
1

Combating Adversarial Network Topology Inference
by Proactive Topology Obfuscation

Tao Hou, Tao Wang, Zhuo Lu, and Yao Liu

Abstract—The topology of a network is fundamental for build-
ing network infrastructure functionalities. In many scenarios,
enterprise networks may have no desire to disclose their topology
information. In this paper, we aim at preventing attacks that use
adversarial, active end-to-end topology inference to obtain the
topology information of a target network. To this end, we propose
a Proactive Topology Obfuscation (ProTO) system that adopts
a detect-then-obfuscate framework: (i) a lightweight probing
behavior identification mechanism based on machine learning
is designed to detect any probing behavior, and then (ii) a
topology obfuscation design is developed to proactively delay
all identified probe packets in a way such that the attacker
will obtain a structurally accurate yet fake network topology
based on the measurements of these delayed probe packets,
therefore deceiving the attacker and decreasing its appetency for
future inference. We evaluate ProTO under different evaluation
scenarios. Experimental results show that ProTO is able to (i)
achieve a detection rate of 99.9% with a false alarm of 3%, (ii)
effectively disrupt adversarial topology inference and lead to the
topology inferred by the attacker close to a fake topology, and
(iii) result in an overall network delay performance degradation
of 1.3% - 2.0%.

Index Terms—Network Systems, Topology Inference, Network
Security, Machine Learning.

I. INTRODUCTION

THE topology of a network is the fundamental information
for building network infrastructure functionalities, such

as path routing and packet forwarding. Many network appli-
cations require prior knowledge of the topology, especially
for applications built on top of overlay network techniques [2],
such as peer-to-peer (P2P) networks, virtual personal networks
(VPN), content delivery networks (CDN) and voice over IP
(VoIP, e.g., Skype) [3]–[5]. In addition, network topology is
the essential information required in network diagnosis and
failure localization [6]–[9].

However, the knowledge of network topology can advance
network attackers’ malicious objectives, leading to more pre-
cise or effective attacks. For example, attackers can lever-
age topology information to craft advanced denial-of-service
(DoS) attacks to concentrate on important nodes or links
in a targeted network to maximize the attack impact [10]
or even conceal malicious activities by confusing the global
system failure monitoring algorithms [11]. Therefore, it may
not always be desirable or even prohibitive to disclose the
internal network topology to the outside, which is particularly

Tao Hou, Zhuo Lu and Yao Liu are with University of South Florida,
Tampa, FL 33620. E-mails: {taohou@mail., zhuolu@, yliu@cse.}usf.edu

Tao Wang is with New Mexico State University, Las Cruces, NM 88003.
E-mail: taow@nmsu.edu

An earlier version of the work [1] was presented in IEEE INFOCOM 2020.

important for organizational/enterprise systems to protect com-
mercial interests and private information.

The undesirability or prohibition of disclosing network
topology does not necessarily discourage attackers from ac-
quiring such information by adversarial, active inference.
There are mainly two types of topology inference techniques
that can be used by attackers for the malicious purpose:
internally cooperative topology inference [12] and external
end-to-end topology inference (also called as tomography-
based topology inference) [13]. The former technique usu-
ally utilizes tools (e.g., traceroute or ping) and cooperates
with internal nodes to collect their corresponding response
messages to infer topology (e.g., assuming internal nodes
should respond to ping). As an alternative, external end-to-
end topology inference shows the promise of discovering the
topology through end-to-end path performance measurement
(e.g., inferring through packet delays or loss rates on end-to-
end paths) without internal nodes’ cooperation. Studies [13]–
[22] have shown that external end-to-end topology inference
can achieve a high accuracy rate.

For the purpose of ensuring network security, it is necessary
to develop countermeasures for defending against adversarial
topology inference. To combat internally cooperative topology
inference, network administrators can simply disable internal
routers’ response to traceroute or ping [23]. Advanced designs,
such as NetHide [24], can prevent topology leaking through
internally cooperative topology inference while keeping the
functionalities of traceroute and ping. However, these existing
techniques cannot defend against external end-to-end topology
inference, which poses a real and crucial threat to networks
considering that tomography based external measurement has
been supported by a number of network products and manufac-
turers (e.g., Ericson [19], Cisco [20], Microsoft [21], Huawei
[22]). Though these efforts aim to prompt the convenience of
network management for meritorious inference, they can also
be leveraged by malicious attackers.

In this paper, we focus on mitigating the risk of topology
leakage due to adversarial external end-to-end topology infer-
ence. As an attacker can perform topology inference based on
measuring the performance of probe packets going through a
target network, an intuitive way of defense is to detect such
probe packets then disable their forwarding. However, this way
may cause the attacker to draw attention to inference failure
and then develop follow-on actions. Further, the network
topology is relatively static. Once acquiring the topology
information, the attacker does not need to frequently update
such information. This indicates that the detection rate of a
designed defense mechanism must be very high to prevent the

2

attacker from easily obtaining such information even for once.
As there always exists a tradeoff between detection rate and
false alarm, a higher detection rate generally indicates a higher
false alarm. Hence, simply denying forwarding any potential
probe packet will prevent a fair amount of legitimate traffic
that is misidentified from going through the network. To solve
these issues, we propose a Proactive Topology Obfuscation
(ProTO) system against adversarial topology inference.

There exist two major modules in ProTO: (i) a probing
behavior identification mechanism designed biased towards a
very high detection rate while allowing for a slight false alarm
and (ii) a topology obfuscation design proactively delaying all
identified probe packets in a way that the attacker will obtain
a structurally accurate yet fake network topology based on the
measurements of these delayed packets. ProTO aims to deceive
the attacker and decrease the possibility of further inference
attempts. The system does not disrupt any packet forwarding
inside the network, but only intentionally delays malicious
probe packets identified by the identification mechanism.
We implement and evaluate ProTO with various setups over
realistic network topologies. To the best of our knowledge,
ProTO is the first system designed against adversarial end-
to-end topology inference. There are several key designs and
contributions in ProTO to balance security and cost.
Identification of probing behavior: An attacker can disguise
their probe packets as regular data packets going through the
network, we propose a lightweight machine learning based
classifier for ProTO to identify probe packets. Through com-
bining offline self-training and online incremental updating,
the classifier achieves a detection rate of 99.9% and has
a false alarm rate of around 3% in our experiments. We
also adopt a voting-based strategy to ensure improving the
data representativeness in incremental updating, meanwhile
maintaining a low computation overhead for performance-
sensitive network devices.
Topology obfuscation: We first formulate the model for
topology inference, and then adopt a min-max approach for
topology obfuscation: as the maximum-likelihood estimation
(MLE) in general minimizes the topology inference error, we
aim to disrupt the topology inference of MLE used by a
potential attacker. In particular, we propose the obfuscation
method to delay probe packets such that a fake topology, which
is structurally correct but independent of the real topology, will
be obtained by the attacker. Experiments show that ProTO is
able to effectively disrupt adversarial topology inference and
lead to the topology inferred by the attacker close to the fake
topology. We also prove that an attacker gains no information
of real network topology from the fake topology.

Minimum disruption of packets: If a packet is identified as a
probe packet, it will be delayed by ProTO. As the identification
mechanism allows for false alarms, we must ensure that (i)
the delay performance degradation of the packet is minimized
such that a misidentified packet will have the minimum delay
penalty, and at the same time (ii) topology obfuscation is
achieved. We use an optimization framework to solve the
objective. Experimental results show that ProTO leads to an
overall network delay degradation of 1.3% - 2.0%.

The remainder of this paper is organized as follows. In
Section II, we introduce the preliminaries and related work.
In Section III, we introduce the models and state the research
problem. In Section IV, we design the probing behavior iden-
tification mechanism. In Section V, we present the strategy for
network topology obfuscation. Then, we present and discuss
the experimental setups and results in Section VI and finally
conclude this paper in Section VII.

II. PRELIMINARIES AND RELATED WORK

In this section, we introduce the background and related
work of topology inference.

A. Topology Inference

Many topology inference techniques have been proposed
to infer the topology of a network. These techniques can be
classified as two categories: (i) internally cooperative topology
inference and (ii) external end-to-end topology inference.

The topology discovery tools, which are developed based
on internally cooperative inference, need cooperations from
internal network nodes and collect their responses to probe
packets, such as traceroute or ping packets, then utilize these
responses to further infer the network topology. For example,
Spring et al. developed a tool called Rocketfuel that can
successfully recover the network topology by utilizing tracer-
oute [25]; Archipelago (Ark) which is launched by CAIDA
conducts large-scale traceroute-based topology measurements
to obtain insights into Internet infrastructures [26]. There are
also several topology discovery projects built on top of RIPE
Atlas which provides Internet-wide traceroute measurement
data for researchers to use [27].

External end-to-end inference is also called tomography-
based inference [13]. In external end-to-end topology infer-
ence, a few probe nodes are placed outside a target network.
Probe packets are sent between probe nodes to pass through
the target network. Then, the network topology can be inferred
based on the end-to-end measurements of probe packets. For
example, [13], [14], [18] build different external end-to-end
topology inference systems for topology recovery with the
accuracy rate up to 95%. Recently, a lot of work has been
focused on improving the effectiveness and efficiency of the
inference techniques, and making them more practical [15]–
[17] for even large-scale networks. Technology companies
(e.g., Ericson [19], Cisco [20], Microsoft [21], Huawei [22])
have also developed specialized devices/techniques that can
be used for external end-to-end topology inference. These
efforts aim to assist network management by reducing network
consumption and improving accuracy for topology discovery.

