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Abstract—Preventing the source-destination network flow in-
formation from being disclosed is pivotal for anonymous wireless
network applications. However, the advance of network inference,
which is able to obtain the flow information without directly
measuring it, poses severe challenges towards this goal. Ran-
domized routing is capable of hiding the flow information by
injecting substantial errors to the network inference process. In
this paper, we systematically study the behavior of randomized
routing protocols, and categorize them into three templates,
k-random-relay, k-random-neighbor and k-random-path based
on their routing behaviors. We propose technical models to
characterize these templates in terms of their induced inference
errors and their delay costs. We also use simulations to validate
the theoretical results. Our work provides the first systematic
study on understanding both the benefit and the cost of using
randomized routing to hide the flow information in wireless
networks.

Index Terms—Network inference and tomography; random
routing; security; random walk.

I. INTRODUCTION

In a wireless network, network flow information (i.e., the

flow data rates of source-destination pairs on end-to-end paths)

is the essential knowledge about the network. Equipped with

such knowledge, malicious adversaries will know who is com-

municating with whom in the network or how much data rate a

pair of communicating parties has, and then launch powerful,

effective attacks targeting the network [1], [2]. For example, in

military wireless networks, one node associated with a lot of

traffic-intensive flows may be the master node which often

releases critical decisions. Accordingly, the adversary can

launch powerful attacks by compromising this master node.

Furthermore, a consecutive high-rate flow can infer that the

relationship of two end-nodes are close, which can be lever-

aged by attackers for network partition. In many large-scale

wireless networks, such as wireless sensor network (WSN) [3]

or mobile ad-hoc network (MANET) [4], directly observing

the end-to-end flow information is not always possible or even

infeasible because of the prohibition in anonymous networks

or the measurement traffic overhead [5]–[12]. To acquire

network flow information, adversaries can leverage the method

of network inference [6], [13]–[16] to infer the end-to-end

flow rates through eavesdropping on wireless link activities,

which is widely feasible in wireless networks because of the

broadcast nature of the wireless medium.
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Network inference was originally designed for the effective

network management and diagnosis, therefore most existing

studies focus on optimizing the inference performance [6],

[15]–[20]. However, from the adversary’s perspective, such a

line of work indeed exposes the vulnerability of leakage of

network flow information, in which the adversary can simply

obtain such information through wireless link measurements.

How accurately the adversary can obtain the flow infor-

mation depends on the inference method the adversary uses,

network traffic patterns, and routing protocols. Although it

has been noted recently [21] that the inference error for an

adversary can be maximized if a network can make sure the

adversary has no knowledge of how packets are routed in the

network, little progress has been made to reveal how a network

can indeed meet this goal. Obviously, a larger inference error

helps a network to hide its flow information against leakage

more. To achieve this, the network can make the routing

of packets unpredictable to adversaries. For example, if a

deterministic routing protocol like the shortest path routing

[22] is used, it can be very likely that the adversary can

accurately infer the flow information from link measurements

based on standard network inference methods [23]. On the

contrary, if a routing protocol is randomized, such as using

Tor [10], the intermediate relay nodes are randomly selected

to form an end-to-end path, yielding unpredictable behavior

of packet forwarding observed by an outside adversary.

In this paper, we study the security benefits of randomized

routing protocols against malicious network inference as well

as their associated costs. In particular, we focus on analyzing

three major templates for randomized protocols based on

common routing behaviors in wireless networks.

1) k-random-relay: k forwarding nodes (called relays) are

selected randomly in a network. The routing path for

each packet must contain such relays.

2) k-random-neighbor: in which the next hop is selected

randomly. Specifically, for each packet, at each hop, one

neighbor is selected randomly from k neighbors with

the shortest distances (the distance is measured by the

number of hops) to the destination.

3) k-random-path: each packet is sent by one randomly

selected path from the k shortest end-to-end paths.

These templates capture the majority of randomized behav-

iors during packet forwarding that can make the entire routing

unpredictable. In this paper, we use an asymptotic approach to

theoretically model these routing templates and measure their

induced inference errors. We also analyze the incurred delay

cost of three templates. Our major results can be summarized



2

Delay

Inference Error

-random-pathk

-random-relayk

-random-neighbork

 N  N

 N

 N

 N

 log lnk
N N

Inference Error Delay

 ( 1)k N 

 N

 log lnk
N N

( 2)

N

k

 
   

2

2

( 1)

2

N k

k

 
  
 

1(ln )

N

N N




 
 

 

(b)

(a)

-random-relayk

-random-neighbork

-random-pathk

Fig. 1. Asymptotic inference error and delay performance for a network with
N nodes and

√
N flow, where (a) demonstrates the relationship of them, and

(b) provide more exact results.

in Fig. 1, which depicts the lower bound of inference errors

for three templates scaled by the delay cost in asymptotic

notations for a network with N nodes and
√
N active end-

to-end flows under the condition that N is sufficiently large.

From Fig. 1(a), we see that the inference errors induced by

all templates are on the same order of
√
N with constant

difference. Both k-random-relay and k-random-path templates

have delay costs on the same order of
√
N . The k-random-

neighbor template incurs a delay cost of N log k lnN . Our

results indicate that k-random-path achieves the inference

error with the same order of the other two templates while

maintaining the lowest delay cost. But it requires knowing the

global path information of the network, and in practice, such

information is generally unavailable or prohibited to know.

For a large k, the delay of k-random-neighbor is significantly

larger than others, but the inference error is still on the same

order of the others. As a result, k-random-neighbor with a

large k should be avoided. From Fig. 1(b), for k-random-

relay, both the inference error and the delay are larger than k-

random-path by a constant order of magnitude. In addition, k-

random-relay does not require to know the global information,

thus a number of real-world applications (e.g., Onion routing

or Tor [10]) leverage this template to achieve the anonymity.

Our main contributions are summarized as follows.

• We are the first to study the vulnerability of the leakage

of network flow information from the routing protocol

perspective, and reveal that randomized routing protocols

help to prevent revealing flow information by inflicting

large inference errors. Whereas, a large inference error is

always associated with a large delay cost.

• We propose three templates based on routing behavior,

i.e., k-random-relay, k-random-neighbor and k-random-

path. Then we systematically characterize and model

these templates, and investigate the inference error as well

as the incurred delay cost of each template. Our theoret-

ical results verify that each randomized template is able

to hide the flow information with different capabilities.

• We conduct comprehensive simulations to evaluate the

inference error and delay of each template under a

practical network inference setup. Experimental results

confirm the relationship between the inference error and

the delay cost.

