifiability of link metrics (e.g., [14], [15], [16], [17]).
In essence, network tomography can be considered as an
algorithmic process to transfer end-to-end measurements
into link metric estimates. Interestingly, most existing
studies on network tomography emphasize extracting as
much information about link metrics as possible from
available measurements, and always make a seeing-is-
believing assumption that measurements over end-to-end
paths between monitors indeed reflect the real perfor-
mance aggregates over individual links. However, such
an assumption does not always hold in the presence
of malicious autonomous systems [18], [19], backdoor-
infected routers [20], and node-capture attacks [21], [22]
as these adversaries actively affect packet forwarding
and have become increasingly possible in today’s com-
plicated environments. Rather, the assumption renders
a serious security problem of measurement integrity
during the network tomography process.

In this paper, we develop a new class of attack strate-
gies, called measurement integrity attacks, which take ad-
vantage of this seeing-is-believing vulnerability in network
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tomography. Unlike conventional data integrity prob-
lems that are usually protected by standard methods
(e.g., encryption and authentication), a key challenge
associated with measurement integrity attacks is that
the facts (e.g., packet transmission/delivery timings)
during network measurement cannot be protected by
such standard methods, but can be easily manipulated
by malicious attackers. The basic idea of measurement
integrity attacks is to intentionally delay or drop packets
at malicious nodes to manipulate end-to-end measure-
ments between monitors in a way such that a legitimate
node is incorrectly identified by network tomography
as the root cause of the problem, thereby becoming a
scapegoat. We propose three basic attack strategies with
different objectives.

1) Chosen-victim scapegoating, in which attackers tar-
get one or more given victims such that these
victims are misleadingly identified by network to-
mography as the root cause of a problem.

2) Maximum-damage scapegoating, in which attack-
ers find the optimal set of victims among all nodes
to inflict the maximum damage to the network.

3) Obfuscation, by which network tomography is
tricked to produce a substantial number of link
estimates beyond the normal status to confuse a
network operator.

We analyze the feasibility of these strategies, and
present the conditions for detecting and locating such
attacks. We also use network datasets to perform simu-
lation experiments to show the success possibility, dam-
age, and the detectability and locatability of such attacks.
Our main contributions can be summarized as follows.

• We are the first to investigate the vulnerability in
network tomography mechanisms from a security
perspective, and reveal that measurement integrity
attacks are able to damage the network while sub-
stantially misleading network tomography without
knowing the global routing knowledge of the net-
work.

• We systematically construct three basic attack strate-
gies, and investigate the feasibility of such attacks,
then propose methods to detect and locate measure-
ment integrity attacks.

• We use real-world datasets to evaluate the threats
of measurement integrity attacks in network sys-
tems with various settings. Experimental results
demonstrate that the current practice of network
tomography is even vulnerable to a single attacker.

Our work demonstrates that when a measurement in-
tegrity attack is successfully launched, network tomogra-
phy generates misleading and erroneous outputs, based
on which failure recovery or mitigation procedures may
further exacerbate the damage caused by the attack.
As security plays a critically important role in network
design and measurement, network tomography should
be developed not only for conventional goals such as
efficiency and identifiability, but also for security. Hence,

existing network tomography methods in various appli-
cations need to be revisited to increase attack resilience
and adopt necessary detection mechanisms.

Note that our early work in [1] has identified that such
vulnerability of network tomography can be leveraged
by attackers to mislead the network tomography. In this
work, we have the following improvements:

1) In [1], the global routing information is assumed to
be known by attackers while launching the attacks.
However, in most networks, such information is
generally unavailable since it is encrypted in the
network or higher layers. To this end, different
from [1], this paper focuses on investigating a
more practical problem of how to launch the attack
with partial information, i.e., attackers have no
global routing information. Then, we systemati-
cally model and analyze this problem in Section 3-
C, and introduce a new constraint for our improved
optimization framework in Section 3-D. We also
adjust the three attack strategies by reconsidering
this new constraint in Section 3-E.

2) From the detection perspective, apart from a de-
tection method in [1], this paper proposes a new
localization strategy which can not only detect
if attacks exist, but, most importantly, explicitly
pinpoint which links or nodes are true attackers
(as shown in Section 5).

3) We re-conduct our simulations to accommodate the
partial information environments, and provide new
results of locating attacks in Section 6.

The remainder of this paper is organized as follows.
In Section 2, we introduce the models and state the
research problem. In Section 3, we design and discuss the
attack strategies. In Section 4, we analyze the feasibility
of measurement integrity attacks and describe how to
detect it. In Section 5, we demonstrate how to locate such
attacks. In Section 6, we present experimental results. We
discuss observations and introduce the future work from
analyses and experiments in Section 7, describe related
work in Section 8 and finally conclude in Section 9.

2 MODELS AND PROBLEM STATEMENT

In this section, we first review network tomography and
introduce the basic idea behind measurement integrity
attacks. Then, we state our research problems. All nota-
tions are defined in Table 1.

2.1 Network Models and Assumptions

We consider a connected network with a known topol-
ogy denoted by graph G = (V ,L), where V = {vi}i∈[1,|V|]

and L = {li}i∈[1,|L|] represent the sets of nodes and links,
respectively. There is at most one link between nodes vi
and vj for i 6= j and no link for i = j (i.e., no self-loop).
Link li is associated with a link metric xi. We assume that
link metrics are additive, i.e., the overall measurement
metric of an end-to-end path is the sum of individual
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TABLE 1

Notations used throughout the paper.

AT The transpose of matrix A.

A−1 The inverse of matrix A.

‖a‖1
The L-1 norm of vector a = [a1, a2, · · · , an]T ,
i.e., ‖a‖1 =

∑
n

i=1
|ai|.

x � y
Componentwise larger than or equal to, i.e.,
xi ≥ yi for every index i and pair of xi ∈ x

and yi ∈ y.

0 All-zero vector.

|A| The cardinality of set A.

link metrics over the path. For example, delay metrics
are additive; and packet delivery or loss ratios are also
additive in the logarithmic form [6], [17], [23].

Throughout this paper, we adopt similar assumptions
in the literature for network tomography (e.g., [15], [16],
[17]): (i) a network operator chooses a number of nodes
in the network as monitors, which send probe packets
between each other to monitor the additive metric of
each individual link; (ii) the network operator will collect
all measurement results from monitors, and then per-
form network tomography for monitoring and diagnosis
purposes.

In addition, we adopt the assumption that the moni-
tors can control the routing of probe packets over a path
as long as the path starts and ends at different monitors.
Although end nodes usually have no control of the rout-
ing path of a common IP packet, network tomography
relies on such a controllable routing assumption (e.g.,
[15], [16], [17]). It is known from existing studies (e.g.,
[24], [25]) that controllable routing served for network
measurement can be generally supported in (i) networks
under common administration, (ii) networks with strict
(or loose) source routing, such as wireless networks with
ad-hoc on demand distance vector (AODV) routing, or
(iii) certain software-defined network (SDN) scenarios
where monitors, with the help of the SDN controller,
can decide paths of measurement packets. How exactly
controllable routing is designed for network tomogra-
phy is complementary to the work in this paper that
focuses on exploiting the network tomography process
and launching measurement integrity attacks.