B. Topology Related Attacks

Though these inference techniques may be utilized for
network management, they can be often leveraged by adver-
saries to obtain the topology of a network even when the
network has no desire to disclose such information [11], [28],
[29]. As the fundamental information for packet routing and
forwarding, the knowledge of network topology can be utilized

3

by attackers to advance their malicious purposes, especially by
geographical information related attacks. Common examples
of using topology information to advance or exacerbate attacks
include Distributed Denial-of-Service (DDoS), Domain Name
System (DNS) poisoning, and Internet censorship.

DDoS: DDoS attack is a malicious attempt to disrupt the
normal functionality of a network, it aims to overflow the
capacity of a target network with overwhelming traffic [30].
With the target network’s topology information, attackers are
able to craft advanced attacks to concentrate on important
nodes or links to maximize the attack impact [10] or even
conceal malicious activities by confusing the global system
failure monitoring algorithms [11]. It has been shown in
[24] that the attack’s efficiency can be significantly increased
through precisely selecting target nodes or links based on
topology information.

DNS poisoning: The DNS is a decentralized naming system
designed for network address resolution [31]. DNS poisoning
can divert network traffic away from legitimate targets and
towards fake ones [32], [33]. Many attacks can be launched
on top of DNS poisoning, such as man-in-the-middle (MITM)
attack, blind packet injection and network phishing [34], [35].
With the knowledge of a victim network’s topology, attackers
can spoof the DNS address lookup database in a more accurate
way. Furthermore, considering that DNS servers are organized
as a hierarchy network, if attackers can infer the topology of
the DNS server network, the poisoning’s successful rate and
impact can be maximized [36], [37].

Internet censorship: Censorship opposites the philosophy
that the Internet is born free, it surveils and controls network
communications which include content considered as sensitive
or harmful [38]. The information of network topology can
be used by censorship to facilitate restrictions on Internet
access. A specific censorship policy may pursue targeting on
particular points (e.g., sensitive users) in the network. With the
assistance of topology information, the censorship system can
accurately identify the target points in the network, therefore to
emphatically monitor them [39]. The system can also improve
the performance by selecting critical network locations as
censor points based on topology information [40], [41].

C. Defenses against Malicious Inference

To defend against internally cooperative topology inference,
the simplest way is to prohibit inference by disabling any inter-
nal node’s response to traceroute or ping. However, traceroute
or ping based network functionalities will also be disabled
in the meantime. In addition, existing studies proposed many
specified topology protection techniques [24], [42]–[44]. For
example, [42] proposed a deception technique that can prevent
adversaries from getting the true topology of a network. The
technique mainly utilizes the inherent weaknesses of traceroute
packets (i.e., lacking authenticity and integrity) to mislead the
attackers to get a wrong topology. The work in [43] proposed
a system called RDS that can deceive attackers to camouflage
critical resources in the network. More recently, an obfuscation
tool NetHide [24] is proposed to obfuscate topologies by
modifying traceroute packets in the data plane.

However, to the best of our knowledge, there is no system-
atic tool developed to combat malicious external end-to-end
topology inference. This type of inference does not rely on
ping or traceroute and thus makes existing defense designs fo-
cused on internally cooperative topology inference ineffective
to protect network topology information. Because attackers
can perform external inference by sending probe packets going
through the network in addition to other legitimate data traffic,
it is non-trivial to develop a mechanism that can mitigate the
risk of leaking topology information. Therefore, in this paper,
we focus on developing a system to defend against external
topology inference for a target network.

III. MODELS AND RESEARCH SCOPE

In this section, we present models, introduce the research
problem, and present an overview of the ProTO system.

A. Network and Attack Models

We consider a network connected to a larger network
system (e.g., the Internet). The nodes inside the network
are cooperating with routing/forwarding of packets traveling
through the network. There exists an attacker that has no
prior knowledge of the network topology but aims to infer
the topology information. To this end, the attacker can place
or use nodes outside the target network to launch an external
end-to-end topology inference.

External end-to-end topology inference follows a tree struc-
ture for packet probing and topology recovering, in which
the attacker uses one source and a set of receivers R =
{1, 2, · · · , R} (R is the number of receivers) outside the
network to infer the network topology. As an example shown
on the left-hand side of Figure 1, let T = (V,L) denote the
topology tree of the target network with node set V and link
set L. The attacker’s source s is connected to the root of the
tree, and each receiver has a path to one leaf of the tree. A link
with its endpoints, which is neither the root or a leaf node,
is called an internal link in T . Tree structure based topology
inference is widely adopted to obtain a real network topology
[45]. More complicated topologies (e.g., mesh networking) can
be also obtained by constructing multiple trees with different
root nodes [45], these include topologies only with acyclic
parts and topologies with cyclic parts or multigraph parts [13]–
[18], [45]–[48]. Though there are still limitations for external
end-to-end topology inference, how to ameliorate the inference
technique is not the primary research goal of this work.

In malicious topology inference, the attacker sends probe
packets from source s, which pass through different paths
inside the network to receivers R to obtain end-to-end path
measurement results, such as packet loss rate or packet delay.
In this paper, we use the delay metric as the measurement
metric as it is the most widely-used one in topology inferences.

The design intuition of topology inference is that when
packets are forwarded from the source to the receivers, they
may go through shared links inside the network before they
split and reach different receivers; therefore, the network
topology fundamentally affects the correlations of delays ob-
served at different receivers. In particular, denote by xi,j the

4

!"#$%&

'%&()#*

+),#-%

.%-%/0%#1

2

%

3
$

/

"

4

&#%% !
"#$%

1

-

5

6

7

8 9 :

;

<

=

>

!)?)@)$A /'3%#%'-%

;
7 >

= 8

!"#$%&#'()%#*+#"%,

Fig. 1: An example for malicious topology inference.

correlation delay for a pair of receivers i and j (i, j ∈ R),
and xi,j is the sum of the delays on all shared links between
the end-to-end path from the source to receivers i and the
end-to-end path from the source to receiver j (e.g., the link
between nodes a and b is only the shared link between source
to receiver 1 and source to receiver 2 in Figure 1). Approaches
[13]–[18] have been developed and used by the attacker to
compute correlation delays {xi,j}i,j∈R and based on which
the complete network topology can be recovered.

As Figure 1 shows, when there is no protection deployed,
the attacker is able to recover the topology Ttrue. Note that
a non-branching node (i.e., node with less than two child
nodes) is not identifiable in topology inference [18]. Thus,
the recovered topology tree is a logical tree, which consists
of branching nodes of the real topology and the logical links
between them. For example, nodes c and g are merged as node
3 in the recovered logical tree Ttrue in Figure 1.

B. Design Objectives

It is essential to develop effective countermeasures to mit-
igate the risk of topology leakage due to external end-to-end
topology inference. Traditionally, a potential way for designing
countermeasures [49]–[51] is to first identify possible probe
packets then disable them (e.g., via banning the prober’s IP
address). However, the topology information of a network is
relatively static information, and a network does not frequently
change its network topology configuration. This means that an
attacker can always try to send probe packets from time to
time to obtain such information. The information is obtained
as long as the attacker succeeds for once inference. Moreover,
disabling misidentified legitimate traffic may significantly de-
grade the network performance or even influence the network
functionalities. Hence, the effectiveness of this detect-then-
disable approach solely relies on the complete accuracy of
identifying malicious behavior, which is quite challenging.

Our perspective is that instead of designing completely
accurate identification and disabling probe packets from any
identified source, we can relieve the burden of identification
and proactively delay (potentially malicious) packets going
through the target network. Therefore, we adopt a detect-then-
obfuscate strategy. Specifically, we need a probing behavior
identification algorithm that can be (even coarsely) designed
biased towards a very high detection rate but allows for a
slight or moderate false alarm rate: any malicious probing
behavior can be identified and some legitimate traffic may also
be misidentified. When a source is identified as a potential
prober, we do not drop all of its packets, but proactively delay
its packet forwarding with minimum disruption to prevent

topology inference. In this way, a small amount of legitimate
traffic under false alarm can also go through the network with
minimum performance degradation.

Through proactively delaying malicious probe packets, net-
work administrators do not need to suppress malicious topol-
ogy inference by disabling the external end-to-end measure-
ment, but can deliver a structurally accurate yet fake topology
to the attacker. Thus, the design deceives the attacker and
decreases the possibility of further inference attempts. We
design a practical system ProTO that adopts this proactive
topology obfuscation strategy to combat malicious inference
and ensure the confidentiality of network topology.

There exist major challenges in developing ProTO: (i) how
to create a biased identification towards the detection rate
while still maintaining an allowable false alarm rate? (ii) how
to make sure an attacker can indeed recover a fake, invertible
topology? (iii) delaying packets inside the network inevitably
leads to performance loss, how to balance the security and the
network performance?

C. Overview of ProTO System Design

We develop the ProTO system for a target network to
achieve the design objectives. Figure 2 shows the system
architecture of ProTO, which consists of two major modules:
(i) identification and manipulation module and (ii) topology
control module.

! "#$%& '()*&+

,&+&)+-$.

!
/

0
!"#$()+-1&23

,&2(3 '()*&+4

5(.-'62(+&,

7&(46#&7&.+

#&462+4

!"#$%&'&()%&*$+)$"+,)$&-./)%&*$+,*"./#

8(*&9+$'$2$:3

:&.&#(+-$.

5(.-'62(+-$.

)#-+&#-(

0*-*/*12+3*$%4*/+,*"./#

;$.+#$29

&.:-.&

/$#7(2 '()*&+

"#$%& '()*&+

<++()*&#

8(*&

+$'$2$:3

Fig. 2: The system architecture of ProTO.

Identification and Manipulation Module: this module
first identifies the probe packets and then manipulates their
forwarding delay inside the network according to the topology
obfuscation specified by the topology control module. In
Section IV, we propose a lightweight machine learning based
method to classify probe packets, which ensures a very high
detection rate and also tolerates a low false alarm rate.