Our paper explores the fundamental reason why randomized

routing strategies can prevent the information leakage against

network inference. The results from this paper can not only

be used to show and compare the difference among routing

templates, but also provide a benchmark or guideline when

designing new randomized routing strategies.

II. PRELIMINARY AND PROBLEM STATEMENT

In this section, we first present the network model and

the preliminary of network inference. Then, we state our

research problems. The notations of this paper are summa-

rized as follows. (i) f(n) = O(g(n)) denotes there exists a

constant c such that f(n) ≤ cg(n); f(n) = Ω(g(n)) means

g(n) = O(f(n)); f(n) = Θ(g(n)) means f(n) = O(g(n))
and f(n) = Ω(g(n)). (ii) Given a m×n matrix A with entry

xij , then ‖A‖F =
√
∑m

i=1

∑n
j=1 x

2
ij , and tr{A} is the trace

of A. (iii) For a vector v = [v1, · · · , vn], ‖v‖2 =
√∑n

i=1 v
2
i ;

| · | denotes the cardinality operator.

A. Network Model

We model the wireless network by using a random geomet-

ric graph (RGG) [24] denoted by G = (V ,L), where V is the

node set and L is the undirected link set. Let N = |V| and

L = |L|. In this network, N nodes are randomly placed in a

region Ω = [0,
√

N/λ]2, where λ denotes the node density.

We assume that λ is sufficiently large such that the network

is connected asymptotically almost surely [24]. Denote by r
the transmission range of each node.

In the network, packet exchange occurs in node pairs,

yielding multiple end-to-end data flows. We denote by F the

end-to-end flow set consisting of the potential flow for each

node pair. Obviously, |F| = N(N−1)/2, which is the number

of node pairs. Each flow fi ∈ F is associated with a metric

xi denoting the data rate on flow fi. Denoted by a column

vector x = [xi]i∈[1,|F|] the flow rate vector for the network.

We consider xi = 0 if flow fi does not exist (i.e., there is no

communication).

The flow rate vector x contains two types of information:

1) who is communicating with whom in the network;

2) how much data rate a pair of communicating parties has.

The disclosure of such information is undesirable or even

prohibited in many network security scenarios [7], [25], [26].

B. Attack Model and Network Inference

What kind of methods an adversary can use to obtain

x? Note that x is not generally available to the adversary

because flow information is indicated at network or higher

layers [27], whose data is usually encrypted at the physical
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Fig. 2. Example network topology (a) and the routing matrix (b), where the
link set is L = {l1, · · · , l4}, and the flow set is F = {f1, · · · , f6}.

or link layer. Therefore, the adversary has to infer such

information based on physical/link-layer activities, which is

called network inference [18]. In this paper, we consider an

omniscient adversary who (i) knows the network topology and

(ii) knows the routing protocol used in the network, and (iii)

is capable of monitoring each link li ∈ L in the network. This

strong attack model enables us to clearly compare the benefits

of different randomized routing protocols under the worst-case

standard.

By letting column vector y = [y1, y2, · · · , yL]T (where yi
denotes the rate of link li and ·T is the matrix transpose

operator), the goal of the adversary is written as obtaining the

estimated value of x, denoted by x̂, from the measured link

rate vector y. Network inference is an approach to achieve the

adversary’s goal. In particular, the relationship between flow

rate vector x and the link rate vector y can be captured by

the following linear system.

y = Ax, (1)

where A is the routing matrix with size L× |F|, whose entry

aij =

{

1, if flow fj goes through link li;

0, otherwise.
(2)

The routing matrix A demonstrates how a flow is concate-

nated by links, which is the function of routing protocols.

Therefore, given a network, the routing matrix can be usually

determined by the routing protocol. Fig. 2 shows an illus-

trative example of a network topology and its corresponding

routing matrix A. In this network, we have the link set

L = {l1, · · · , l4} and flow set F = {f1, · · · , f6}, where

each flow fi ∈ F is determined by the shortest path routing

protocol. For example, flow f1 only goes through link l1
because this path, with length 1 (the length is measured

by the number of hops), is the shortest one; and the entry

corresponding to f1 and l1 is therefore 1 in the routing matrix

A as shown in Fig. 2(b).

In order to estimate x, the adversary must know the rout-

ing matrix A in (1), which is usually an under-determined

system. If the adversary indeed knows such information, it

can use standard network inference methods (e.g., L1-norm

minimization [23]) to obtain x̂, the estimated version of x.

The inference error can be denoted as

IR = ‖x̂− x‖2. (3)

For example, in Fig. 2, only flow f3 has data steam with rate

10bps, i.e., x = [0, 0, 10, 0, 0, 0]. Then the attacker can obtain
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Fig. 3. The relationship between link and flow rates under routing protocols:
R1 = shortest path, and R2 = random routing.

the link rate vector y = [0, 10, 0, 10], indicating that links l2
and l4 have data transmission with rate 10bps. If the routing

matrix A is also available, the attacker can obtain the estimated

flow rate vector x̂. Note that we do not confine the adversary

to any particular inference method. If we know what method

the adversary uses, we may provide a method-specific defense.

In this paper, we assume the worst case that the network

inference approach used by the adversary is unknown to us.

C. Randomized Routing Protocols: Benefit and Cost

In general, the routing matrix A is not immediately available

to the adversary. However, as the adversary is assumed to know

what routing protocol is used, it can build the routing matrix

by itself given the network topology. If a deterministic routing

protocol (e.g., shortest path) is used, it can be very likely that

the adversary builds the routing matrix Â in close value to the

true routing matrix A, then obtains an accurate estimate of x.

Randomized routing protocols make the behavior of routing

packets unpredictable and accordingly incurs more inference

error than deterministic ones to the adversary. To illustrate how

a randomized routing protocol may work, we consider a simple

network topology in Fig. 3(a). The network consists of 8 links

(i.e., links l1 − l8) and one traffic flow fSD between nodes S

and D, which contains three potential routing paths (i.e., paths

p1, p2 and p3). Because there is only one flow, the routing

matrix A only has one column representing the flow fSD.

We define a path set PSD = {p1, p2, p3} for flow fSD, and

two routing protocols R1 and R2 for the shortest path routing

protocol and a randomized routing protocol, respectively.