2.2 Network Tomography and Formulation

Network tomography [8] is an algorithm to estimate
link metrics from end-to-end measurements. Theoret-
ically, we form the link metrics as a column vector
x = [x1, x2, · · · , x|L|]

T . To efficiently estimate x, monitors
first select a set of measurement paths between each
other, denoted by P = {Pi}i∈[1,|P|]. Then, they send
probe packets over the paths in P to obtain the path
measurement metrics, which are denoted as a column
vector y = [y1, y2, · · · , y|P|]

T . As a path measurement
metric in y is usually the sum of multiple link metrics
in x (e.g., a path delay is the sum of multiple link delays),

1
M1

2 4

M2

M3

M4

A

3 Path 1 1 2( )M M : links 1, 2

Path 2 1 3( )M M : links 1, 3

Path 3 1 4( )M M : links 1, 4

Path 4 2 4( )M M : links 2, 4

1P

3P

2P

4P

Fig. 1. A simple network example, where M1 − M4 are

monitors, and M1 is malicious.

it has been shown [14] that the linear relation between
x and y can be represented as

y = Rx, (1)

where R = (Ri,j) is called the routing or measurement
matrix whose entry Ri,j has value 1 if link lj ∈ L is
present on path Pi ∈ P , and value 0 otherwise. Network
tomography in essence inverts the linear system in (1) to
solve for x given R and y. Existing studies on selecting
or placing monitors (e.g., [15], [16]) ensure that R is
revertible (or full column rank) and the solution to (1)
can be obtained as

x̂ = (RTR)−1RTy. (2)

The estimate x̂ is expected to have values close to the
real link metric vector x, and will be used as decisive
information for link status monitoring, network diagnos-
tics or further failure recovery.

2.3 Motivation and Basic Idea of Measurement In-
tegrity Attacks

Network tomography does not directly measure net-
work link performance, but deduces such performance
from the aggregate measurements observed by moni-
tors. Therefore, the reliability of network tomography
relies on an implicit assumption that measurements over
end-to-end paths indeed reflect the real performance
aggregates over individual links. However, such probe
packets may go through malicious autonomous systems
[18], [19], intentional bandwidth throttling systems [26],
backdoor-infected routers [20] or attack-captured nodes
[21], [22] that can intentionally or maliciously cause
negative impacts on end-to-end measurements. Thus,
such an assumption may not always hold in today’s
complicated network environments.

Suppose that some nodes in the network are malicious
and intend to cause damage. A straightforward attack
is that they delay or drop all packets routed to them.
However, it is easy for the network operator to detect
that the links connecting to these nodes suffer long delay
or high loss under network tomography. Therefore, a
much more important question is whether it is possible
for these malicious nodes to launch attacks and at the
same time mislead network tomography.

To demonstrate the idea of such an attack, we consider
a naive scenario shown in Fig. 1, where nodes M1,



4

M2, M3 and M4 are monitors that perform network
tomography to estimate link metrics, and the number on
each edge denotes the link index. These monitors choose
4 paths1 listed in Fig. 1 for end-to-end measurement.
Assume that node M1 is malicious, which means that it
can adversely affect the performance of link 1 to damage
the network, such as delaying packets passing through
link 1.

From Fig. 1, the attacker M1 associated with link 1
presents on paths 1-3. If the attacker M1 simply delays
or drops all packets going through link 1, it is very
easy to be identified by network tomography as the
root cause. Instead, our proposed attack strategy is that
the attacker can try to delay or drop packets along
certain directions to mislead tomography. Specifically,
in Fig. 1, the attacker M1 is on all measurement paths
containing link 3 (i.e., path 2). If the attacker M1 only
does the damage on path 2, and do nothing on other
paths (e.g., paths 1, 3), the induced measurements under
the network tomography algorithm (2) will show that
path measurements containing link 3 always suffer long
delay or high loss, while the others appear to be normal.

For example in Fig. 1, we have the system (1) as

Path 1 : y1 = x1 + x2

Path 2 : y2 = x1 + x3

Path 3 : y3 = x1 + x4

Path 4 : y4 = x2 + x4.

(3)

Clearly, the routing matrix R in (3) satisfies the full
column rank requirement. Now suppose an ideal case
that the network is congestion free (i.e., almost 0ms delay
on every link), and the attacker only damages path 2 by
inflicting extra 1000ms delay on link 1. Then, we have the
observed path measurement vector y = [0, 1000, 0, 0]T .
According to (1), the estimated link metrics become
x̂ = [0, 0, 1000, 0]T . Such result indicates that

1) The estimated link vector x̂ shows that no anomaly
happens on link 1; therefore, the anomaly of link 1
due to attacker M1 can be successfully concealed
by such an attack strategy against the network
tomography.

2) This unavoidably misleads the network operator to
believe that link 3 or its end-node M3 must have
some issues.

Therefore, we call such an attack strategy measurement
integrity attack and call link 3 or nodes M3 a scapegoat in
the case.

2.4 Problem Statement

From the example in Fig. 1, we can consider the measure-
ment integrity attack as a potential attack to hide the real
identities of attackers and make some legitimate nodes

1. Monitors do not need to enumerate all possible paths between
them. They only need to choose a sufficient number of paths to ensure
identifiability in network tomography (e.g., [16], [17]). Fig. 1 shows
such an example with 4 paths chosen.

or links the scapegoats. Many questions can be raised
concerning the feasibility of such an attack strategy in
the above example: How can M1 damage the network
to launch a feasible attack? Can M1 make other links,
such as link 2, the scapegoat? Is it possible to detect or
locate such an attack?

Before theoretically addressing these issues, we first
introduce several necessary definitions. Considering a
network G = (V ,L), we define Vm ⊆ V as the malicious
nodes set (called attackers), which control a set of links
Lm ⊆ L. Then the attackers can launch the attack
by inconsistently inflicting damage on particular paths
Pm ⊆ P , where every entry Pi ∈ Pm travels at least one
link lj ∈ Lm.

According to previous definitions, we unfold our ma-
jor problems into two aspects as follows.

1. Attack Strategy: Network tomography infers the
link metrics based on (2). Therefore, in order to mislead
network tomography, the routing matrix R is necessary
to be known by attackers. However, for most networks,
the path information is generally encrypted in network
or higher layers, so that the attacker cannot obtain it.
Therefore the first challenge is how to launch measure-
ment integrity attacks to delay or drop packets on paths
from Pm in a way such that another set of links Ls is
identified as the root cause and Ls ∩ Lm = ∅ (where ∅

denotes the empty set).
2. Detection Strategy: From the defenders’ perspec-

tive, they know the global routing matrix R and the
manipulated path measurement vector, but they do not
know the true malicious links Lm. Therefore, another
challenge is how to detect if measurement integrity
attacks exist and how to localize which links have real
problems.

We assume all nodes, including norm nodes and mon-
itors, can be malicious in Vm, because they are not ded-
icated nodes with special protection, but normal nodes
representing sources and destinations on measurement
paths in the network. A large number of nodes are
usually required to be chosen as monitors to ensure
identifiability in network tomography [16], [17].

3 ATTACK STRATEGIES

In this section, we formally address the measurement
integrity problem. In particular, we categorize measure-
ment integrity attacks into three basic strategies, and
then formulate them and discuss their impacts.