Topology Control Module: the module provides a uniform
control interface for network administrators to manage the
ProTO system. It generates obfuscated topologies and asso-
ciated packet delay manipulation criteria as the outputs to
the identification and manipulation module to delay identified
probe packets. In Section V, we formulate the topology
obfuscation strategy that intentionally delays identified probe
packets such that an attacker using topology inference only
obtains a structurally correct yet fake topology, which is
independent of the real network topology.

IV. PROBE PACKET IDENTIFICATION

As discussed in Section III-C, the identification and ma-
nipulation module in ProTO aims to remove the burden of

5

ensuring complete accuracy and design a probing identification
mechanism biased towards a very high detection rate. This
indicates that (i) a very high detection rate means any mali-
cious probing behavior should be identified; (ii) it unavoidably
leads to a number of false alarms (because there is always
a trade-off between detections and false alarms). Although
legitimate traffic that is misidentified may be intentionally
delayed, ProTO ensures that the overall network performance
loss is very limited according to the topology obfuscation
mechanism offered in Section V.

Identifying probe packets for topology inference is essen-
tially a data classification problem. In this section, we propose
a machine learning based framework for efficient classifica-
tion. We first summarize the packet features we extract for
classification, then present and discuss the proposed method.

A. Extracting Features

It is non-trivial to identify malicious probe packets from
network traffic, as an attacker may try to disguise the probe
packets as regular data (TCP/UDP) packets going through the
network. In addition, if an attacker is aware of our detection, it
can try to camouflage its packets to evade the packet character-
istics based detection. By investigating existing external end-
to-end inference methods [13]–[22] and analyzing patterns of
probe packets, we notice characteristics associated with probe
packets for topology inference that are different from normal
data packets and can be potentially used for identification.
• In external end-to-end inference, the network topology

is recovered by measuring the correlation delays among
different pairs of receivers as discussed in Section III-A.
Specifically, in calculating the correlation delay between
a pair of receivers, the probe packets are grouped and
sent to both receivers in a pair. All the packets for a
pair of receivers have the same source address, while the
destination addresses belong to one of the two receivers.

• The two groups of probe packets for a receiver pair
always go along the same path inside the network from
the source until they reach a branching node, from which
they are directed to different receivers.

• In order to recover the topology consisting of all nodes
in the network, the total number of receiver pairs should
be large. Furthermore, a pair of receivers needs to be
measured for hundreds or even thousands of times to
obtain a mean delay value to remove random measure-
ment noise [13], [14], [18]. Hence, the network should
observe a high-volume of traffic with the same patterns.
Normally, the interval of two probe packets usually are
tens of milliseconds [13]–[18]. Therefore, for a general
network with hundreds to thousands receiver pairs, the
traffic with the same patterns will last for minutes to hours
in external end-to-end inference.

These observations show that the key differences between
probe packets and normal data packets are not only the
characteristics of a single packet, but also the correlation
relationships among different packets. These correlation re-
lationships reflect the holistic transmission patterns of probe
packets in external end-to-end inference. Unless not using

external end-to-end inference, these holistic patterns cannot
be evaded even if the attacker actively disguises its probe
packets. As a result, it is still possible to identify a group of
probe packets based on their characteristics. ProTO leverages
a lightweight machine learning framework to identify probe
packets for real-time operations.

Different from previous traffic identification studies [52]–
[56] that usually extract hundreds of features for machined
learning based identification, ProTO carefully shrinks the
parameter space by selecting a limited number (36 by default
and also customizable) of features which are related to the
above observations. These 36 features are selected through
pre-training. In particular, we first obtain weights for all
features listed in [53] by adopting a weight training algorithm
(see Section IV-C for details). Then, we select the top N
weighted features from them to further train the labeled data
and compare the evaluation results for different values of N .
We define a metric Performance Gain to show the evaluation
results for different selected N features.

Performance Gain =
(Ac −Ap)/Ac − (Pc − Pp)/Pc

(Pc − Pp)/Pc
.

where Ac and Ap represent the accurate rate for current
and previous N values, respectively; and Pc and Pp are the
computation overheads for current and previous values of N ,
respectively. Specifically, the computation overhead is defined
as the training time on the initial training dataset. A positive
Performance Gain indicates that the accuracy grows faster
than the computation overhead with the increase of number
of selected features. Another benefit of pre-training is to
reduce the communication overhead caused by transmitting the
collected features, because the feature space is shrank by this
procedure. The evaluation results in Figure 3 show we can get
perpetual positive Performance Gain with the increase of N
until it reaches 36. Our subsequent experimental results also
demonstrate that the identification scheme with 36 features
can achieve a detection rate as high as 99.9%, at the same
time maintain a low false alarm of 3%. ProTO is capable of
capturing the differences between probe and normal packets,
meanwhile ensures real-time processing of these features.

36
The number (N) of features selected

-1

0

Pe
rf
o
rm

a
n
ce

 G
a
in

When N < 36, Performance Gain > 0
When N > 36, Performance Gain < 0

Fig. 3: Performance Gain for different N .

A combination of these features can represent holistic
transmission patterns caused by topology inference. We list 6
features in Table I as examples to show the features selected
for identification. For example, the source address, destination
address, the transit path and several statistic features (e.g.,
count1 and count2 in Table I) for a series of packets together
can form a basic pattern in our design observations. Next,
we discuss how to continue to optimize different weights to

6

these features to improve the overall detection rate during the
training and identification.

TABLE I: 6 examples in the features used in identification.

Feature Name Description

Source address IP address
Destination address IP address
Transit path Series of internal link indices
Time interval Time interval to the previous packet
Count1 Number of packets with the same size of header

bytes in a time window
Count2 Number of packets with the same size of control

bytes in a time window

B. Identification Model

The identification model is designed as an incremental semi-
supervised learning framework [57], [58], which is suitable
for the scenarios with limited amount of labeled data. Before
the deployment of ProTO, the system first performs a self-
training phase to collect the initial training data, including
the packets labeled as either probe or non-probe packets.
This training dataset is then used to build the semi-supervised
classifier. When ProTO is online, it continues to collect packets
as non-labeled data. Then, feature data extracted from these
collected packets becomes testing data that will be classified
by the initial classifier and be added to the training set to
incrementally improve the classification performance.

Though the network traffic may vary greatly over different
time, the key features of the probe packets indeed remain con-
sistent. As discussed in Section IV-A, the temporal and spatial
correlations among probe packets are quite unique compared
to common network traffic. Specifically, for each topology
inference all probe packets will follow similar packet setting,
travel through correlated router, and end up to different pairs
of receivers. Also, probe packets are usually aggregated in
groups (e.g., hundreds or thousands of packets) and transmitted
in a constant time interval, to eliminate random measurement
noise. In that way, the network should be able to capture a
burst of traffic with the same patterns (e.g., consecutive packet
interval, path correlation, consistency of start and end nodes,
deviation of header and control message setting), when the
attacker actively infers the network. As such holistic patterns
are inherently existing in external end-to-end inference, they
cannot be evaded even if the attacker intentionally disguises its
probe packets. In addition, the identification model also adopts
online incremental training mechanism that keeps learning
the traffic pattern to further refine the decision boundary
after the system is online. Particularly, the classifier will be
incrementally updated and maintain a dynamic dataset pool
keeping packets that can better characterize the probe and
normal ones. In that way, the classifier is updated in a timely
manner to accommodate varying network traffic over time.

Traditionally, k-NN is widely used in traffic classification,
and it shows good performance in identifying specific traffic
flow. The characters of k-NN are 1) It calculates the distances
between each training sample and the target packet, and
then selects the k-nearest samples to the target packet. These
k samples jointly determine the class of the target packet.
2) More importantly, the distance of two packets, which is
calculated based on multiple features, is the direct means for

expressing the similarity of packets. While in probe packet
identification, the key challenge is to capture the holistic
transmission pattern, which is determined by multiple packets
along with multiple features of each packet. Therefore, k-NN
is well-suited for detecting probe packets.

We develop a lightweight k-Nearest Neighbor (light-k-NN)
approach to identify probe packets. Different to traditional k-
NN, light-k-NN is more suitable for our use case by adopting
two designs: 1) a multi-round dynamic method to adaptively
train the weights for different features is designed. This
method continuously tunes the weights with the increase of
data size when the system is online. 2) a voting-based lazy-
learning update strategy is implemented. Under this strategy,
the incremental update of the data pool indeed increases the
representativeness. At the same time, it maintains the data
pool in a limited size, such that the performance and space
overhead does not increase. We present the two design details
in Sections IV-C and IV-D, respectively. In this way, light-k-
NN is as easy as traditional k-NN to be used, but is more
suitable for ProTO for real-time network devices.

Central to light-k-NN is the notion of distance between
packets. In particular, the distance D(P, P ′) between two
packets P and P ′ is calculated by computing the distance
between their numerical feature vectors, i.e.,

D(P, P ′) =
∑

1≤n≤F

wn|fn(P)− fn(P ′)|, (1)

where fn(P) and fn(P ′) denote the n-th entries of the feature
vectors of packets P and P ′, respectively; F is the number of
features used for packet classification; and wn is the weight
of the n-th feature. Under light-k-NN, if a packet is close
to k packets which include more packets identified as probe
packets previously, it will be classified as a probe packet.

The vector W = [w1, w2, ..., wF] includes the weights for
all features in computing the distances between packets. These
weights are computed initially from the training dataset in the
self-training phase and fine-tuned during the online operation.