Under protocol R1, flow fSD deterministically uses path p2
to forward packets because it is the shortest path, leading to

no randomness to choose a path. Aware of the shortest-path

routing, the adversary can immediately reconstruct a routing

matrix Â which is exactly the same as the ground-truth matrix

A. Then, the adversary can use it to accurately recover x.

Under protocol R2, a path is selected uniformly at random

from the path set PSD. Then, the adversary’s estimation Â

equals to A with probability 1/3, as shown in Fig. 3(b).

This extra error due to the routing matrix mismatch will be

introduced to the network inference, offering higher protection

of the network flow information. Note that for this illustrative

example in Fig. 3, the adversary may further determine which

path is chosen by observing which links are active. However,
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simply observing which links are active cannot be applied to

a multi-hop wireless network, where a large number of node

pairs exchange packets simultaneously in the network.
On one hand, protocol R2 causes more inference error to

the adversary. On the other hand, however, R2 incurs more

delay during the data transmission because packets are not

always be forwarded along the shortest path. Therefore, the

cost of R2 is the increase of delay. To provide formal models,

we define the benefit (the inference error) and the cost (the

delay) of randomized routing as follows.
Definition 1 (Inference Error and Delay): Within a network

G with N nodes under a routing protocol R, the inference error

for the adversary is measured by IR = E‖x̂ − x‖2, where x̂

and x are the adversary’s estimated flow rate vector and true

flow rate vector, respectively. The delay between a node pair is

the average number of hops for data delivery between the pair.

Given a routing protocol R, the average delay hR, is obtained

by averaging the delays over all node pairs.
The adversary cannot directly observe the end-to-end flow

information, and the flow information can be obtained only

through inference. This is why we use the inference error

as the benefit of different randomized routing strategies. The

benefit does not confine to protecting the flow information.

For example, it can also be applied to balance the traffic

load or mitigate the wireless link failures. However, the goal

of this paper is how to provide defense against network

inference, and we find that randomized routing can achieve this

goal. Therefore, we explore the randomized routing strategy

from the security perspective, and characterize the benefit as

the inference error, which is directly related to the defense

performance.
In addition, we use the number of hops as the cost since it

is directly related to the inference error. The number of hops

is easily available and widely used information serving as the

cost for routing discovery in many wireless network protocols,

such as AODV [28] in MANET. Therefore, in our paper, we

also use the number of hops as the cost metric to measure

the performance of each template, and focus on analyzing

protocols using the number of hops as the performance cost.

D. Templates for Randomized Routing and Problem Statement

To formally characterize randomized routing protocols, we

propose three templates to analyze the benefit and cost of

randomized routing in wireless networks.

1) T1: k-random-relay: for each packet, the routing path is

formed by selecting k nodes (called relays) uniformly

at random from V excluding the source and destination

nodes. Then, the packet is transmitted through these

relays. The shortest path routing is used between two

consecutive relays. Onion routing used in the Tor [10]

or Crowds [11] networks are popular real-world appli-

cations of this template although they are currently used

in wireline networks.

2) T2: k-random-neighbor: for each packet, at each hop,

one neighbor is selected with equal probability from k
neighbors with shortest distances to the destination. The

random grid routing [29] and greedy forwarding routing

[30] are two simplistic versions of this template.

two relays are 

selected by T1

p2

p1

T1: k-random-relay
T2: k-random-neighbor
T3: k-random-path

two shortest paths

two neighbors are 

selected by  T2 

S

D

r

1v

2v

3v

4v

Fig. 4. Examples of k-random-relay, k-random-neighbor, and k-random-path
routing templates for k = 2.

3) T3: k-random-path: each packet is transmitted through

one path selected uniformly at random from k shortest

paths. This template is available when the overall path

information is available. The template can be considered

as a randomized version of the k-shortest-path routing

protocol [22].

The examples for the three templates is shown in Fig. 4,

which has one flow fSD between nodes S and D with k = 2.

Under k-random-relay, two relays v1, v2 ∈ V are randomly

selected, then a packet can be transmitted through these two

relays (i.e., the green line), where the paths between the source

and the first relay, between the two relays, and between the

second relay to the destination are all the shortest paths. Under

k-shortest-neighbor, the source S randomly picks one neighbor

v4 from two neighbors v3 and v4 which have the shortest

distance towards the destination D. Then, v4 adopts the same

rule for the second hop, and so on. The path for the k-random-

path template is randomly selected from 2 shortest paths p1
and p2.

In these template, k is an independent variable of N
and is determined by practical applications or the real-world

scenarios. For example, in the Tor network, k is fixed to 3
no matter how many nodes in the network. In this paper,

to provide randomness, we assume k > 1 is a constant

independent of N . The proposed templates cover a wide range

of randomized routing behaviors. However, which template is

more suitable for a network and how to choose the routing

template are based on several factors such as node density and

communication rage of each node. The template selection for

a particular network scenario is orthogonal to the research in

this paper that focuses on performance and cost analysis. Our

objective in this paper is to model and analyze the inference

error and delay of each template to offer a fundamental basis or

guideline for designing practical randomized routing protocols.

III. THEORETICAL MODELING AND STRATEGY

In this section, we provide a theoretical metric to measure

the inference error induced by randomized routing. Then, we

discuss our strategy to model routing templates.

A. Genie Bound

It is expected that randomized routing increases the infer-

ence error IR, which is related to a particular inference method
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used by the adversary to derive x̂ in (1). To remove such

a dependency, we use the genie bound [31] to measure IR
as it is a generic metric regardless of the inference method.

Specifically, for the under-determined linear system (1), the

genie bound, serving as a lower error bound of all possible

inference methods, can be obtained in three steps:

1) form a new deterministic linear system with the assis-

tance of a genie, which is expressed as

y = Agxg, (4)

where xg denotes the flow rate vector for node pairs

that indeed have real traffic flows, obtained by removing

zero entries (e.g., non-existing flows) from x. Ag is the

routing matrix presenting the relationship between real

flows and links;

2) derive the least square estimation of xg as

x̂g = (AT
g Ag)

−1AT
g y; (5)

3) obtain the genie bound by deriving the minimum mean

square error between x̂g and xg , i.e.,

G(xg) = E
(
‖x̂g − xg‖22

)
. (6)

Note that in step 1, with the help of the genie, the under-

determined linear system (1) is converted into a determined

system (4). This removes the effect of the choice of the

inference method used by the attacker. The genie bound is

a general and method-independent bound, and is widely used

in solving under-determined system to provide a lower error

bound for any inference method. Formally, we define the genie

bound as a generic metric to quantify the inference error IR
as follows.