3.1 Network Link States

The network operator uses network tomography to
identify an abnormal link by checking its link metric
exhibiting long delay or high loss. Under measurement
integrity attacks, a normal link may be misleadingly
identified as abnormal. To facilitate formulating such
attacks, we first define the normal and abnormal states
of a network link.
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Definition 1 (Link States): Define the state space of a
link as S = {normal, abnormal, uncertain}. Let the state
of link li ∈ L be a function S : L → S such that S(li) =
abnormal if li’s link metric xi is larger than an upper
bound bu (i.e., xi > bu), and S(li) = normal if xi is less
than a lower bound bl (i.e., xi < bl), and S(li) = uncertain
otherwise (i.e., when xi ∈ [bl, bu]). In particular, the state
S(li) satisfies

S(li) =







normal xi < bl,
uncertain bl ≤ xi ≤ bu,
abnormal xi > bu.

Remark 1: The state of uncertain indicates that some
links may be in an intermediate state that cannot be
clearly classified to abnormal or normal. There is no
standardized definition to clarify all problematic condi-
tions in practical network diagnostics. For example, in an
enterprise network, a link can be considered abnormal

if the link delay is larger than a few seconds, and
considered normal if the delay is tens of milliseconds
(ms). However, when the link delay is hundreds of mil-
liseconds (e.g., 150ms), it really depends on the network
operation rules in the organization to decide the state of
the link. As a result, we introduce the state of uncertain
to accommodate this intermediate state. We also note
that our three-state scenario can be easily transitioned
into the two-state scenario by setting a single threshold
b = bu = bl in Definition 1.

With Definition 1, we can say that one of the goals for
measurement integrity attacks is to make sure that the
links associated with attackers are identified as normal;
at the same time, some innocent links are, however,
identified as abnormal.

3.2 Attack Manipulation Vector and Inflicted Dam-

age

Apparently, except for generating misleading results,
a major goal of attackers is to cause damage to the
network. Therefore, we also need to measure the damage
due to the attacks. The first thing towards measuring
the attack damage is to determine what attackers can
manipulate. By nature, attackers can affect any end-to-
end path that goes through them, accordingly manipu-
lating the end-to-end measurement vector observed at
monitors. For example, in Fig. 1, node M1 can obviously
affect any data flow going through links 1(e.g., delaying
or dropping packets).

Denote by y′ and y the end-to-end measurement vec-
tors with and without the attack, respectively. Without
loss of generality, we can always write

y′ = y +m, (4)

where y reflects the real end-to-end performance, and m

is called the attack manipulation vector that denotes the
damage (e.g., intentional delay or packet dropping ratio)
inflicted by attacks over all paths. For example, when
an end-to-end path has a delay of 10ms, an attacker on

the path can incur an extra delay of 1000ms for every
packet, making the observed end-to-end measurement
1010ms; and the extra delay of 1000ms can be controlled
by the attacker and will be an entry in m to represent
the damage to the network. Accordingly, each entry in
m reflects the performance degradation induced by the
attacker on each path in the network.

All entries in m should be non-negative in that at-
tackers should not boost, but degrade the network per-
formance, i.e., m � 0, where � means “componentwise
greater than or equal to” defined in Table 1. For example,
attackers can intentionally postpone forwarding packets
on paths going through them, thus incurring more delay
on those paths. But they are never expected to reduce the
delay, because it is in contrast to the attacker’s goal to
damage the network and it may be technically infeasible
for them to further reduce the delay at will. In addition,
for the measurement paths that contain no attacker, the
corresponding entries in m must be zero, indicating that
attackers cannot manipulate the measurements on these
paths. For example, in Fig. 1, attacker M1 is not on
path 4, and thus cannot manipulate the measurement
of path 4. We formally define these constraints of m as
follows.

Constraint 1 (Constraints of Attack Manipulation): The
attack manipulation vector m = {mi}i∈[1,|P|] satisfies
(i) m � 0; and (ii) mi = 0 when there exists no such
node v ∈ Vm that is on path Pi ∈ P , where Vm and
P denote the sets of malicious nodes and measurement
paths, respectively.

Under the Constraint 1, attackers will attempt to
maximize the damage to the network. In the following,
we define the damage as total performance degradation
over all paths.

Definition 2 (Damage of Measurement Integrity Attack):
The damage of the measurement integrity attack is mea-
sured by ‖m‖1, i.e., the L1 norm of attack manipulation
vector m.

Remark 2: Definition 2 defines the damage metric of
the attack as the total sum of all entries, representing
the total performance degradation over all paths. The
larger the value of ‖m‖1, the more damage the attack
brings. We can also change the damage metric to the
average performance degradation or to any other form.
For the sake of simplicity, we always use the damage
metric in Definition 2 for formulation and analysis,
and note that the change of the damage metric (e.g.,
to accommodate the metrics of packet loss or delivery
ratios) is a straightforward extension in mathematical
manipulations.

3.3 Partial Information

According to (2), in order to manipulate the inferred
link metrics x̂, the global routing information lying
in the routing matrix R and the original overall path
measurement vector y should be known by attackers.
For example, in Fig. 1, if M1 knows the linear system
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(3) and y = [0, 0, 0, 0]T , then M1 can scapegoat link 3
by introducing m = [0, 1000, 0, 0]. However, in practice,
from the security perspective, both R and y are less
likely open to every node in most networks. Therefore,
before introducing the attack strategy, we need to clarify
what information that attackers know while launching
attacks.

Definition 3 (Partiality Factor): Attackers know the rout-
ing information and path measurement vector on paths
that go through them (i.e., paths in Pm). Specifically,
for each path Pi ∈ Pm, the routing information ri (i.e.,
ith row of the routing matrix R), and the true path
measurement metric yi ∈ y are known by attackers. The
partiality factor β is defined as the ratio between the
number of paths in Pm and the total number of paths,
i.e., β = |Pm|/|P|.

Remark 3: The partiality factor β is a ratio indicating
how much information that attackers know. β = 1
denotes attackers completely know R and y, and 0 <
β < 1 means attackers only know several rows of R and
associated several entries of y . In fact, β is also positively
related to the number of attackers in a network. For
example, β = 1 denotes attackers are present on all paths
in a network, and β = 0 means there is no attacker in
the network.

Remark 4: In many networks, attackers may acquire the
path measurement vector and the routing information
of paths that go through them. For example, in AODV,
the routing information is available during the routing
discover process, and the path measurement vector can
be obtained if the attacker is the source or destination
node of a path.

According to Definition 3, to clearly model the partial-
ity, we split R and y into two parts, i.e., R = [RT

d ,R
T
r ]

T

and y = [yT
d ,y

T
r ]

T , where Rd and yd denote the parts
that attackers know, and Rr and yr are unknown to
attackers. Similarly, according to Constraint 1, we also
divide the attack manipulation vector as m = [mT

d ,0
T ]T ,

where mT
d denotes the inflicted damage on paths in Pm.

Then, the linear system (4) can be written as

y′ =

[

yd

yr

]

+m =

[

Rd

Rr

]

x+

[

md

0

]

. (5)

Attackers have no knowledge on entries in Rr and yr,
therefore we consider Rr and yr as a random matrix
and a random vector, respectively. If the partiality factor
β = 1, then yr and Rr will vanish and md = m,
indicating attackers know and can control all paths.
If β = 0, md will vanish, meaning that this network
cannot be damaged by attackers, therefore in order to
investigate the malicious behaviors, in this paper, we
only consider the scenario 0 < β ≤ 1.