C. Training the Weights

In comparison to traditional k-NN classifiers which assign
either no weight or static weights to different features [59]–
[61], light-k-NN adopts a multi-round dynamic method to
adaptively tune the weights online. In particular, we first
initialize all weights as W0 = {1, 1, ..., 1}, then follow (1)
to calculate their k-NN distances and classify all the packets
in training dataset as either probe or normal. Denote by
Sprobe or Snormal as the sets that contain probe packets
and normal packets, respectively. When ProTO is online and
starts to monitor packets, we use a two-step training procedure
to tune the weights for different features.

Step 1: In this step, we orient to examining the correctness
and usefulness for each feature in the calculation of k-NN
distance following the current weight set. The objective for
this examination is to check if a feature is less-weighted or
over-weighted in the calculation. Specifically, for each packet
P ∈ Sprobe , we choose m packets in Sprobe closest to P
to form a set S1 and m packets in Snormal closest to P to

7

form a set S2. Then, define the per-feature distance for feature
n ∈ [1, F] between P and P ′ ∈ S1 as

Dn(P, P ′) = |fn(P)− fn(P ′)|, (2)

and compute the set of all per-feature distances
{Dn(P, P ′)}P ′∈S1 . Let dmax and dmean be the maximum
and mean values of the set, respectively. Then, for feature
n, compute all per-feature distances between packet P
and P ′′ ∈ S2 to obtain {Dn(P, P ′′)}P ′′∈S2 , in which
the number of per-feature distances larger than dmax is
denoted by C1(P, n) and the number of per-feature distances
smaller than dmean is denoted by C2(P, n). Finally, we
compute the sum C1(n) =

∑
P∈Sprobe C1(P, n) and the sum

C2(n) =
∑

P∈Sprobe C2(P, n), respectively. The details of this
procedure are shown in Algorithm 1.

Algorithm 1: Quantifying the over-weighted or less-weighted degree
for each feature per iteration.

Input : Sprobe : the set of probe packets in the training dataset.
Snormal : the set of normal packets in the training dataset.

Output: C1(n): the quantified less-weighted degree for feature n.
C2(n): the quantified over-weighted degree for feature n.

1 foreach packet P ∈ Sprobe do
/* Calculate the less-weighted and over-weighted

degree of each feature for a packet P in Sprobe.
*/

2 S1 = P ’s m closest packets in Sprobe ;
3 S2 = P ’s m closest packets in Snormal ;
4 foreach feature f ∈ [1, F] do
5 foreach packet P ′ ∈ Sprobe do
6 Dn(P, P ′) = |fn(P)− fn(P ′)|;

7 dmax = max{Dn(P, P ′)}P ′∈Sprobe ;
/* dmax is the maximum per-feature distance */

8 dmean = mean{Dn(P, P ′)}P ′∈Sprobe ;
/* dmean is the mean per-feature distance */

9 foreach packet P ′′ ∈ Snormal do
10 if Dn(P, P ′′) > dmax then
11 C1(P, n) = C1(P, n) + 1;

12 if Dn(P, P ′′) < dmean then
13 C2(P, n) = C2(P, n) + 1;

14 foreach feature n ∈ [1, F] do
/* Calculate the over-weighted and less-weighted

degree of each feature overall all packets of
Sprobe. */

15 foreach packet P ∈ Sprobe do
16 C1(n) = C1(n) + C1(P, n);
17 C2(n) = C2(n) + C2(P, n);

Step 2: This step aims to optimize the calculated k-NN
distances by adjusting the weight for each feature based on
the results of step 1. A large value of C1(n) indicates feature
n is useful for identifying probe packets and should be given
more weight. By contrast, a large value of C2(n) indicates that
packet P ∈ Sprobe has a small per-feature distance to normal
packets, thus feature n is not an evident feature to differentiate
the probe packet from normal packets and should be less-
weighted. Accordingly, we adjust the weights for different
features in each iteration following Algorithm 2 as an online
tuning algorithm. For each packet arrival, we compare C1(n)
with C2(n) for each feature n, and adjust the value of its
weight wn by ∆wn = (C1(n)−C2(n))q/(m|Sprobe |), where
the step q is set to be 0.01 by default. The value of q is the
step/unit adopted in weight adjustment. A larger value of q
will lead to a coarse-grained but faster adjustment in weight
training, while a small value of q will result in a fine-grained

but slower adjustment. We choose a medium number of 0.01
as the default value to achieve a balance between accuracy and
performance in weight training. In ProTO, q can be customized
by the network operator based on their deployment settings.
Its value can be further tuned according to the training speed
and model accuracy observed.

Algorithm 2: Adjusting the weights for different features per
iteration.

Input : C1(n): indicates whether feature n should be more-weighted.
C2(n): indicates whether feature n should be less-weighted.

1 foreach feature n ∈ [1, F] do
/* Adjust the weight for each feature. */

2 ∆wn = (C1(n)− C2(n))q/(m ∗ |Sprobe |);
3 wn = wn + ∆wn;

D. Incrementally Updating Training

Since the initial training dataset collected from self-training
before the deployment of the ProTO system is limited, in-
crementally updating the training dataset by adding the new
classified data can improve the light-k-NN based classifier
when the system is online.

However, increasing the size of training dataset will also
lead to a computational burden and space overhead, we
develop a method that can ensure light-k-NN improves the
accuracy incrementally, while also limiting the training size.
In particular, we implement a voting system to maintain a data
pool for the active training dataset, which contains two classes:
probe or normal. The system maintains an upper bound
of the number of packets for each class. When an incoming
packet P is classified into a class C ∈ {probe,normal},
the vote count of each packet will be incremented by 1 if the
packet belongs to the k nearest packets closest to P and is
in the training dataset of class C as well. These packets are
considered useful for classification.

The new packet P will be then added into the training
dataset of class C and assigned a vote number with the least
vote count in class C plus one. If the number of packets
in class C is greater than the upper bound, the packet with
the least votes will be removed from the training dataset of
class C. The details of this strategy are shown in Algorithm 3.
It can be expected that through this voting system, the decision
boundary will be refined and become more precise, and
packets that are less important to the classification will be
gradually removed to limit the training dataset size. For a
newly added packet, its number of votes is initialized as the
average number of votes of all other packets in its class.

E. Discussions about Most Relevant Features

For features used in training and tuning, we adopt multi-
ple approaches (e.g., Euclidean distance, Hamming distance,
exclusive or) to quantify their distances between two packets.
All the feature distances will be weighed and added together.
As described before, the weight for each feature is tuned
through training to indicate their significance such that all
features are properly interleaved to represent the holistic
pattern. We found in our evaluation that the eight most
weighted features are transit path, numbers of packets with the
same (header/control/data) bytes, time interval, source address,

8

Algorithm 3: Incrementally updating the training dataset following
the voting-based strategy.

Input : Pin: the incoming packet.
Sprobe : the set of probe packets in the training dataset.
Snormal : the set of normal packets in the training dataset.
Sk : the set of the k packets closest to Pin.

1 if Pin is probe packet then
/* Adjust the set of probe packets. */

2 foreach packet P ∈ Sk and P ∈ Sprobe do
3 V ote(P) = V ote(P) + 1;

4 Vmin = min{V ote(P)}P∈Sprobe
;

/* Vmin is the minimum vote # in Sprobe. */
5 Vavg = avg{V ote(P)}P∈Sprobe

;
/* Vavg is the average vote # in Sprobe. */

6 Sprobe = Sprobe + Pin;
7 V ote(Pin) = Vavg ;
8 if |Sprobe | > upper bound then
9 Sprobe = Sprobe − PVmin

;
/* PVmin

is the packet with the minimum vote
count in Sprobe. */

10 else
/* Adjust the set of normal packets. */

11 foreach packet P ∈ Sk and P ∈ Snormal do
12 V ote(P) = V ote(P) + 1;

13 Vmin = min{V ote(P)}P∈Snormal
;

/* Vmin is the minimum vote # in Snormal. */
14 Vavg = avg{V ote(P)}P∈Snormal

;
/* Vavg is the average vote # in Snormal. */

15 Snormal = Snormal + Pin;
16 V ote(Pin) = Vavg ;
17 if |Snormal | > upper bound then
18 Snormal = Snormal − PVmin

;
/* PVmin

is the packet with the minimum vote
count in Snormal. */

destination address, and packet size. We set a time window
to help characterize the inter-packet features (i.e., features
reflecting correlations among different packets). Time window
is empirically set as 1 min in our evaluation. In end-to-end
topology inference, each pair of receivers will be measured for
hundreds or even thousands of times in a short time period.
The probe packets are highly correlated and have the similar
features. Inspired by that, when computing the distance of an
inter-packet feature between two packets, how frequently the
packets with the same feature value appear is also considered.
In particular, we count the number of packets of which the
feature value is the same in the time window and use the
multiplicative inverse of the count as the weight to multiply
the feature distance. For probe packets, we should observe a
larger count and get a smaller feature distance.

We use two examples to show how we map inter-packet fea-
tures into numerical representations and how the time window
helps identify probe packets. 1) Transit path: We denote the
transit path of each packet as a link vector L = [l1, l2, ..., lL],
where li is the ith internal link of the network; li is set as 1
when the packet travels through the link, and 0 otherwise. The
distance between two transit paths is measured as the Ham-
ming distance. For example, the Hamming distance between
paths [1, 1, 1, 1, 0] and [1, 1, 1, 0, 0] is 1. We further count the
number of packets that have the same transit path within
the time window. When computing the distance between
two paths, the results will be weighed by the multiplicative
inverse of the count. 2) Source (destination) address: It is
represented as a 4-element vector and the distance is measured

as the result of exclusive-or between two addresses. Given
two address vectors [192, 168, 10, 2] and [192, 168, 10, 1], their
distance vector is thus [0, 0, 0, 3]. In this example, the first
three elements in distance vector are 0, indicating these two
addresses are very close to each other, and may reside in the
same subnet. Similarly, we count the packets that have the
same source (destination) in the time window and weigh the
address distance accordingly.