Definition 2 (Genie Bound Metric): Given the link rate

vector y, and routing matrix A determined by the routing

template T , the inference error IT can be rewritten as

IT = E
(
‖x̂g − xg‖22

∣
∣
)
, (7)

where x̂g and xg are derived in the three-step genie bound

procedure.

B. Routing Template Modeling

The inference error is due to the randomness in selecting an

end-to-end path for a flow. In a real network, it is very likely

that there are multiple paths for a flow, and how to select a path

is based on the routing protocol. For example, in Fig. 3, the

shortest path protocol simply selects path p2 whereas random

routing selects one randomly from paths p1, p2 and p3.

Fundamentally, these three templates provide different be-

haviors to select a path from the total path set of a flow. For

example, in Fig. 3, under the template T3, flow fSD randomly

selects a path from PSD if it is available. However, if only the

neighbor information is available and the template T2 is used,

T2 will randomly choose a link from the link set {l1, l4, l6} for

the next hop to forward packets, leading to a different manner

to choose a path from fSD. All these random factors eventually

lead to a random path selection for a flow. Therefore, our

strategy is to use a general path-selection model to capture all

behaviors of different randomized routing templates.

Before modeling the difference among different routing

templates, we first define Pi as the path set consisting of

all potential paths for the flow fi ∈ Fg. Denoted by PΠ =
{Pi}i∈[1,F ] the path set for all source-destination pairs in

the network. To build the relationship between a path and

its corresponding vector in the routing matrix, we define a

function mapping J which maps paths to their correspond-

ing columns in the routing matrix. For example, in Fig. 3,

J(p1) = [1, 1, 1, 0, 0, 0, 0, 0]T .

Based on the previous definitions, we introduce three ma-

trices as follows.

1) The overall routing matrix M = [m1, · · · ,mF ] con-

sisting of all potential paths. It means that each entry

mi = J(Pi) for 1 ≤ i ≤ F , and M = J(PΠ).
2) The template matrix T = diag(t1, · · · , tF ) ∈

R
|PΠ|×

∑

gi is a rectangular diagonal matrix. Each entry

ti is a |Pi| × gi matrix, where 1 ≤ gi ≤ |Pi| denotes

the number of paths selected by the routing template

for the flow fi. Each column in ti has only one entry

with value 1 denoting which path is selected and the

remaining entries are all zeros.

3) The selection matrix C = diag(c1, · · · , cF ) ∈
R

∑

gi×F , where each ci is a gi × 1 all zero column

vector except one 1 indicating which path is selected

for the actual packet transmission.

In the following, by leveraging the above three matrices,

we propose a technical model to separate different factors in

performance modeling for randomized routing.

Model 1: [Routing Template] Given a network topology G,

and the routing template T , the routing matrix Ag can be

modeled as Ag = MTC, where matrices M, T, and C are

defined as above.

We use the network topology in Fig. 3(a) as an example.

Assume the routing protocol is T3: k-random-path with k = 2,

and there is only one flow fSD in the network. Then, the

routing matrix Ag ∈ R
8×1 can be expressed as

Ag =





1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1





T

︸ ︷︷ ︸

M

×





1 0
0 1
0 0





︸ ︷︷ ︸

T

×
[
1
0

]

︸︷︷︸

C

.

(8)

Three columns in M denote all possible paths between

nodes S and D. Thus, M only relies on the network topology

and is independent of routing behavior. There are two columns

in T, meaning two possible path selections (i.e., p1 and p2)

in k-random-path with k = 2. The last matrix C denotes the

path p1 is finally used. Hence, the routing behavior decides T

and C.

Remark 1: We decompose the routing matrix Ag into MTC

such that each matrix represents one factor to affect the

values in Ag . The overall routing matrix M only depends

on the network topology. The template matrix T relies on a

randomized routing template, and which template to be used is

based on many factors such as the link capacity constraints or

wireless interference. The selection matrix C indicates which

path is used to send packets. Each of its column vector has
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only one entry with value 1, meaning that only one path is

selected for a source-destination pair. Note that this model

does not consider the scenario that one packet is sent over

multiple paths, which is not typical in wireless networks due

to the broadcast nature of the wireless channel.

IV. THEORETICAL RESULTS

In this section, we first present the theoretical results of the

inference error and delay of each randomized routing template.

Then, we provide the proofs of the results.

A. Main Results

1) Inference Error: We consider a network G with N nodes

and F flows. For the network, without loss of generality, we

assume the flow rate xi ∈ xg of each flow is a random variable

with mean µ and variance σ2. Then, we have the following

results on the inference error for each template.

Theorem 1: The inference errors (in terms of the genie

bound in Defition 2) of templates T1 − T3 satisfy

1) for the template T1: k-random-relay,

Θ

(
F 2µ2

√
N/(k + 1) + F

)

≤ IT1 ≤ Θ
(
2F 2(µ2 + σ2)

)
;

(9)

2) for the template T2: k-random-neighbor,

Θ

(
F 2µ2

N/ϕ(N, k) + F

)

≤ IT2 ≤ Θ
(
2F 2(µ2 + σ2)

)
;

(10)

3) for the template T3: k-random-path,

Θ

(
F 2µ2(k − 1)2

k2(
√
N + F )

)

≤ IT3 ≤ Θ

(
2F 2(µ2 + σ2)

k/(k − 1)

)

,

(11)

where ϕ(N, k) = max{N log(k−1) log(k − 1) ln(N),
√
N}

Remark 2: Theorem 1 shows the impact regions of three

routing templates. We note that only the upper bound of k-

random-path is positively related to k, indicating that when

k is small, k-random-relay and k-random-neighbor templates

are possible to induce a higher inference error than k-shortest-

path. In addition, we find that the bound is an approximately

linear (quadratic) function of the number of flows F in the

network. This interestingly reveals that increasing the number

of flows in the network (i.e., making the communication sce-

nario more complex) in fact incurs more errors than trying to

actively creating randomness in routing behavior. A reasonably

small k should be chosen in practice due to the sub-linear

relationship between the error and k.

2) Delay: We have the following theorem to analyze the

costs of delay for three randomized routing templates.

Theorem 2: The delays of templates T1 − T3 satisfy

1) for the template T1: k-random-relay,

hT1 = Θ((k + 1)
√
N); (12)

2) for the template T2: k-random-neighbor,

Θ(ϕ(N, k)) ≤ hT2 ≤ Θ(N ln(N)); (13)

3) for the template T3: k-random-path,

hT3 = Θ(
√
N), (14)

where ϕ(N, k) = max{N log(k−1) log(k − 1) ln(N),
√
N}.