3.4 Attack Strategy

Given the partial knowledge Rd and yd, one major goal
of attackers is to find an attack manipulation vector m,
such that inferred link metrics x̂ can scapegoat victim

links as the root cause. However, the unknown informa-
tion in Rr and yr renders uncertainties for attackers to
find m. Therefore, we need a deterministic rule to guide
attackers to address such uncertainties.

According to Definition 1, the scapegoating purpose
represents that the estimated metric x̂i for link li ∈ L
must meet certain conditions to be in normal, abnormal,
or uncertain state. This means that we can write the goal
as

sl � x̂ � su, (6)

where su and sl are called the upper and lower bound
vectors. By controlling su and sl, we can accommodate
various scapegoating purposes. Inserting (2) and (4) into
(6), we have

sl � (RTR)−1RT (y +m) � su. (7)

The normal link delay in a network is usually small
(e.g., several or tens of milliseconds). By contrast, an
attacker should significantly delay packets (e.g., by more
than thousands of milliseconds) to cause damage to the
network. Therefore, the true path measurement vector
y should be of lesser magnitude than the attack ma-
nipulation vector m (i.e., y + m ≈ m). Then (7) can be
approximated by

(Rd
TRd +Rr

TRr)sl

�
[

RT
d RT

r

]

[

md

0

]

� (Rd
TRd +Rr

TRr)su.
(8)

Obviously, if attackers know the routing matrix R com-
pletely, md can be solved from (8) through standard
linear programming [27]. However, with the random
matrix Rr, it is infeasible to solve md directly. Therefore,
we need a constraint to convert such random matrix Rr

to a deterministic one. By considering the worst case, we
have the following constraint.

Constraint 2 (Constraints of Partial Information): Given
the upper bound su and lower bound sl of x̂, the
partial routing matrix Rd and vector md in the attack
manipulation vector m satisfies

(Rd
T
Rd +R+

r

T
R+

r )sl

�RT
dmd � (Rd

T
Rd +R−

r

T
R−

r )su,
(9)

where

1) R+
r = arg

Rr

sup(Rr
T
Rrsl), and R+

r does not contain

two identical rows and all 0 row.
2) R−

r = arg
Rr

inf(Rr
TRrsu), and R−

r does not contain

two identical rows and all 0 row.

Remark 5: Constraint 2 converts the random matrix Rr

into deterministic matrices R+
r and R−

r , which maximize
and minimize Rr

T
Rrsl, respectively. Constraint 2 can be

considered as the worst case of (8) because it shrinks the
solution space of md, i.e., it is easy to know that for any
solution m∗

d satisfying (9), it must also satisfy (8).
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3.5 Formulation of Measurement Integrity Attacks

Measurement integrity attacks aim to bring damage to
a network, and at the same time hide the attacker-
controlled link set Lm but expose another set of victim
links Ls as scapegoats to network tomography. The basic
idea to implement measurement integrity attacks is that
attackers cooperatively inflict damage on paths which
contain victims, and do nothing on other paths. Based
on this idea, attackers can choose different strategies to
launch the attacks. Specifically, we consider three basic
strategies: (i) chosen-victim attacks, where the victim link
set Ls is already chosen and targeted, (ii) maximum-
damage attacks, where attackers aim at finding the
best victim link set Ls to maximize their damage, (iii)
obfuscation, where attackers attempt to make network
tomography show no evident performance outliers but
uniform degradation over a substantial number of links.

Link Index1          2          3          4          5          6          7          8          9          10

Delay

Attacker-Controlled

Maximum-

Damage

Obfuscation

Chosen-

Victim

Fig. 2. Examples of link metrics under tomography for
chosen-victim scapegoating, maximum-damage scape-

goating, and obfuscation.

Fig. 2 shows an illustrative example of how different
attack strategies affect the link delay metrics obtained by
network tomography. In Fig. 2, solid lines represent the
values of end-to-end delay metrics and each dotted line
denotes the envelope of the solid line under the same
scapegoating strategy. We see from Fig. 2 that there are
10 links, and links 1 and 2 are controlled by attackers.
Under chosen-victim scapegoating, the attackers choose
links 5 and 6 to be scapegoats that exhibit much higher
delays than other links. Under maximum-damage scape-
goating, the attackers found that links 8 and 10 can be the
scapegoats with highest delays. Under obfuscation, the
attackers can make most links exhibit similarly delays,
which can confuse the network operator to find which
links are truly problematic.

In the following, we mathematically formulate these
attack strategies.

3.5.1 Chosen-Victim Scapegoating

When the victim set Ls is already given, this strategy
can be formulated as choosing the best attack manipu-
lation vector m to maximize the attack damage, at the
same time satisfying the constraints for m, Lm, and Ls.
According to Constraint 1 and 2 and Definitions 1 and

2, we can formulate this basic scapegoating strategy as

maximize
m

‖m‖1 , (10)

subject to m satisfies Constraint 1 and 2,

S(l) = normal, ∀ l ∈ Lm, (11)

S(l) = abnormal, ∀ l ∈ Ls, (12)

Lm ∩ Ls = ∅, (13)

where constraints (11) and (12) mean that all links as-
sociated with the attackers should appear normal, and
all links in the victim set should be abnormal, respec-
tively. These two together, combined with constraint
(13), achieve the goal of scapegoating under network
tomography.

3.5.2 Maximum-Damage Scapegoating

If the attackers aim to bring maximum damage to the
network, they may do so by searching the best victim
set in the set of all links. Therefore, maximum-damage
scapegoating can be written as

maximize
m,Ls⊂L

‖m‖1 , (14)

subject to m satisfies Constraint 1 and 2,

Constraints in (11), (12), and (13).

3.5.3 Obfuscation

Different from the chosen-victim and maximum-damage
attacks, the idea behind obfuscation is to make every
link look mostly similar without evident outliers. Ob-
fuscation does not necessarily lead to a unique strategy.
As long as a strategy makes a substantial number of link
metrics look approximately similar, and at the same time
incurs damage to the network, it should be considered
as a successful obfuscation one. We leverage the state of
uncertain in Definition 1 to define obfuscation as follows.

maximize
m,Ls⊂L

‖m‖1 , (15)

subject to m satisfies Constraint 1 and 2,

S(l) = uncertain, ∀ l∈Lo=Ls∪Lm,(16)

Ls 6= ∅, |Lo| > γ|L| (17)

where Ls is the set of victim links that attackers want
to find such that any link l ∈ Lo is manipulated under
network tomography to be in the uncertain state defined
in (16). γ is a predefined threshold ratio indicating the
lower bound of the number of infected links. As we have
mentioned, the uncertain state represents an intermedi-
ate state, in which a link cannot be clearly classified into
either normal or abnormal. Hence, a substantial number
of links (i.e., more than γ|L|) in the uncertain state result
in obfuscation.