V. TOPOLOGY OBFUSCATION

In this section, we design the topology obfuscation tech-
nique for the topology control module in ProTO to i) ensure
the attacker only obtains a fake topology and ii) limit the cost
of network efficiency. We first formulate topology inference,
then present proactive topology obfuscation.

A. Inference Formulation
We first formulate the external end-to-end topology infer-

ence as a fundamental mathematical model. As discussed in
Section III-A, the goal of the attacker is to obtain the topology
tree of the target network by sending probe packets going
through the network and measuring the correlation delays
{xi,j}i,j∈R. The set of all possible topology trees is denoted
as F , and we call F a forest . We denote the delay on link
l ∈ L as µl. Then, the relationship between correlation delays
{xi,j}i,j∈R, the real topology T , and the link delays {µl}l∈L
can be formulated in a linear way as

x = Aµ, (3)

where x = [x1,2 , x1,3 , · · ·x1,R
, x2,3 , x2,4 , · · · , x2,R

, · · · , x
R−1,R

]T

(the operator ·T denotes the matrix transpose) (i.e., x is
obtained by stacking all elements in {xi,j} into a column
vector); the vector µ = [µ1, µ2, · · · , µL]T with L being the
number of internal links in the network; and A = [ak,m] is
called the routing matrix, which depends on the topology T .
In particular, element ak,m in A has value 1 if the m-th link
of the network is shared by the receiver pair corresponding
to the k-th element in x, and value 0 otherwise.

We use a simple example to demonstrate how the routing
matrix is determined. As shown in Figure 4, there are 6
receivers and thus the number of different receiver pairs is(

6
2

)
= 15. In tree T , the link set is {1, 2, 3, 4, 5}. The

routing matrix A = [ak,m] is therefore a 15-by-5 matrix with
1 ≤ k ≤ 15 and 1 ≤ m ≤ 5. In particular, ak,m is 1 if the m-
th link is a shared link for the k-th receiver pairs. For example
in Figure 4, the pair of receivers 1 and 2 (which share link 1
on their paths) corresponds to x1, therefore a1,1 = 1.

Based on (3), we write the probability density of x as
p(x|A,µ). The likelihood function of T can be written as

L(x|T) ≡ p(x|A, µ̂), (4)

where µ̂ is the maximum likelihood estimate of µ given
T . The MLE obtains the topology T̂ that maximizes the
likelihood by

T̂ ≡ arg max
T ∈F

L(x|T). (5)

The calculated T̂ is the desired topology of the target network
in external end-to-end topology inference.

9

!

" #

$% &

! " # $ %

!&!'"(' (' ((

"&!'#(' ((((

))))))

!%&%'*((' (('

*

+

,

-.

/

0

1234.5% 6+41.7 !!"#

.5"#7 ,21 8$+1#" 9+4$!#4:##5 52"# 9+.1 !$% &#

.5"#7 ,21 .54#15+- -.508

41## "

8

! "

$

' ; <=>

%

Fig. 4: An example: routing matrix A of tree T .

B. Topology Obfuscation

Topology obfuscation aims to camouflage the attackers by
misleading them to recover a fake topology in the inference.
From the formation of inference, it is obvious that the network
can manipulate the path measurement results to achieve this
goal. Intuitively, we should achieve the best obfuscation effort
by maximizing the difference between the recovered topology
and the real topology. However, if the attacker is aware of the
defender’s goal (e.g., maximizing the difference), the attacker
may try to reverse the real topology from recovered topology
via finding the topology that has the maximum difference.

A successful topology obfuscation strategy should deliver
a non-reversible fake topology and avoid the aforementioned
situation. From the mathematical perspective, a randomly
generated Am will maximize the difficulty to recover the
real topology. We present a theoretical analysis for random
generation of fake topology in Section V-C. In particular, we
randomly generate a fake topology denoted by Am indepen-
dent of the real topology A in (3). Then, we intentionally
affect the probe packets going through the network to influence
the path measurement results of an attacker such that it
obtains Am instead of A from topology inference. To this
end, theoretically, based on the underlying formulation (3) for
topology inference, we multiply by a manipulation matrix F
both sides in (3) and obtain

Fx = FAµ, (6)

where the left-hand side Fx represents the manipulated mea-
surement results observed by the attacker. In order for the
attacker to obtain the fake topology Am based on the obser-
vation Fx using MLE. The following linear equation must
hold

Fx = FAµ = Amµ. (7)

Therefore, our goal of topology obfuscation is to find the
manipulation matrix F such that

FA = Am, (8)

given the real topology A and the fake one Am.
Note that (8) is obtained based on the assumption that the

attacker will use MLE to estimate the topology. The MLE
generally minimizes the estimation error in statistical inference
[62]. Thus, obfuscation based on (8) can be considered as a
min-max strategy to disrupt the best performance that can be
obtained by the attacker.

C. Fake Topology Generation and Security Analysis

To successfully deliver a non-reversible fake topology, the
control module in ProTO randomly generates the fake matrix

Am once the system is deployed. We develop a random
generation algorithm to get a structurally correct yet fake
topology Am that is independent of A. Specifically, suppose
A is an m-by-n matrix, ProTO keeps generating an m-by-n
matrix with all elements randomly selected from {0, 1} until
the generated matrix represents a connected tree structure.
Then, ProTO uses the generated matrix as Am for topology
obfuscation. In case the attacker may notice the obfuscation
efforts, ProTO will keep the generated Am as the target fake
topology for a certain time so the attacker will always obtain
the same topology even with multiple inferences.

We analyze the information security of the proposed random
fake topology generation. The successful topology obfuscation
strategy should ensure the attacker cannot derive the real
routing matrix A even with the knowledge of the randomly
generated matrix Am.

Mathematically, we analyze the security in the form of
entropy, which denotes the average uncertainty of the topology
to the attacker. For the attacker without the initial knowledge
of the matrix A, A can be treated as a random matrix,
and we denote it as B from the attacker’s perspective. Its
entropy is defined as H(B) = −

∑
b∈B PB(b) logPB(b),

where PB(b) is the probability when B = b, b is a specific
topology matrix. Similarly, the entropy of B conditioned
on the attacker knowing Am is defined as H(B|Am) =∑

am∈Am
PAm

(am)H(B|Am = am), where PAm
(am) is

the probability when Am = am. Due to the independence
between Am and B, H(B|Am = am) = H(B) and thus
H(B|Am) = H(B), which indicates the knowledge of Am

gives the attacker no information of real routing matrix B.

D. Optimization based Topology Obfuscation

After Am is generated, the topology control module com-
putes the manipulation matrix F based on (8). It is worth
noting that the topology matrix A is an m-by-n matrix with
m > n. Thus, there will be infinite solutions for F in (8). As
a result, we need to find the best solution to (8).

First, not all solutions can be practical in real-world systems.
As Fx represents the path measurement delays observed by
the attacker, Fx should have comparable values to the original
measurement x. Thus, we should impose a constraint in
searching for F such that

any element in Fx− x is within [0, δmax], (9)

where δmax is called the maximum allowed deviation for
the delay. Note that d should not be less than 0 because
obfuscation efforts may not be able to decrease the packet
delay due to the physical constraint of the network system,
but it is feasible to intentionally increase the packet delay to
manipulate the path measurements through the network.

Then, we transfer the problem of finding F such that FA =
Am given (9) into the following optimization problem.

minimize
F

‖FA−Am‖2 , (10)

subject to any element in Fx− x is within [0, δmax].

There exists a tradeoff if choosing the value of δmax for
topology obfuscation: a large value can increase the network

10

performance overhead; and a small value may decrease the
effectiveness of the obfuscation efforts as the search range in
the optimization (10) is limited. For the default setting, we
choose the maximum value occurred for each path in normal
measurements as default δmax .

E. Obtaining Manipulation Matrix F

In (10), the manipulation matrix F to be found is an m-
by-m matrix, A and Am are m-by-n matrices, representing
the real topology and the fake topology, respectively. To
solve (10), we first write F = {fi,j}, A = {ap,q} and
Am = {âp,q}. Let ai = [a1i, a2i, ..., ami] and f =
[f11, ..., f1m, ..., fm1, ..., fmm]T , then it holds that

‖FA−Am‖2 = ‖Mf −m‖2 , (11)

where M is an m × n by m × m matrix satisfying M =
[C, ..., C]T ; C = diag(a1, a2, ..., am); and m is a column
vector with m2 elements with the k-th element mk in m being
âp,q in Am, where p =

⌊
k
n

⌋
and q = k − pn. Let H =

diag(xT , xT , ..., xT), we rewrite (10) as

minimize
f

fTMTMf − 2mMf (12)

subject to 0 ≤ Hf ≤ xmax ,

where xmax denotes the maximum allowed delays for all links
after obfuscation, each of whose elements is set to be the
normal link delay in the network plus δmax . Thus, solving
(10) is equivalent to solving (12). In our case of network
obfuscation, MTM in (12) is a semi-definite matrix.

F. Proactively Delaying Probe Packets

After probe packets are identified and the manipulation
matrix F is calculated, the topology control module sends F to
the identification and manipulation module for delay manip-
ulation of probe packets. Specifically, ProTO first calculates
the truth correlation delay for each pair of receivers based on
the current link performance metrics in its network. Then, it
computes the difference between the true correlation delay and
the desired correlation delay based on the manipulation matrix
F. Finally, ProTO delays a probe packet by the time difference
between the two correlation delays. In our implementation,
ProTO intercepts identified probe packets at the exit nodes of
the network, holds them in a special waiting queue after the
intended delay, and then sends them out. As aforementioned,
the light-k-NN identification framework in ProTO is designed
biased towards a very high detection rate, while allowing false
alarms. Such a design ensures obfuscating the topology by
delaying all probe packets at the cost of a slight network
performance degradation for wrongly identified normal data
packets.