Remark 3: Theorem 2 shows the delay impacts of the three

randomized routing templates. It is noted that the delay of k-

random-relay increases linearly with k. When k is small, the

lower bound of k-random-neighbor is the same as k-random-

path (i.e.,
√
N ); thus they are generally better than k-random-

relay in terms of the delay cost. When k is larger, the delay

cost of k-random-neighbor becomes substantially large. This is

because when k increases to the average degree of the network,

all neighbors can be selected randomly, leading to a random

walk behavior of packet forwarding with the N logN delay

cost.

Remark 4: Theorems 1 and 2 show that there is no uniformly

best template among the templates in terms of both security

and cost. However we notice that k-random-neighbor with a

large k is not a good choice for a practical randomized routing

design in that (i) it has the highest delay cost compared with

others, (ii) the inference error is still on the same order with

others; and (iii) for a packet with a limited lifespan (e.g., it can

be controlled by Time-to-Live parameter), it cannot guarantee

to deliver packets to the destination.

Our results also indicate that k-random-path achieves the

inference error with the same order of the other two tem-

plates while maintaining the lowest delay cost. But it requires

knowing the global path information of the network. For k-

random-relay, both the inference error and the delay is larger

than k-random-path by a constant order of magnitude.

B. Proofs of Results

Now we prove the theoretical results. With Model 1, we first

provide a lemma regarding the generic result of the inference

error which depends on the delay overhead.

Lemma 1: For a routing template T satisfying Model 1, in

which the average number of columns of its template matrix is

denoted by gT and the delay is denoted by hT , the inference

error IT induced by T satisfies

Θ

(
F 2µ2(gT − 1)2

g2T (N/hT + F )

)

≤ IT ≤ Θ

(
2F 2(gT − 1)

gT /(µ2 + σ2)

)

. (15)

Proof: See Appendix. �

Remark 5: Lemma 1 provides a generic impact region of

the inference error of any routing template T . We notice that

the inference error IT = 0 when gT = 1, meaning that the

deterministic routing protocol has no inference error.

Next, we prove Theorem 2 to obtain the delay costs for

three templates, then prove Theorem 1 which requires some

results in the proof of Theorem 2.

Proof of Theorem 2: We first prove 3): hT3 and 1): hT1 ,

then we prove 2): hT2 .

3) In the network G, we assume the distance of flow fi is

di (the number of hops on the shortest path). For k-random-

path template, the average delay for flow fi is given by hfi =

di+
1
k

∑k
j=1 cij , where cij is a positive constant denoting the
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extra number of hops for jth path compared with the shortest

one for flow fi. Then the average is given by

hT3 =
1

F

F∑

i=1

di +
1

Fk

F∑

i=1

k∑

j=1

cij . (16)

According to Lemma 6, we have 1
F

∑F
i=1 di = Θ(

√
N). In

addition, it is easy to know 1
Fk

∑F
i=1

∑k
j=1 cij = Θ(1), then

we can obtain hT3 = Θ(
√
N).

1) For k-random-relay, we randomly select k relays to

forward each packet and each path between two consecutive

relays adopts the shortest path. Then the average delay can be

directly written as hT3 = Θ((k + 1)
√
N).

2) The routing path of k-random-neighbor is discovered hop

by hop, which is similar with the random walk (or Markov

chain) model [32]–[35]. In the following, we first briefly

introduce the difference between the random walk model and

k-random-neighbor, then we state how to use the random walk

to model the k-random-neighbor template.

In a network G, for an arbitrary node pair vi, vj ∈ V , denote

hi,j as the delay for the flow between vi and vj . Denote by

Ni the node set containing all neighbors of node vi. Then the

delay cost of the flow between vi and vj satisfies the following

recursive function

hi,j =

{

1 +
∑

w∈Ni
piwhw,j, if i 6= j

0, otherwise,
(17)

where piw is the transfer probability that the link between vi
and vw is selected. In the random walk model, every neighbor

in Ni has the same probability to be selected, i.e,

piw =
1

|Ni|
, for ∀vw ∈ Ni. (18)

For k-random-neighbor with source and destination nodes

vi and vj , we define a new neighbor set Ki ⊆ Ni for node vi
containing k neighbors which have the shortest distances to

the destination vj . Then, the transfer probability piw can be

given by

piw =
1

k
, for ∀vw ∈ Ki. (19)

Intuitively, if we can remove all neighbors that belong to

Ni but not to Ki, then Ki = Ni, and k-random-neighbor

becomes the same as the random walk model. To do so, for

the original network G, given a source-destination pair vi and

vj , we generate a new network Gk
ij = {Vk

ij ,Lk
ij}, where Vk

ij is

obtained by removing nodes that the source node vi will never

go through under k-random-neighbor for the node pair vi and

vj . Denote by Lk
ij the corresponding remaining link set for

the node set Vk
ij . Then, k-random-neighbor can be modeled as

a random walk for the network Gk
ij .

Considering the new generated network Gk
ij , according to

(5) and (6) from [36], the expected delay (17) over all node

pairs is given by

E(hi,j) = Θ
(

E

(

Nk
ij ln

(√

Nk
ij

)))

, (20)

where Nk
ij = |Vk

ij |. For the upper bound, we have E(Nk
ij) ≤

N . For the lower bound, k-random-path has the smallest delay

overhead because it is obtained by averaging k shortest paths,

then according to (12), we have that E(hi,j) ≥ Θ(
√
N).

Furthermore, according to Lemma 9, we have

E(hi,j) ≥







Θ
(

N logk−1
δ−1 ln

(

N logk−1
δ−1

)

/2
)

, if k > 2

Θ
(

log(N) ln
(√

log(N)
))

, if k = 2.

(21)

Combining them together, we obtain

E(hi,j) ≥ max{N log(k−1) log(k − 1) ln(N),
√
N}, (22)

which completes the proof. �

Proof of Theorem 1: From the generic result (15) in

Lemma 1, hT and (gT − 1)/gT depend on routing templates.

Note that hT is available in Theorem 2. Therefore, in the

following, we derive (gT − 1)/gT under different routing

templates.

For k-shortest-relay, we randomly select k relays from the

remaining N − 2 nodes (excluding source and destination

nodes). When the node density λ is sufficiently large such that

any node pair is connected, we have gT1 = Θ(Nk), yielding

(gT1 − 1)/gT1 = Θ(1).

For k-shortest-neighbor, at each hop, one neighbor is se-

lected uniformly at random from k possible neighbors. Assume

the average distance for a node pair is d, which can be

expressed as a function d = f(N). Then, the total number

of paths gT2 can be approximated by kf(N). Since f(N) is an

increasing function of N , gT2 increases exponentially in N .