Given these formally defined basic strategies, attackers
are able to launch scapegoating attacks against network
tomography to maximize the damage, make scapegoats,
or obfuscate the network operator. In addition, attackers
may also develop more sophisticated strategies based
upon these three ones.
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4 FEASIBILITY AND DETECTABILITY

After we formulate measurement integrity attack strate-
gies, two questions naturally follow: (i) Whether these
attacks are indeed feasible (i.e., whether feasible solu-
tions exist in the optimization-based strategies)? (ii) Can
we detect or locate such an attack if it is successfully
launched? In this section, we answer these two ques-
tions by first analyzing the feasibility of the attack, then
describing how to detect it. The method to locate attacks
is discussed in Section 5.

4.1 Feasibility Analysis

Whether an attack is feasible depends on the net-
work connectivity, selections of measurement paths, and
where attackers are. Consider a simple example in
Fig. 3(a): Attackers A1 and A2 aim to manipulate the
end-to-end measurements to scapegoat the link between
nodes C and D. They should be able to succeed if they
are on all the measurement paths that go through the
link between C and D. We say it is a perfect cut case,
in which for any measurement path P ∈ P containing a
victim link, there always exists a malicious node v ∈ Vm

present on that path P . Fig. 3(b) illustrates an imperfect
cut case, in which the path M1 → B → C → D →M4

contains neither A1 nor A2.

(a) Perfect Cut (b) Imperfect Cut

M1

M2

M3

A1

A2

B

C
D

E

M1

M2

M3

A1

A2

B

C
D

E

M4

Fig. 3. Perfect and imperfect cuts by attackers A1 and A2

to scapegoat the link between nodes C and D on the

measurement paths between monitors.

4.1.1 Perfect Cut

We show in the following that a perfect cut always leads
to a successful attack in any strategy.

Theorem 1 (Feasibility under Perfect Cut): A measure-
ment integrity attack is always feasible if the set of
malicious nodes Vm can perfectly cut the set of victim
links Ls from all measurements paths.

Proof: We do not need to prove the feasibility of all
three strategies because the maximum-damage scape-
goating (14) must be feasible if chosen-victim one (10) is
feasible. Then, we write (10) and (14) into a generic form,
which is (6), i.e., sl � x̂ � su,. By adjusting su and sl,
we can accommodate either chosen-victim scapegoating
or obfuscation because constraints (11), (12) and (16)
indicate the estimated x̂ must meet certain conditions.

Then we need to show that for a given manipulated
metric vector x̂∗ satisfying (6), there exists a resultant
vector m∗ that meets Constraints 1 and 2. Because
Constraint 2 is derived from (6) in Section 3.4. According

to (7) and (8), it is clear that m∗ satisfies Constraint 2.
Thus we only need to show the proof under Constraint 1.
The proof to show m∗ satisfies Constraint 1 can be found
in our conference version [1]. �

4.1.2 Imperfect Cut

If attackers only form an imperfect cut of the victim links,
the formulation of an attack strategy may not always
yield a feasible solution, which depends on specific
network settings. We are interested in understanding
the attack success probability under generic random
assumptions (i.e., we do not use specific distribution
models such as power-law network connectivity, but
only assume that network connectivity, placement of
monitors, and selection of measurement paths are ran-
dom in the network). We show that it increases with
the increasing of the number of measurement paths that
include at least one victim link and at least one attacker.

Theorem 2 (Attack Success Probability under Imperfect
Cut): The success probability of a measurement integrity
attack is defined as the probability that an attack strategy
yields a feasible solution. Under generic random as-
sumptions, the success probability is an increasing func-
tion of the number of measurement paths that include
at least one victim link and at least one attacker.

Proof: The proof of this theorem can be found in our
conference version [1]. �

4.2 Detecting Measurement Integrity Attacks

We have analyzed the feasibility of measurement in-
tegrity attacks. If an attack is successfully launched, we
should never trust the result obtained by network to-
mography. It is necessary to know how to detect such an
attack in a network. Our insight is that attackers have to
manipulate packet delivery in certain directions to make
scapegoating possible in the network. This means that if
we verify the estimated link metric vector x̂, which can
be obtained by (2), with observed measurement vector
y′ in all entries, it is likely to observe the inconsistency
under the measurement model (1) in the presence of a
measurement integrity attack. In other words, verifying
x̂ and y′ according to (1) results in our detection method

scapegoating

{

exists, if Rx̂ 6= y′,
does not exist, if Rx̂ = y′.

(18)

with the following detectability.
Theorem 3 (Detectability): Under the detection mecha-

nism (18), a measurement integrity attack is undetectable
if attackers Vm can perfectly cut victim links Ls from
measurement paths or R is a square matrix; and is
detectable otherwise.

Proof: The proof of this theorem can be found in our
conference version [1]. �

Remark 6: Theorem 3 shows that if attackers Vm can
perfectly cut victim links from measurement paths, there
is no way to detect them based on the inconsistency
check. This is intuitively true. For example, in Fig. 3(a),
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attackers A1 and A2 cut the victim link between nodes C
and D completely from the measurement paths M1 →
M2 and M1 → M3. Any information about the victim
link is from these two paths whose measurements can
be surely manipulated by the attackers to evade the
detection.

Remark 7: In practice, even when there is no attack, Rx̂

may not exactly equal to y′ in (18) due to randomness
in packet delivery and measurement error. Therefore,
the attack detection can be slightly modified to test
‖Rx̂ − y′‖1 > α, where α is a given threshold that can
be empirically determined.

5 LOCATABILITY ANALYSIS

According to the detection mechanism (18), if an attack is
successfully launched and it is also detected, the inferred
link performance x̂ obtained by network tomography
becomes untrusted. Therefore, it is necessary to know
which nodes or links are the attackers. In this section, we
discuss how to locate the real attackers in the network.
We first present the design motivation, then present the
method of locating attacks.

5.1 Motivation and Example

1

M1

2

3

4
M2

M3

M4

1: M1-M3:           1 2

2: M1-M4:           1 3

3: M1-M5:           1 4

4: M3-M4:           2 3

M5

. . .

Fig. 4. A simple network consisting of 5 nodes and 4 links,

in which all nodes are monitors and M1 is malicious.

The key idea of the measurement integrity attack
is that attackers only damage the paths that contain
victim links and do nothing to other paths. Therefore,
a malicious link used by attackers to cause damages
should be present on multiple paths, i.e., some of them
contain victim links and others do not. However, if
the link controlled by a attacker is the only shared
link in a network, then the only explanation for the
inconsistency in (18) is that this shared link is malicious,
because it is the only link that can really inflict the traffic
differentiation among different paths.

For example, in a simple network consisting of 5 nodes
and 4 links (shown in Fig. 4), we consider three paths
(i.e., path 1: M1 → M3, path 2: M1 → M4, and path
3: M1 → M5), the only shared link among them is
link 1. Assume link 1 is malicious and controlled by
attacker M1, aiming to scapegoat links 3 and 4. Suppose
if the presence of an attacker is detected among these
three paths, we can pinpoint that link 1 is malicious.
However, according to Theorem 3, only using paths 1-3
is insufficient to detect the attacker link 1 since link 1
can perfectly cut both links 3 and 4.

In order to detect the attacker, knowledge of extra
paths is needed. Our design is based on the concept of
path pairs in network neutrality inference [28]. A path
pair {Pi, Pj} is a single path which includes all links
traveled by at least one of path i or path j. For example,
path pair {P2, P3} is formed by links 1, 3 and 4. In the
real world, this path pair is measurable if M2 is a monitor
such that we can measure link 4 and path 2 in a same
time period and then combine them together. Note that
we are able to detect the attack by using other normal
paths, such as path 4: M3 → M2 → M4, however, if so,
we cannot put the blames only on the link 1.