VI. SYSTEM IMPLEMENTATION AND EVALUATION

In this section, we use different network scenarios based
on real world topologies to evaluate the effectiveness and
efficiency of the proposed ProTO system. We first present the
implementation of ProTO and setups of the evaluation testbed.
Then, we evaluate the effectiveness of the proposed probe

packet identification algorithm (i.e., light-k-NN) in the iden-
tification and manipulation module. Finally, we provide and
discuss the overall performance against adversarial topology
inference by successful topology obfuscation.

A. Implementation and Experimental Setups

ProTO is implemented in P4 [63] integrated with Python.
P4 is a domain-specific language (DSL) for programming the
data plane of network forwarding devices (e.g., switches and
routers). In our design, the P4 program mainly focuses on
packet processing related tasks, including packet capturing,
feature extracting and packet manipulation (i.e., delaying the
packets). While the algorithms used to generate the fake
topology Am and compute the manipulation matrix F are
written in Python. The P4-based implementation for packet
processing is hardware independent (i.e., requiring no knowl-
edge of hardware during development) and can be compiled
according to hardware specifications into realistic devices.

We use three real-world network topologies from Internet
Topology Zoo [64] in the evaluation, including a small, a
medium and a large network with information listed in Table II
and topologies shown in Figure 5. We create these three
networks on two high-performance computing workstations
(each has dual Intel Xeon Gold 5122 3.70 GHz CPUs and 192
GB Memory) connected through 10 Gigabit Ethernet. Each
network node is created as an independent virtual machine
that runs OpenWrt [65] as the operating system. OpenWrt is
an open source Linux based operating system that can work
as routing management system. The advantage of choosing
OpenWrt is that it can compatibly execute P4-based code.

Claranet Switch Cogent

Fig. 5: Structures of three collected topologies.

As the most recognized external end-to-end topology in-
ference techniques, we adopt the methods proposed in [13]–
[18] to carry out the evaluation. Specifically, we follow the
tree structure to perform the external end-to-end topology
inference. For each topology, we first identify all the end
nodes (i.e., nodes connected to the network with only one
link) and the end circles (i.e., circles connected to the network
with only one link). In the evaluation, each end circle will
be treated as an end node. In inference, we use one of the
end nodes as the source node and others as the receiver
nodes. Internal circles are ignored in our evaluation, we simply
consider these circles as branch paths from the source node
to the receiver nodes. Meanwhile, we collect various types
of data packets by running different network applications,
including web browsing, file transfer, online chatting, and
video streaming on a local-area network, and replay these data
packets as the background network traffic in our experimental
network. In this way, we simulate a realistic use scenario
in which probe packets are mixed with regular data packets

11

TABLE II: Statistics of three collected network topologies.

Claranet Switch Cogent

Nodes 15 42 197
Links 18 63 243

going through a target network. We also tune the amount of
background traffic to measure the performance in different
network traffic conditions. For the low utilization condition,
the background loads for different links range from 5% to
50%, with an overall load of 30%; for the high utilization
condition, the loads for different links range from 10% to 90%,
with an overall of 45%.

B. Performance of Probe Packet Detection

To evaluate the probe packet detection performance of the
proposed light-k-NN classifier, we first define two performance
metrics (i.e., detection rate and false alarm rate); then we
use these metrics to quantitatively examine if our light-k-NN
design can achieve the design goal of guaranteeing the con-
fidentiality of network topology by ensuring the enforcement
of our detect-then-obfuscate strategy.

1) Performance Metrics: We evaluate the identification
performance of the proposed light-k-NN classifier from two
perspectives: 1) the detection rate, which is defined as the
number of probe packets correctly identified divided by
the total number of probe packets, i.e., detection rate =
of correctly identified probe packets

total # of probe packets , and 2) the false alarm rate, de-
fined as the number of normal packets misidentified as probe
packets divided by the total number of all normal packets, i.e.,
false alarm rate = # of misidentified normal packets

total # of normal packets .
The detection rate measures the percentage of correctly

identified probe packets among all probe packets. According
to our detect-then-obfuscate (i.e., proactively delay) approach,
the detection rate should be high to ensure the confidentiality
of network topology. While the false alarm rate measures
the amount of normal packets that are wrongly identified as
probe packet. These wrongly identified packets will also be
delayed by ProTO. The delay should not affect the network
functionalities but allow for slight performance degradation.
Hence, ProTO should reduce the false alarm rate as low as
possible in probe packet detection.

2) Detection Performance: The performance of the pro-
posed light-k-NN classifier to detect probe packets is evaluated
on the three networks. We find that the evaluation results in
terms of detection and false alarm rates are nearly the same
under low and high utilization conditions. Table III shows the
evaluation results under the high network utilization condition.
In the experiments, the size of the initial training dataset is
chosen to be 500, 1000, 2000, and 3000. As discussed in
Section IV-D, ProTO incrementally increases the training size
until an upper bound is reached. The incremental updating
scale is defined as the ratio between the upper bound and the
initial training size. In our experiments, the scale is selected
from [1.0, 1.5, 2.0, 2.5] and we also evaluate the case of no
online training updating as shown in Table III.

Impact of initial training dataset: We can observe in
Table III that the size of initial training has a substantial impact

0 2000 4000 6000 8000 10000
Number of probe packets

0.95

0.96

0.97

0.98

0.99

1.00

De
te
ct
io
n
ra
te

Claranet
Switch
Cogent

1.0

1.5

2.0

2.5

3.0

Sc
al
e

Ratio of online training size
to initial training size

Fig. 6: Detection rate for probe
packet identification.

0 2000 4000 6000 8000 10000
Number of normal packets

0.00

0.01

0.02

0.03

0.04

0.05

Fa
lse

 a
la
rm

 ra
te

Claranet
Switch
Cogent

1.0

1.5

2.0

2.5

3.0

Sc
al
e

Ratio of online training size
to initial training size

Fig. 7: False alarm rate for probe
packet identification.

on the detection performance of the light-k-NN classifier.
Specifically, when the size increases from 500 to 2000, the
detection rate increases substantially in all scenarios (i.e.,
in different networks with different updating scales). For
example, the detection rate improves from 94.5% to 99.7%
in Claranet with updating scale of 1.0. At the same time, the
false alarm rate also decreases (e.g., the rate decreases from
11.4% to 3.4% in Claranet with updating scale of 1.0).

Impact of incremental updating: It is seen in Table III
that the increase of the updating scale will lead to performance
improvement of the classifier. For example, in Claranet, when
there is no online updating, the classifier with the initial
training size of 500 has a detection rate of 92.2% and a false
alarm rate of 14.4%; when the classifier incrementally updates
its training and sets the updating scale to be 2, the detection
rate is improved to 97.8% and the false alarm rate is reduced
to 9.8%. Overall, when the updating scale becomes 2.5, the
classifier achieves a detection rate of 98.0% – 99.9% and a
false alarm rate of 2.6% – 7.9% in the three network scenarios.

Detection rate and false alarm rate over time: Based
on the evaluation results in Table III, we set the size of
the initial training dataset to 2000 and the updating scale
to 2 for follow-on experiments. The setups achieve a good
balance between the probing detection performance and the
computational complexity incurred by the detection. Figure 6
shows the detection rate achieved by the light-k-NN classifier
as the number of probe packets sent to ProTO. As we can see
from the figure, when the ProTo is online and the attacker starts
to send probe packets, the detection rate is gradually improved
over time, reaching 99.9% in all three network scenarios.
Figure 6 also shows the ratio of the online training size to
the initial training size during incremental online updating in
ProTO. The figure shows that the ratio increases linearly and
eventually reaches the updating scale 2.0.

Figure 7 shows the false alarm rate and the ratio of the
online training size to the initial training size, as functions
of the number of normal packets sent to ProTO. In the
figure, we can see that as ProTO gradually processes more
incoming normal packets, the false alarm rate continues to
drop and eventually remains stable at around 3% for all three
network scenarios. Figures 6 and 7 show that ProTO achieves
a detection rate of 99.9% and a false alarm rate of around 3%
when it processes a sufficient number of packets.

C. Evaluation of Topology Obfuscation

After identification of probe packets, the objective of ProTO
is to intentionally delay these packets in the network such that
the attacker can only obtain a fake topology by using end-to-

12

TABLE III: Detection performance for different sizes of initial training dataset and updating scales.