Therefore, we have (gT2 − 1)/gT2 = Θ(1).

For k-shortest-path, it is obvious that gT3 = Θ(k). Then,

inserting it into (15) completes the proof. �

V. EXPERIMENTAL EVALUATION

In this section, we use simulations to show the inference

errors and delay performance under routing templates.

A. Experimental Setups

1) Network Configuration: In experiments, we use RGG

to simulate wireless network topologies, where N ∈ [20, 100]
nodes are randomly placed on region [0,

√

N/λ]. The node

density and transmission range are λ = 5 and r = 2,

respectively. In this network, we randomly select F =
√
N

node pairs to have real flow, in which the flow rate of each

node pair xi subjects to the normal distribution with mean

µ = 10 and variance σ2 = 2.

2) Performance Metrics: Under the worst case that the

adversary’s inference is unknown, we use the genie bound

to measure the inference errors of different routing templates.

The method to derive the genie bound is described in Defi-

nition 2. The delay is measured by averaging the number of

hops for all flows in the network.

3) Routing Template Scenarios: The randomness of each

routing template depends on the variable k. Therefore, in

our experiments, with respect to k, we consider two different

scenarios: (i) fixed k and (ii) dynamic k.
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B. Fixed k Scenario

We first consider the scenario that three templates adopt the

fixed k = 3. Specifically, For each packet, template T1: k-

random-relay randomly selects 3 relays to forward the packet.

For template T2: k-random-neighbor, each packet is forwarded

to one of the 3 neighbors which have the shortest distance to

the destination. Template T3: k-shortest-path directly selects

one path from 3 shortest paths for each flow. We apply

F =
√
N into Theorem 1, and obtain that under any routing

template, the inference error satisfies Θ(
√
N) ≤ I ≤ Θ(N).

Fig. 5 depicts the inference error under three randomized

routing templates as we change the number of nodes N
from 20 to 100. First of all, we see that for every routing

template, the inference error increases when the number of

nodes increases, which verifies Theorem 1. For instance, the

interference error is 718.1 for the k-random-neighbor template

when there are 40 nodes. Since each flow on average has the

rate 10, we know the attacker has the wrong estimation on at

least 718.1/102 ≈ 7.18 flows, and this number increases to

8.77 flows when the number of nodes becomes to 100. In

addition, we also notice that the difference between templates

does not change as we increase N , implying that the difference

of induced errors among different templates is on a constant

order.

Fig. 6 shows the delay overhead of different routing

templates. From Fig. 6, we observe that the slope of the

curve of the k-random-relay template is around 4 times that

of the shortest path protocol (e.g., when N = 100, the

delay of k-random-relay and the shortest path is 5.97 and

1.45 respectively). Note that, under the scenario k = 3,

N log k lnN < (k + 1)
√
N , therefore, the delay performance

of k-random-neighbor is less than k-random-relay.

C. Dynamic k Scenario

For the dynamic k scenario, we fix the number of nodes

N = 50. The total number of paths increases exponentially

for k-random-neighbor as k increases. Fig. 7 depicts the

relationship between the inference error and k. We notice that

the inference error increases as k increases for all templates.

However, as k keeps increasing, the error starts to increase

slightly and remains approximate the same value, which

verifies Theorem 1 that reveals the inference error increases

sub-linearly in k and a large k will not increase the error

significantly.

Fig. 8 shows that delay cost of three routing templates with

different k. From Fig. 8, we observe that the delay increases

linearly for k-random-relay because increasing k results in

adding extra paths and linear increase of the delay according

to Theorem 2. It is also observed that k-random-neighbor and

k-random-path have similar delays, because their delays are

on the same order Θ(
√
N) when log k is small.

VI. RELATED WORK

A. Random Routing

Due to the dynamics in the wireless environment, network

nodes are usually subject to sleep modes [32], channel fluc-

tuation [36], mobility [37], [38], interference from neighbors

[39]. Therefore, to account for such stochastic and asymmetric

natures, random routing strategies and their performance have

been widely studied in wireless networks [29], [32]–[36].

For example, [32]–[36] leveraged the random walk to model

randomized routing strategies and evaluate the delay and

packet delivery ratio. Recently, the work in [21] presents

the initial results that being randomized can help security

and cause substantial errors in malicious network inference.

However, there is still a lack of study regarding how exactly a

randomized protocol should be designed to protect network

flow infomration from being disclosed. In this paper, we

categorize randomized routing into three templates k-random-

relay, k-random-neighbor and k-random-path, and carefully

analyze the inference error and delay cost of each template.

B. Security of Network Inference

Network flow based attack and defense strategies have been

explored in a line of works [5], [7], [10]–[12], [25], [26], [40]–

[43]. However, in the wireless network, the PHY or MAC

layer activities are public, therefore the flow information is still

achievable through the network inference, which is a family

of network monitoring techniques that build the network

characteristics from indirect measurements [13]–[17]. Existing

studies on the network inference mainly focused on optimizing

inference methods to obtain more information from given

measurements. For example, authors in [15], [18] proposed

new ways to detect anomaly links. In [42], authors proposed

a faster and practical interference method by combining the

tomography and gravity; and a more accurate interference

method is investigated in [43] when the measurement fre-

quency is changing. The improved inference methods in fact

open up an opportunity for the adversary to obtain the flow
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information. For example, the work in [6] proposed an attack

strategy to retrieve the traffic pattern by using interatrial

based traffic analysis. Therefore, in this paper, we investigate

the fundamental reason of such vulnerability and find the

randomized routing protocol can lead to more inference errors,

so that protect the real flow information against leakage.

VII. CONCLUSION

In this paper, we revisited the network inference and found

that the inference accuracy depends on routing protocols. We

categorized randomized routing protocols into three templates,

k-random-relay, k-random-neighbor and k-random-path, and

theoretically analyzed the inference errors and incurred delay

costs of them. We conducted simulations to confirm that

randomized routing templates can inflict different inference

errors and delays, yielding different capabilities to prevent the

flow information leakage.

Acknowledgement: The work at University of South Florida

was supported in part by NSF 1717969.

APPENDIX A

In this section, we first prove Lemma 1, then we introduce

and prove other necessary lemmas.