Now we use the path pair {P2, P3}, combined with
paths 1-3 to locate link 1. Considering the existence of the
attacker, the measurement model (1) can be expressed as

Path 1 : y′1 = x1 + x2

Path 2 : y′2 = x1 + x3

Path 3 : y′3 = x1 + x4

Path Pair {P2, P3} : y′4 = x1 + x3 + x4.

(19)

Without loss of generality, and to clearly show the
inconsistency, we assume the network, shown in Fig. 4, is
congestion free, thus delays only come from the attacker.
To scapegoat links 3 and 4, link 1 introduces extra delays
(e.g., 1000ms) on paths 2 and 3. Then the measurements
of these four paths are y′ = [0, 1000, 1000, 1000]T . It is
easy to observe that a contradiction happens among
these measurements: y′1 indicates that x1 = 0, whereas
y′2, y′3 and y′4 indicate x1 = 1000 and x3 = x4 = 0. If
we apply the detection mechanism (18) into the system
(19), this contradiction will definitely lead to the incon-
sistency. Then link 1 can be located because it is the only
reason for the inconsistency under network neutrality
inference.

From this example, we have three observations to
locate measurement integrity attacks leveraging network
neutrality inference:

1) To locate the malicious link, we should be able to
find a path set, in which the malicious link is the
only shared link. For example, link 1 is the only
shared link among paths 1-3.

2) Path pairs formed by the paths in the path set
should be measurable. For example, the path pair
{P2, P3} is measurable and it is necessary because
it guarantees the unique solution to the last three
equations.

3) If the shared link is malicious, to observe the
contradiction, at least two paths should contain
different victim links, and at lease one path should
not contain a victim link. For example, path 1 does
not contain victim links, and paths 2 and 3 contain
links 3 and 4 respectively. Then, we can use path 2,
path 3 and their path pair {P2, P3} to conclude
link 1 is malicious, and use path 1 to contradict
that link 1 is congestion free.

The basic idea in the previous example is to use in-
consistency to locate a malicious link. However, inconsis-
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tency may occur regardless of the presence of an attacker.
There are two types of inconsistency: (i) inconsistency
resulted by measurement noise; and (ii) inconsistency
incurred by attackers. For the first type, even when
there is no attacker in a network, inconsistency is still
possible to occur since random measurement noise is
inevitable while probing the network. However, this type
of inconsistency is slight, so it can be solved by setting
a threshold of measurement according to [28].

For the second type, if the inconsistency is larger
than the threshold, we consider that the inconsistency
is resulted by attackers. According to Theorem 3, once
inconsistency occurs, we can detect attacks happened in
the network. But not all inconsistencies can be used to
locate malicious links. Therefore, in the following, we
elaborate how to locate malicious links when attackers
exist. Note that the locating process is triggered only
when an attack is detected by (18).

5.2 Locating Measurement Integrity Attacks

From the example in Fig. 4, we iteratively inspect the
maliciousness of each link throughout the entire network
to locate attackers. For any link lα ∈ L in a network G, to
judge whether link lα is malicious, we first create a path
set Pα ⊆ P based on the link lα. Then, we use Pα to form
a new system, such as the example shown in (19), and
apply the detection mechanism (18) to this new system,
to check if link lα is malicious. Therefore, our attack-
locating mechanism consists of two parts: (i) path set
generation, and (ii) maliciousness discrimination. In the
following, we elaborate each part in detail.

5.2.1 Path Set Generation

Directly applying the detection mechanism (18) to the
overall path set P will only yield a binary result to
show whether attacks exist or not, and cannot locate
which links or nodes are really malicious. The purpose
of creating a new path set is that we can attribute the
inconsistency in (18) to a certain link. Specifically, to
locate link lα, the path set Pα can be formed as follows:

1) Find all path pairs {Pi, Pj} where Pi, Pj ∈ P , such
that the shared link between Pi and Pj is lα.

2) Add Pi and Pj and their corresponding path pair
{Pi, Pj} to the path set Pα, i.e.,

Pα = Pα ∪ {Pi, Pj , {Pi, Pj}}.

5.2.2 Maliciousness Discrimination

After obtaining the path set Pα, we can only focus on
inspecting the measurements of paths in Pα. Then we
write the measurement model as

y′ = Rαx, (20)

where Rα is the routing matrix formed with respect to
the path set Pα.

M1 M2

M3

M4

(b)

M1 M2

M5 M3

M4

(a)

Not 

monitor C

D
A

B
C

D

Only have 

two paths

Fig. 5. Examples of unlocalizable scenarios where (a)

violates the condition 1) in Theorem 5 and (b) includes

only two paths.

Theorem 4 (Maliciousness): Given a link lα and its
measurement model (20), the link lα is malicious if scape-
goating exists in (20) based on the detection mechanism
(18).

Proof: If scapegoating is detected by the detection
mechanism (18) in (20), it is clear that Rαx̂ 6= y′. This
indicates that directly solving (20) as a linear equa-
tion system will yield no solution. Then, according to
Lemma 2 in [28], link lα must have different link rates
for different paths. Therefore, link lα is malicious. �

5.3 Locatability

In the following, we present the network condition to
indicate when an attack link can be located in the
network.

Theorem 5 (Locatability): For an attack link lα, and its
path set Pα, if the following conditions hold:

1) for any path Pi ∈ Pα, nodes between link lα and
other links must be monitors;

2) the path set Pα should contain at least three indi-
vidual paths and two path pairs, in which both
paths in one path pair contain victim links and
the other path pair must contain at least one path
which does not travel any victim links;

then lα is localizable.
Proof: First, if condition 1) holds, it is easy to verify that

all path pairs in the path set Pα are measurable. Then
in the following, we prove this theorem by showing
that if condition 2) holds, inconsistency exists in the
measurement model (20). Considering an arbitrary path
pair {Pi, Pj} ∈ Pα, the measurable model can be written
as

Path Pi : y
′
i = xα + x∗

iα

Path Pj : y
′
j = xα + x∗

jα

Path Pair {Pi, Pj} : y′ij = xα + x∗
iα + x∗

jα,

(21)

where x∗
nα is the adjacent link of xα on the path Pn,

which is resulted from deleting the link lα from path Pn,
and n ∈ {i, j}. It is easy to know that (21) has the unique
solution

xα = y′i + y′j − y′ij . (22)

Then we consider three scenarios: (i) both Pi and Pj

contain victim links; (ii) only one path (e.g., Pi) contains
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victim links; and (iii) neither Pi nor Pj includes victim
links.