Topology Size of Initial Incremental Updating Scale During Online Training
Training Dataset No Updating 1.0 1.5 2.0 2.5

Claranet

500 D=0.922, F=0.143 D=0.945, F=0.114 D=0.961, F=0.096 D=0.978, F=0.087 D=0.982, F=0.079
1000 D=0.960, F=0.095 D=0.976, F=0.076 D=0.985, F=0.053 D=0.992, F=0.042 D=0.993, F=0.035
2000 D=0.985, F=0.040 D=0.993, F=0.035 D=0.997, F=0.034 D=0.999, F=0.030 D=0.999, F=0.028
3000 D=0.991, F=0.038 D=0.997, F=0.034 D=0.998, F=0.030 D=0.999, F=0.028 D=0.999, F=0.026

Switch

500 D=0.922, F=0.143 D=0.945, F=0.115 D=0.960, F=0.086 D=0.977, F=0.078 D=0.981, F=0.070
1000 D=0.960, F=0.095 D=0.975, F=0.077 D=0.984, F=0.054 D=0.991, F=0.043 D=0.992, F=0.036
2000 D=0.985, F=0.040 D=0.993, F=0.035 D=0.996, F=0.034 D=0.999, F=0.030 D=0.999, F=0.028
3000 D=0.990, F=0.039 D=0.997, F=0.034 D=0.997, F=0.031 D=0.998, F=0.028 D=0.999, F=0.026

Cogent

500 D=0.920, F=0.144 D=0.943, F=0.116 D=0.960, F=0.088 D=0.976, F=0.078 D=0.980, F=0.070
1000 D=0.959, F=0.097 D=0.974, F=0.077 D=0.983, F=0.054 D=0.990, F=0.044 D=0.992, F=0.037
2000 D=0.984, F=0.041 D=0.992, F=0.037 D=0.995, F=0.035 D=0.999, F=0.033 D=0.999, F=0.030
3000 D=0.989, F=0.039 D=0.995, F=0.036 D=0.997, F=0.033 D=0.998, F=0.030 D=0.998, F=0.028

1D = detection rate, F = false alarm rate. 2The Size of Initial Training Dataset indicates the number of data points for both probe packets and normal packets in the initial
training dataset. 3The Incremental Updating Scale indicates the scale of active training dataset (compared with the initial training dataset) during online training. For example,
scale = 1.0 means the packets in training dataset will be updated during online training, but the total number of packets will keep the same with the initial dataset. While No
Updating indicates the training dataset will not be updated during online training.

end topology inference. To evaluate the effectiveness of the
topology obfuscation in ProTO, we conduct experiments on
the three network scenarios for two cases: (i) no defense is
used to combat topology inference and (ii) ProTO is activated
to obfuscate probe packets. For each network scenario, we run
the experiment 100 times with randomly generated topologies
and average the results under cases (i) and (ii) to evaluate the
effectiveness and cost of ProTO.

1) Effectiveness Metrics: As ProTO aims to mislead the
attacker to obtain a fake topology, it is essential to measure the
difference between the real topology and the fake one that the
attack obtains. In evaluation, the logical topologies of the three
real-world networks are calculated and further comparison
results are all obtained based on the logical topologies. A
popular metric to measure the difference between two trees is
the Tree Edit Distance (TED) defined in [66]. TED calculates
the difference between two trees T1 and tree T2 as a set
of pre-defined editing operations by which tree T1 can be
mapped/transformed to tree T2. For instance, there are R
replacements, I insertions, and D deletions for the mapping
from tree T1 to tree T2, then the cost for the operations in this
mapping can be calculated by TED=crR+ciI+cdD, where cr,
ci, and cd are the costs of a replacement, an insertion, and
a deletion, respectively. In our evaluation, we adopt the unit
cost for each operation, i.e., cr = ci = cd = 1 .

To make the evaluation more intuitive, we define a similarity
score within [0, 1] based on TED. Given T1 and T2, we first
compute their TED as TED0, then calculate the TED between
T1 and a zero-node tree, denoted by TED1 (which can be
considered as the cost needed to remove everything in T1) as
well as the TED between T2 and a zero-node tree, denoted by
TED2 (which can be considered as the cost needed to construct
T2 from scratch). Then, the similarity score is defined as

similarity score = 1− TED0

TED1 + TED2
.

The similarity score is 1 if T1 = T2, and has a smaller
value if T1 is more evidently different from T2. We define
the benchmark score as the average similarity score between
the real network topology and a randomly generated topology,
and obtain using simulations that the benchmark score is 0.6.
Hence, we consider ProTO to be effective if the similarity
score between the real topology and the inferred topology is
close to 0.6.

2) Evaluating Effectiveness of Topology Obfuscation: We
first consider case (i) in which there is no defense for the
networks. Figure 8 shows the similarity score between the
real topology and the inferred topology, as a function of the
number of probe packets (the minimum number is 100) sent
along each path between the source and a receiver under
topology inference. It is observed in Figure 8 that if no defense
deployed, the attacker can easily obtain the real topology with
high accuracy. For example, if the attacker sends 10000 probe
packets for each path between the source and a receiver, it is
able to recover the topology with a similar score close to 1.

We then consider case (ii) in which ProTO is deployed.
Figure 9 depicts the similarity score between the real topology
(under ProTO’s protection) and the inferred topology, as a
function of the number of probe packets sent along each path
between the source and a receiver. The figure shows that the
similarity score between the real topology and the inferred
topology is significantly reduced to around the benchmark
score of 0.6. This indicates that the inferred topology under
ProTO has little difference from a random topology and
therefore ProTO is effective against topology inference.

We further analyze the similarity score between the inferred
topology and the fake topology Am that is generated according
to Section V-C in ProTO’s control module to evaluate the
difference between the intended topology by ProTO and the
inferred topology by the attacker, which is shown in Figure 10.
We can find in Figure 10 that overall, the optimization based
topology obfuscation in (10) delivers an intended topology
with high accuracy to the attacker.

3) Performance Cost of Topology Obfuscation: ProTO un-
avoidably introduces the network performance cost by de-
laying normal packets going through the network that are
misidentified as probe packets. In particular, from the net-
work perspective, delaying probe not normal packets has no
substantial impact on the network performance, as they are
of malicious intent and do not carry any data. However,
when a normal packet has been falsely identified as a probe
one, delaying it may potentially degrade the data delivery
efficiency. We aim to measure the performance degradation
due to false alarm and intentional delaying. We define the
performance cost as the ratio of the extra delay incurred
by ProTO to the original delay for a normal packet going
through the network. Specifically, for a misidentified packet,

13

0 2000 4000 6000 8000 10000
Number of probe packets for each path

0.85

0.9

0.95

1.0
Si
m
ila
rit
y
sc
or
e

Claranet
Switch
Cogent

Fig. 8: Similarity score between
the inferred topology and the real
topology without protection.

0 2000 4000 6000 8000 10000
Number of probe packets for each path

0.4

0.5

0.6

0.7

Si
m
ila
rit
y
sc
or
e

Claranet
Switch
Cogent
Benchmark score

Fig. 9: Similarity score between
the inferred topology and the real
topology under protection.

0 2000 4000 6000 8000 10000
Number of probe packets for each path

0.85

0.9

0.95

1.0

Si
m
ila
rit
y
sc
or
e

Claranet
Switch
Cogent

Fig. 10: Similarity score between
the inferred topology and the
intended topology.

Claranet Switch Cogent
Network

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 c
os
t

Low utilization High utilization

Fig. 11: The performance cost of
normal packets misidentified
by ProTO.

its original delay is measured as the traversal time of the
packet going through the network without the intentional delay
introduced by ProTO. In our experiment, we measure the
original delay before enforcing additional delay at exit nodes.
Therefore the original delay can be measured as the duration
between the time instant that the packet enters the entry node
and the time instant that the packet is processed at the exit node
before intentionally delayed. For each of the three network
scenarios, we measure (i) the performance cost of normal
packets that are misidentified as probe packets and delayed
by ProTO and (ii) the overall performance cost of all normal
packets (that are either correctly identified or misidentified)
going through the network.

Figure 11 shows the box plot of performance cost in case (i)
in which only misidentified normal packets are measured.
The box plot shows the distribution of performance cost of
misidentified packets, including the minimum, the maximum,
the median, the average, the first quartile and the third quartile.
From Figure 11, we observe that ProTO increases the delay
of a misidentified normal packet by 31% - 37% on average
under the low utilization condition, and by 39% - 45% on
average under the high utilization condition. Meanwhile, we
note that there is no substantial change of packet drop rate,
because ProTO just delays without actively dropping packets
to obfuscate the measurement results. As only a limited
number of normal packets can be misidentified by ProTO (e.g.,
3% false alarm rate shown in Figure 7), the overall perfor-
mance disruption is expected to be small for legitimate traffic.
Table IV shows the performance cost in case (ii) in which
all normal packets going through the network are measured to
compute the overall performance cost. Specifically, the overall
performance cost is defined as

∑
i∈Cmis

di/
∑

j∈C tj , where∑
i∈Cmis

di denotes the summation of additional delays of all
misidentified normal packets (Cmis is the set of misidentified
packets); and

∑
j∈C tj is the summation of the original

delays of all normal packets including non-misidentified and
misidentified packets (C is the set of all normal packets
and Cmis ⊂ C). The metric demonstrates the impact of
additional delay introduced by misidentified packets over all
normal packets. The results are shown in Table IV. Since
only 3% normal packets have been misidentified, the overall
performance cost due to the deployment of ProTO is around
1.3% and 2% for the low and high utilization conditions,
respectively. We note that a number of exiting studies [67]–
[71] produced related network security designs with overheads
ranging from 5% to 12%. Comparing with them, our proposed
technique can be considered efficient.

TABLE IV: Overall performance cost for all normal packets.

Low Utilization High Utilization

Claranet 1.28% 1.93%
Switch 1.33% 1.95%
Cogent 1.35% 1.99%

VII. CONCLUSIONS

In this paper, we provide a systematic study on effectively
defending against adversarial topology inference. We develop
a practical system ProTO that adopts a detect-then-obfuscate
framework to combat any potential attack. The ProTO system
consists of two major modules: (i) a light-k-NN probing
behavior identification mechanism is designed biased towards
a very high detection rate and (ii) a topology obfuscation
design that proactively delays all identified probe packets in a
way such that the attacker will obtain a structurally accurate
yet fake network topology based on the measurements of these
delayed probe packets.