A. Proof of Lemma 1

Proof: From Model 1, considering the worst case that both

M and T are available to the adversary, for real flows, we

have the linear system

y = RCxg, (23)

where R = MT is the routing matrix under the template

represented by the matrix T. As aforementioned, the selection

matrix C is unknown by the adversary, then we let D =
{di} ∈ R

∑

gi×F be the selection matrix of the adversary, that

randomly selects a path for any flow. Considering the worst

case that the ground-truth matrix C and D have the same

dimension, then from the adversary perspective, the linear

system (23) can be written as

y = RDxg. (24)

Taking the least square estimation of xg , we obtain x̂g =
[(RD)TRD]−1(RD)Ty, then putting it into the genie bound

metric (7), we have that

G(xg) = E
(
‖x̂g − xg‖22

)

= E
(
‖[(RD)TRD]−1(RD)T (RCxg)− xg‖22

)

= E
(
‖[(RD)TRD]−1(RD)T (RC)− I]xg‖22

)

= E
(
‖U[RC−RD]xg‖22

)
,

(25)

where U = [(RD)TRD]−1(RD)T . Then by leveraging

Lemma 3, the following inequality holds with high probability.

λmin(U
TU)‖∆xg‖22

≤‖U[RC−RD]xg‖22 ≤ λmax(U
TU)‖∆xg‖22.

(26)

From Lemma 4, λmin(U
TU) and λmax(U

TU) can be re-

placed by λ−1
max(RD(RD)T ) and λ−1

min(RD(RD)T ) respec-

tively, then (25) can be expressed as the following inequality

with high probability

E

( ‖∆xg‖22
λmax(RD(RD)T )

)

≤G(xg) ≤ E

( ‖∆xg‖22
λmin(RD(RD)T )

)

,

(27)

where ∆ = RC − RD. Then leveraging Lemma 5, we can

derive the following asymptotically solution

E‖∆xg‖22
Θ
(

h(N) + Fh(N)2

N

) ≤ IT ≤ E‖∆xg‖22
Θ(h(N))

. (28)

Now we derive the numerator. Denote entries in ∆ as

{δij}i∈[1,L],j∈[1,F ], where each entry δij ∈ {1,−1, 0}. Be-

cause the adversary randomly select one path for each flow,

we have that

Pr{δij = 1} =Pr{δij = 1|cj 6= dj}Pr{cj 6= dj}

=
gj − 1

gj
Pr{δij = 1|cj 6= dj}

=
gj − 1

gj
Θ

(
h(N)

N

)(

1−Θ

(
h(N)

N

))

.

(29)

Furthermore, it is easy to know Pr{δij = −1} = Pr{δij = 1}.

Since all nodes are uniformly distributed in a region Ω. Then

for routing template T , E(gi) = gT for 1 ≤ i ≤ F , and we

have the following two equations:

E{δij} = Pr{δij = 1} − Pr{δij = −1}

=
gT − 1

gT
Θ

(
h(N)

N

)

,
(30)

and

E{δ2ij} = Pr{δij = 1}+ Pr{δij = −1}

=
2(gT − 1)

gT
Θ

(
h(N)

N

)

.

(31)

Then, we have the lower bound as

E‖∆xg‖22 = E






L∑

i=1





F∑

j=1

δijxj





2





= Θ(N)E










F∑

j=1

δijxj





2





≥ Θ(N)



E





F∑

j=1

δijxj









2

= Θ

(
[Fµ(gT − 1)h(N)]2

g2TN

)

.

(32)
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On the other hand, by using Cauchy-Schwarz inequality, the

upper bound is

E‖∆xg‖22 = Θ(N)E










F∑

j=1

δijxj





2





≤ Θ(N)E





F∑

j=1

δ2ij



E





F∑

j=1

x2
j





= Θ

(
2F 2(gT − 1)(µ2 + σ2)h(N)

gT

)

.

(33)

Replacing (32), (33) into (28), we complete the proof. �

B. Proof of Necessary Lemmas

Lemma 2: The probability that each element in the matrix

R is

Pr{rij = 1} = Θ

(
h(N)

N

)

. (34)

Proof: From Model 1, we have that

Pr{rij = 1} = Pr{path pj traverses link li}. (35)

We assume there are u links in the network and path pj
contains uj links, then (35) can be rewritten as

Pr{flow fj traverses link li|u, uj} = uj/u. (36)

Take the expectation to u and uj , we have that

Pr{rij = 1} = Euj

(

Eu

(uj

u
|uj

))

. (37)

From Taylor series at E(u|uj), we have

Eu

(uj

u
|uj

)

=
uj

Eu(u|uj)
+ f

(

O

(
Varu(u|uj)

E3(u|uj)

))

. (38)

By leveraging Lemma 7, (37) can be derived as

Pr{rij = 1} = E

(
uj

N(λπr2 − 1)/2

)

=
E(uj)

Θ(N)
. (39)

According to Definition 1, E(uj) = h(N), then we complete

the proof. �

Lemma 3: For a matrix A, it satisfies

λmin(A)‖α‖22 ≤ ‖Aα‖22 ≤ λmax(A)‖α‖22, (40)

where λmin(A) and λmax(A) is the minimum and maximum

eigenvalues of matrix A.

Proof: Clearly, we know

‖Aα‖22 = ‖αTATAα‖ =
‖αTATAα‖

αTα
‖α‖22. (41)

According to [44],
‖αT

A
T
Aα‖

αTα has the minimum value

λmin(A
TA) and the maximum value λmax(A

TA), then we

can complete the proof. �

Lemma 4: For a matrix A ∈ R
m×n where m > n, let

G = (ATA)−1AT , then λmax(G
TG) = λ−1

min(A
TA) and

λmin(G
TG) = λ−1

max(A
TA).