The ground truth metric x̃α of link lα can always
be the solution to scenarios (ii) and (iii). It is easy to
verify for scenario (iii) since there is no extra damage on
all paths. For scenario (ii), x̃α still can be the solution
because the extra damage is inflicted to the adjacent
link x∗

iα. The proof of Lemma 3 in [28] shows that
the solution to scneario (i) is exactly distinct from the
ground truth metric x̃α. Therefore, if condition 2) holds,
we get different solutions from different paths, thus the
inconsistency exists and lα can be located. �

Remark 8: Theorem 5 shows two sufficient conditions
to locate a malicious link. The violation of any one or
both of them will lead to the failure of locating. Fig. 5
shows two typical examples in which the malicious link
is not locatable. In Fig. 5, nodes M1 −M5 are monitors,
where M1 is the attacker aiming to scapegoat links
between M2 and D, M2 and C (only exists in Fig. 5(a)). In
Fig. 5(a), the malicious link does not satisfy condition 1
in Theorem 5 because node A is not a monitor and
we cannot add the path pair between path M1 → M3

and path M1 → M5 to the path set. One question may
raise if node A is a monitor: Can we directly locate the
malicious link by using M1 and A without following the
previous attack-locating mechanism? The answer is no
because the path between M1 and A does not contain
any intended victim by the attacker. If we directly send
probe packets on this path, the obtained result will not be
affected as the attacker does not manipulate the packets
traversing. In Fig. 5(b), there are only two paths, thus
the path set formed by this network does not satisfy
condition 2), which needs at least two different path
pairs.

6 EXPERIMENTAL EVALUATION

In this section, we use simulation experiments to evalu-
ate the feasibility of measurement integrity attacks and
effectiveness of attack detection and locating methods
based on real-world and simulated network topologies.

6.1 Experimental Setups

6.1.1 Network Topology

We consider two types of network scenarios.

• Wireline networks. We use the Rocketfuel datasets
[29] as the topologies for wireline networks. Rocket-
fuel models the topologies of autonomous systems
of Internet Service Providers (ISPs), such as AT&T
and Ebone. In the following, we only show the
results from the AS1221 system, consisting of 108
nodes and 152 links, due to similar experimental
results.

• Wireless networks. We use the random geometric
graph to generate wireless network topologies be-
cause it has been widely used to model multi-hop
wireless networks (e.g, [30], [31]). We adopt the

extended network generation mode, and randomly
distribute 100 nodes on region [0,

√

100/λ]2 accord-
ing to node density λ = 5 such that each node has
5 neighbors on average.

6.1.2 Parameter Setting

In experiments, we use delay as the performance metric.
There is a routine traffic on each link with random
delay performance from 1ms to 20ms. We consider a link
normal if its delay is less than 100ms, and abnormal if
the delay is greater than 800ms.

The objective of malicious nodes is to delay packets
going through them as much as possible, and at the same
time make network tomography yield a misleading re-
sult. For practical considerations, we also impose a limit
on attackers that they should not delay the delivery of
a packet on a measurement path for more than 2000ms.

We choose monitors and measurement paths accord-
ing to a random selection algorithm based on the mini-
mum monitor placement rule in [17]. We also randomly
select nodes to be malicious in a network.

For the obfuscation attack, we set the default threshold
γ = 10%, i.e., the obfuscation attack is successful if more
than 10% of total number of links are in the uncertain

state.

6.2 Feasibility

In our experiments, in order to show the impact of
measurement integrity attacks, we define the attack suc-
cess probability as the ratio between the number of
successful attacks and the total number of runs for a
network topology. Then, in the following, we measure
the feasibility of chosen-victim scapegoating, maximum-
damage scapegoating and obfuscation by changing the
partiality factor β and the obfuscation threshold γ in
both wireline and wireless networks.

6.2.1 Varying the Partiality Factor

A straightforward way to show the feasibility is to
measure the success probability as a function of the
partiality factor β in the network. This is because, as
shown in Theorems 1 and 2, an essential condition for
scapegoating is the number of paths in |Pm|, which is
closely related to the partiality factor β. It is obvious that
the β = 100% if attackers present on all measurement
paths, which can perfect cut any victim link.

Fig. 6 depicts the success probabilities of three attack
strategies in wireline network. It is easy to find that the
success probability increases as the partiality factor β
increases. For example, when β goes from 70% to 80%,
the success probability increases accordingly from 28%
to 67% for the chosen-victim scapegoating as shown in
Fig. 6. When β = 1, the success probability becomes
100% for all attack strategies since attackers can perfectly
cut all victim links. We also notice that obfuscation is
less likely to succeed, compared with chosen-victim and
maximum-damage scapegoating as it has to manipulate
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Fig. 6. The success probabilities ver-
sus partiality factor β for three types

attackers in wireline network.
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Fig. 7. The success probabilities ver-
sus partiality factor β for three types

attackers in wireless network.
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a number of victim links. In addition, maximum-damage
attacks are always more likely than chosen-victim at-
tacks. This is because the attacker does not specifically
target a given victim; as long as it can find such a victim
among all the nodes, it will be successful.

Fig. 7 shows the success probabilities under the wire-
less network topology. We can see from Fig. 7 that when
β is less than a threshold, scapegoating is unlikely to
succeed, because attackers know too little information
about the network to launch the attacks. For example,
the obfuscation always has 0 success probability when
β ≤ 60%.

6.2.2 Varying the Threshold of Obfuscation

For obfuscation, the success probability is also related to
the threshold γ since attackers must make at least γ|L|
victim links exhibit the uncertain status to be considered
successful. Therefore, we also evaluate how γ can affect
the success probability.

Fig. 8 depicts the success probabilities of obfuscation
in both wireline and wireless topologies when β = 90.
We can see from both types of networks, the success
probability decreases as γ increases. This is because a
larger γ means that attackers need to affect more links
at the same time, which is less likely to succeed. In
addition, we notice that obfuscation is less successful

in the wireless topology. For example, when γ = 10%,
the success probabilities are 48% and 60% in wireless
and wireline networks, respectively. This is because the
wireless topology is sparser and our monitor placement
algorithm results in shorter measurement paths, which
are more difficult to be affected by attackers from our
observations in experiments.

6.3 Detection

We then use the detection method proposed in Sec-
tion 4.2 to detect measurement integrity attacks. Accord-
ing to Theorem 3, there is no way for the method to
detect an attack if attackers perfectly cut a victim. We
separate experiments into the perfect cut and imperfect
cut cases. We set the threshold α = 200ms in all experi-
ments.

Fig. 9 shows the detection ratios over all three attack
strategies in the perfect cut and imperfect cut cases, re-
spectively. From Fig. 9, the detection ratio in the presence
of all three attacks is 100% when attackers can perfectly
cut victim links, and 0% otherwise, which verifies the
theoretical predictions in Theorem 3. We also find that
the detection method yields no false alarm in all attack
detection experiments.
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6.4 Locating Attacks

We locate malicious links by leveraging the method in
Section 5.2. According to the condition 1 in Theorem 5,
a malicious link is not locatable if both end nodes of the
link are not monitors. Therefore, locatability of a link in a
network is directly related to the monitor presence ratio.
We conduct our experiments by showing the relationship
between the monitor presence ratio and the locating
ratio, which is defined as the probability that a malicious
link can be located.

Fig. 10 shows the locating ratio under different attack
strategies, where 5% nodes are malicious. In Fig. 10, we
see that the locating ratio increases when we place more
monitors, since more paths can meet the condition 1 of
Theorem 5. However, even when all nodes are monitors,
we still cannot guarantee to locate every malicious link
since locating attack links is also related to the network
topology. For example, the case shown in Fig 5(b) is
not locatable even if all nodes are monitors. In addition,
the locating ratio of the maximum-damage scapegoating
is larger than the chosen-victim attacks because the
size of the victim link set Ls of the maximum-damage
scapegoating is usually larger than the size of Ls for the
chosen-victim attacks, thus providing more chances to
satisfy the condition 2. Note that we do not evaluate the
locating ratio for the obfuscation strategy because the
success probability of the obfuscation attack is very low
with 5% attackers. In other words, it is very unlikely to
launch a feasible obfuscation attack with such a limited
number of attackers, thus we do not need to locate it.