We implement the ProTO system and evaluate its perfor-
mance with various conditions. Experimental results show
that ProTO can (i) achieve a detection rate of 99.9% with
a false alarm of 3%, (ii) effectively disrupt adversarial topol-
ogy inference by reducing the similarity score between the
real and inferred topologies from nearly 1 to around the
benchmark score of 0.6 (that represents the average similarity
score between the real network topology and a randomly
generated topology), and (iii) result in an overall network delay
degradation of 1.3% - 2.0%.

Acknowledgement: The work at USF was supported in part
by NSF-CNS 1717969.

REFERENCES

[1] T. Hou, Z. Qu, T. Wang, Z. Lu, and Y. Liu, “ProTO: Proactive topology
obfuscation against adversarial network topology inference,” in Proc. of
IEEE INFOCOM, 2020.

[2] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and
D. Becker, “Scalability and accuracy in a large-scale network emulator,”
ACM SIGOPS OSR, 2002.

[3] N. F. Butt, M. Chowdhury, and R. Boutaba, “Topology-awareness and
reoptimization mechanism for virtual network embedding,” in Interna-
tional Conference on Research in Networking, 2010.

[4] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys & Tutorials, 2005.

[5] M. Chowdhury and R. Boutaba, “Network virtualization: state of the art
and research challenges,” IEEE Communications Magazine, 2009.

[6] N. Duffield, “Simple network performance tomography,” in Proc. of
ACM IMC, 2003.

[7] P. Barford, N. Duffield, A. Ron, and J. Sommers, “Network performance
anomaly detection and localization,” in Proc. of IEEE INFOCOM, 2009.

[8] L. Ma, T. He, A. Swami, K. K. Leung, and J. Lowe, “Node failure
localization via network tomography,” in Proc. of ACM IMC, 2014.

14

[9] R. Kompella, J. Yates, A. Greenberg, and A. Snoeren, “Detection and
localization of network black holes,” in Proc. of IEEE INFOCOM, 2007.

[10] S. Panjwani, S. Tan, K. M. Jarrin, and M. Cukier, “An experimental
evaluation to determine if port scans are precursors to an attack,” in
Proc. of IEEE DSN, 2005.

[11] S. Zhao, Z. Lu, and C. Wang, “When seeing isn’t believing: On
feasibility and detectability of scapegoating in network tomography,”
in Proc. of IEEE ICDCS, 2017.

[12] “RFC 792: Internet Control Message Protocol (ICMP),” https://www.
rfc-editor.org/rfc/rfc792.txt, 2018.

[13] N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast
topology inference from measured end-to-end loss,” IEEE Transactions
on Information Theory, 2002.

[14] N. G. Duffield and F. L. Presti, “Network tomography from measured
end-to-end delay covariance,” IEEE/ACM Transactions on Networking
(TON), 2004.

[15] H. Yao, S. Jaggi, and M. Chen, “Network coding tomography for
network failures,” in Proc. of IEEE INFOCOM, 2010.

[16] P. Sattari, C. Fragouli, and A. Markopoulou, “Active topology inference
using network coding,” Physical Communication, 2013.

[17] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak, “Efficient network
tomography for internet topology discovery,” IEEE/ACM Transactions
on Networking (TON), 2012.

[18] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang,
“Maximum likelihood network topology identification from edge-based
unicast measurements,” in Proc. of ACM SIGMETRICS, 2002.

[19] F. Ubaldi, P. Teresa, and M. Puleri, “Method and device for network
tomography,” Nov. 9 2017, uS Patent App. 15/529,819.

[20] J.-P. Vasseur, “Operations administration management for path compu-
tation element chains,” Aug. 28 2012, uS Patent 8,254,272.

[21] R. Black, A. Donnelly, and C. Fournet, “System and method for network
topology discovery,” May 13 2014, uS Patent 8,724,512.

[22] Y. Yuan, Z. Ye, and X. Fan, “Method and device for discovering network
topology,” May 25 2017, uS Patent App. 15/426,891.

[23] M. H. Gunes and K. Sarac, “Analyzing router responsiveness to active
measurement probes,” in International Conference on Passive and Active
Network Measurement, 2009.

[24] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev, “Nethide:
Secure and practical network topology obfuscation,” in USENIX Secu-
rity, 2018.

[25] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” ACM SIGCOMM CCR, 2002.

[26] Y. Hyun, “Archipelago measurement infrastructure,” in Proc. of the
CAIDA-WIDE, 2006.

[27] “RIPE Atlas, year=2018,” https://atlas.ripe.net.
[28] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network

tomography: Recent developments,” Statistical science, 2004.
[29] T. Neudecker, P. Andelfinger, and H. Hartenstein, “Timing analysis for

inferring the topology of the bitcoin peer-to-peer network,” in IEEE
UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, 2016.

[30] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-
nisms: classification and state-of-the-art,” Computer Networks, 2004.

[31] “Domain Name System,” https://en.wikipedia.org/wiki/Domain Name
System, 2018.

[32] A. Barili and D. Lanterna, “On the effects of large-scale dns poisoning,”
in Proc. of IEEE CNS, 2015.

[33] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, 2016.

[34] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for dns.” in USENIX Security,
2010.

[35] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to
the https protocol,” Proc. of IEEE S & P, 2009.

[36] C. L. Abad and R. I. Bonilla, “An analysis on the schemes for detecting
and preventing arp cache poisoning attacks,” in Proc. of ICDCSW, 2007.

[37] D. Dagon, M. Antonakakis, K. Day, X. Luo, C. P. Lee, and W. Lee,
“Recursive dns architectures and vulnerability implications.” in Proc. of
NDSS, 2009.

[38] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy, “Your
state is not mine: a closer look at evading stateful internet censorship,”
in Proc. of ACM IMC, 2017.

[39] X. Xu, Z. M. Mao, and J. A. Halderman, “Internet censorship in china:
Where does the filtering occur?” in Proc. of Springer PAM, 2011.

[40] A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa, M. Russo,
and A. Pescapé, “Analysis of country-wide internet outages caused by
censorship,” in Proc. of ACM IMC, 2011.

[41] H. Acharya, S. Chakravarty, and D. Gosain, “Few throats to choke: On
the current structure of the internet,” in Proc. of IEEE LCN, 2017.

[42] S. T. Trassare, R. Beverly, and D. Alderson, “A technique for network
topology deception,” in Proc. of IEEE MILCOM, 2013.

[43] S. Achleitner, T. La Porta, P. McDaniel, S. Sugrim, S. V. Krishnamurthy,
and R. Chadha, “Cyber deception: Virtual networks to defend insider
reconnaissance,” in In Proc. of ACM CCS MIST, 2016.

[44] S. T. Trassare, “A technique for presenting a deceptive dynamic network
topology,” Naval Postgraduate School, Tech. Rep., 2013.

[45] X. Zhang and C. Phillips, “A survey on selective routing topology
inference through active probing,” IEEE Communications Surveys &
Tutorials, 2012.

[46] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-path
delay measurements,” in Proc. of IEEE INFOCOM, 2001.

[47] A. Rai and E. Modiano, “Topology discovery using path interference,”
in Proc. of IFIP Networking, 2019.

[48] M. Ettehad, N. Duffield, and G. Berkolaiko, “Optimizing consistent
merging and pruning of subgraphs in network tomography,” arXiv
preprint arXiv:1908.03519, 2019.

[49] E. Kruglick, “Preventing network tomography in software defined dat-
acenter networks,” May 31 2016, uS Patent 9,356,956.

[50] C.-C. Chiu and T. He, “Stealthy dgos attack: Degrading of service under
the watch of network tomography.”

[51] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic us-
ing hop-count filtering,” IEEE/ACM Transactions on networking (ToN),
2007.

[52] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in ACM SIGMETRICS PER, 2005.

[53] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-
based classification,” Tech. Rep., 2013.

[54] K. Al-Naami, S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen,
and B. Thuraisingham, “Adaptive encrypted traffic fingerprinting with
bi-directional dependence,” in Proc. of ACM ACSAC, 2016.

[55] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in Proc. of IEEE EuroS&P, 2016.

[56] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” in Proc. of ACM SIGCOMM
CCR, 2007.

[57] X. He, “Incremental semi-supervised subspace learning for image re-
trieval,” in Proc. of ACM Multimedia, 2004.

[58] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adaptive
novel class detection and classification over data stream.” in Proc. of
AAAI, 2016.

[59] E.-H. S. Han, G. Karypis, and V. Kumar, “Text categorization using
weight adjusted k-nearest neighbor classification,” in Springer PAKDD,
2001.

[60] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & security, 2002.

[61] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, 2011.

[62] G. Casella and R. L. Berger, Statistical inference. Duxbury Pacific
Grove, CA, 2002, vol. 2.

[63] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
CCR, 2014.

[64] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, 2011.

[65] “OpenWrt Project: Welcome to the OpenWrt Project,” https://openwrt.
org, 2018.

[66] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM Journal on Computing, 1989.

[67] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep recurrent neural network for intrusion detection in SDN-based
networks,” in Proc. of IEEE NetSoft, 2018.

[68] L. Chaddad, A. Chehab, I. H. Elhajj, and A. Kayssi, “Network obfus-
cation for net worth security,” in Proc. of IEEE SDS, 2020.

[69] X. Fang, N. Zhang, S. Zhang, D. Chen, X. Sha, and X. Shen, “On
physical layer security: Weighted fractional fourier transform based user
cooperation,” IEEE Transactions on Wireless Communications, 2017.

[70] L. Li, C. Chigan, and S. Yuan, “Security-oriented DSA for network
access control in cognitive radio networks,” in Proc. of IEEE HST, 2018.

[71] M. Conti, M. Hassan, and C. Lal, “BlockAuth: BlockChain based
distributed producer authentication in ICN,” Computer Networks, 2019.