Fig. 11 shows the relationship between the locating
ratio and the attack presence ratio (defined as the ratio
of the number of measurement paths including at least
one victim and at least one attacker over the number
of total measurement paths including any victim) where
75% nodes are monitors. We can see a slight fluctua-
tion of locating ratios when the attack presence ratio
increases from 20% to 80%. But when the attack presence
ratio reaches 90%, the locating ratio decreases sharply,
since almost all links are controlled by attackers, and
the numbers of normal links and victim links decrease
dramatically, which are necessary to locate attack links.

7 DISCUSSIONS AND FUTURE WORK

In this section, we discuss our results associated with the
feasibility and defense of measurement integrity attacks,
as well as the potential impacts on other related work.
Then we provide our future work.

To launch measurement integrity attacks, the attack-
ers must have the information about the measurement
paths, which the network operator can definitely attempt
to hide. For example, the operator can avoid publishing
such information or avoid using some protocols con-
taining path information, such as AODV routing for
wireless networks, to prevent attackers from inferring
such information from probe packets in the network.
This can constitute the first line of defense. Nevertheless,

from a security point of view, it should not be assumed
that attackers can never get such information. Moreover,
measurement integrity attacks do pose a threat to affect
the trustiness of the measurement results. Follow-up ac-
tions, such as fault recovery, do rely on such results. Our
results indicate that instead of simply assuming seeing-
is-believing, we should always be cautious of malicious
manipulation in network measurement.

Our future work includes both monitor placement
and hiding routing information to combat measurement
integrity attacks against network tomography. Monitor
Placement: Existing monitor placement methods mainly
focus on minimizing the number of monitors or enhanc-
ing the robustness. The theoretical results in Theorem 3
and experimental results in Figs. 6 and 7 reveal that
a measurement integrity attack becomes more likely
as the number of attackers increases. Hence, we aim
to design a new monitor placement algorithm to first
ensure identifiability under network tomography, then
minimize each node’s presence ratio on measurement
paths such that when it is compromised, its impact to
measurement manipulation is minimized. Hiding Rout-
ing Information: Routing information, existing in the
routing matrix, is necessary for launching the attacks.
Therefore, defenders can leverage anonymous routing
protocols to hide the routing information, to prevent
attackers from inferring the link metrics. We aim to
understand how to hide routing information to minimize
the impact of measurement integrity attacks against
network tomography.

8 RELATED WORK

Network Tomography: Network tomography is a
generic way to compute network component (usually
network link) metrics from measurements on end-to-end
paths in a network. In essence, network tomography can
be considered as an algorithmic process to transfer end-
to-end measurements into link metric estimates. Existing
work mainly focused on algorithm design and applica-
tions (e.g., [7], [8], [9], [10], [11], [12], [13]); and some
recent papers also considered the problem of placement
of monitors and identifiability of link metrics (e.g., [14],
[15], [16], [17]). Network tomography has been proposed
for measurement, fault diagnosis and localization in both
wireline networks (e.g., [7], [8], [9], [10]) and wireless
networks (e.g., [11], [12], [13]).

In general, these papers implicitly assume that in-
dividual link metrics can be inversely derived from
the path measurements that indeed reflect the real link
performance aggregate. In fact, it is not guaranteed that
there exists no anomaly or malicious behavior in today’s
large-scale networks. However, potential security vul-
nerabilities in network tomography have not yet been
investigated in the literature.

Packet Dropping and Delaying Attacks: There are var-
ious malicious attacks against a network, such as pas-
sive eavesdropping, active interfering, leakage of secret
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information, data tampering, impersonation, message
distortion and denial-of-service attacks (e.g., [32], [33],
[34], [35], [36]). Measurement integrity attacks drop or
delay packets to damage a network, which is related to
packet dropping attacks, such as black hole attacks that
attract and drop all packets routed to malicious nodes
and grey hole attacks (also called selective forwarding
attacks) that only drop certain selected packets [37].

However, such traditional attacks can be discovered
by finding out the links which always suffer long delay
or high loss under network tomography [36]. In contrast,
our measurement integrity attack strategy can not only
hide the real identities of attackers in network tomogra-
phy, but also make some legitimate nodes or links the
scapegoats. Therefore, the proposed attack strategy is
a new one that is able to deteriorate the network per-
formance, while misleading network tomography based
diagnostics.

Attack Detection and Defense: Existing network de-
fense approaches are usually deployed in individual host
systems (e.g., end nodes or edge routers). These mecha-
nisms can directly detect anomalies on some particular
victims. For example, the process of tracing back the
forged IP packets to their true sources rather than the
spoofed IP addresses that was used in the attack is
called traceback. There are various IP traceback mech-
anisms that have been proposed to date (e.g., [38], [39]).
Packet marking and filtering mechanism aims to mark
legitimate packets at each router along their path to the
destination so that victims’ edge routers can filter the
attack traffic (e.g., [40], [41]).

There are a few studies to detect network neutrality
violations [28], [42], [43], [44], [45]. For example, the
strategy in [42] relies on detecting whether traffic on
specific ports is blocked. Authors in [43], [44] proposed
a system to detect neutrality violations by inferring
whether an ISP discriminates traffic based on perfor-
mance data obtained passively.

There are also studies related to monitoring and ana-
lyzing network traffic to protect a system from network-
based threats. For instance, route-based packet filtering
system uses routing information to distinguish if a traffic
flow at a router is valid and ensure that resources
are made available only for legitimate use (e.g., [46],
[47]). The work in [48] designed a strategy to detect
misbehaving routers that absorb, discard or misroute
packets. Such mechanism usually requires explicit com-
munication among routers. The work in [49] presented a
heuristic data structure to monitor traffic characteristics
of network devices like routers to detect and eliminate
attacks. In addition, traffic monitoring can also be lever-
aged for detecting anomalous packet forwarding [50].

Network tomography is performed by the network
operator to obtain the global picture of the healthiness
of a network. Therefore, the detection proposed in this
paper is a network-wide approach that should follow
immediately the network tomography process to detect

whether such a process is manipulated or exploited by
malicious behavior. Our network-wide attack detection
approach to protect network tomography can be re-
garded as complementary to defense strategies deployed
in individual host systems (e.g., end nodes and routers).

9 CONCLUSIONS

In this paper, we have provided theoretical and experi-
mental results to analyze the feasibility of measurement
integrity attacks against network tomography. We con-
sider three basic strategies: chosen-victim, maximum-
damage and obfuscation attacks, and show that mali-
cious nodes can substantially damage a network and at
the same time manipulate end-to-end measurements to
make legitimate nodes scapegoats. We also present the
conditions to detect and locate these attacks. The results
in this paper indicate that the current seeing-is-believing
assumption in network tomography renders a security
vulnerability. Instead of simply trusting measurements,
we should be always aware of measurement integrity
attacks and carefully revisit existing designs for security
in various applications.
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