Proof: Based on the singular value decomposition, for the

matrix A ∈ R
m×n, there exists a couple of unitary matrices

U ∈ R
m×m and V ∈ R

n,n, such that A = UΛVT where

Λ = diag(s1, · · · , sn) ∈ R
m×n is a rectangular diagonal

matrix. The numbers si = λi(
√
ATA) for i = 1, · · · , n

are singular values of A. If one sees the diagonal matrix

D := diag(s21, · · · , s2n) ∈ R
n×n, we have

ATA = VDVT . (42)

Then (ATA)−1 = VD−1VT , and G can be derived as

G = (ATA)−1AT = VD−1VTVΛUT = VΛ−1UT , (43)

where Λ−1 = diag(s−1
1 , · · · , s−1

n ) ∈ R
n×m. Similarly,

GTG = U(Λ−1)2UT = UD−1UT . (44)

Comparing (42) and (44) we know that λ(GTG) =
λ−1(ATA), which completes the proof. �

Lemma 5: For a random binary matrix A with size L ×
F , where the expectation of each entry of A is E(aij) =
Θ(h(N)/N) for h(N) = O(N) and L = Θ(N). Then if

F → ∞ with limL→∞ F/L < ∞, then the following two

statements are satisfied with high probability,

1) for the minimum eigenvalue, λmin(A
TA) = Θ(h(N))

2) for the maximum eigenvalue,

λmax(A
TA) ≤ Θ

(

h(N) +
Fh2(N)

N

)

Proof: For the statement (1), from Lemma 8, we have a

function f such that the Var(fA) = 1. Then statement (1) can

be rewritten as

λmin(A
TA) =

L

f2
λmin(L

−1(cA)T (cA)). (45)

From [44], we have λmin(L
−1(cA)T (cA)) = Θ(1) with high

probability. Then (45) can be further derived as

λmin(A
TA) =

L

f2
Θ(1) =

Θ(N)

Θ(h(N)/N)
= Θ(h(N)). (46)

For the statement (2), we define two matrix U and V where

V is an all-one matrix and each entry in ui ∈ U satisfies

E(ui) = 0. Then we have A = U+Vh(N)/N . Applying to

ATA, we have that

λmax(A
TA) = λmax((U

T +VTh(N)/N)(U+Vh(N)/N))

≤ λmax(U
TU) + 2h(N)/Nλmax(U

TV)

+ (h(N)/N)2λmax(V
TV).

(47)

For the second term in (47), since V is an all-one matrix

with rank 1, then we have that

λmax(U
TV) = tr{UTV} =

∑

uij∈U

uij . (48)

According to the large number law, λmax(U
TV) = o(NF )1/p

for 1 < p < 2. Then similarly,

λmax(V
TV) =

∑

vij∈V

1 = Θ(FN) (49)

From [44], the first term satisfy λmax(U
TU) = Θ(h(N)).

Replacing λmax(U
TV), λmax(V

TV), λmax(U
TU) into (47),

we can complete the proof. �
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Lemma 6: For network G with N nodes, the average delay

over all flows by leveraging the shortest path protocol is d =
Θ(

√
N).

Proof: The delay is positively related to the distance between

the source and destination nodes. Let ei be the Euclidean

distance for flow fi. Since each hop covers a distance of Θ(r),
the delay of flow by using the shortest path is fi is Θ(ei/r).
The average delay over all flows is Θ( 1

N

∑N
i=1 ei/r). Since all

nodes are randomly distributed in a region Ω = [0,
√

N/λ]2,

for a large N , we have 1
N

∑N
i=1 ei = Θ

(√

N/λ
)

. Therefore

the average delay can be derived as d = Θ

(√
N/λ

r

)

=

Θ(
√
N), which completes the proof. �

Lemma 7: In a RGG with N nodes, L links, and density λ
and transmission range r, then L is on the order of N with

high probability, i.e., Pr{L = Θ(N)} = 1−Θ(e−Θ(1)N).
Proof: In RGG, the degree of an arbitrary node equals to

the number of nodes dropping into the transmission range of

this node, then the degree of an arbitrary subjects to Poisson

distribution with parameter λπr2−1, and thus the distribution

of the total number of link is also Poisson distribution with

parameter N(λπr2−1)/2. Then based on the Chernoff bound,

for a small constant c1 < (λ − 1)πr2 and a large constant

c2 > (λ − 1)πr2, we have the following upper and lower

bounds

Pr{L ≥ c1N} ≤ 1−
e

−N(λπr2−1)
2

(
eNλ(πr2−1)

2

)c1N

(c1N)c1N

= 1− e
−N(λπr2−1)

2 e
c1N log

(

eλ(πr2−1)
2c1

)

= 1−Θ(e−Θ(1)N)

(50)

and

Pr{L ≤ c2N} ≥ 1−
e

−N(λπr2−1)
2

(
eNλ(πr2−1)

2

)c2N

(c2N)c2N

= 1−Θ(e−Θ(1)N)

(51)

where ξ = Θ(e−Θ(1)N). Then we complete the proof. �

Lemma 8: For the routing matrix R in Lemma 2, there

exists a function f =
√

N/h(N) such that each entry in R

has finite mean and invariance 1.
Proof: Denote each entry in fR as eij , then the mean of eij
can be derived as

E(eij) = E(frij) = f Pr{rij = 1} = fΘ

(√

h(N)

N

)

= Θ(1),

(52)

and the variance is

Var(eij) = E(e2ij)− E
2(eij) = f2

E(r2ij)−Θ(1)

= f2Θ

(
h(N)

N

)

−Θ(1) = Θ(1).
(53)

Then we can complete the proof. �

Lemma 9: For a network G with N nodes and its corre-

sponding generated network Gk
ij with Nk

ij nodes in the proof of

Theorem 2. We have the lower bound E(Nk
ij) > Θ(N logk−1

δ−1 )
if k > 2 and E(Nk

ij) > Θ(log(N)) if k = 2.
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Fig. 9. Example of network topology, where (a) δ = 3, and k = 2, and (b)
δ = 4, and k = 3. Dotted lines and circles denote removed links and nodes.

Proof: For source node vi, we define node set Md
i containing

nodes which have distance d with the source node vi, and

M0
i = {vi}. Similarly, Kd

i be the corresponding node set

after removing nodes from Md
i based on the rule in the proof

of Theorem 2. Let |Md
i | = Md

i and |Kd
i | = Kd

i . Since the

network is connected, then we have that

l∑

d=0

Md
i = N,

l∑

d=0

Kd
i = Nk

ij , (54)

where l is the maximum distance.

To derive the low bound of E(Nk
ij), we should remove the

most nodes from N nodes. To do so, we consider an extreme

case satisfies two requirements:

1) the destination node is located at the maximum distance

l away from the source node vi,
2) the network is a tree structure, i.e., except for the source

node, for any node vd ∈ Md
i , it connects with only one

node vd−1 ∈ Md−1
i (as shown in Fig. 9).

Under this case, once a node vd ∈ Md
i is removed, all nodes

that are connected with this node in Md+j
i for j ≥ 1 will be

removed. Then the expected number of nodes with distance d
can be given by
{

E(Md
i ) = δ(δ − 1)(d−1), for the network G

E(Kd
i ) ≥ k(k − 1)(d−1), for the network Gk

ij .
(55)

Then we sum all distances together. For networks G and Gk
ij ,

according to (55), we obtain two equations

l∑

d=1

E(Md
i ) = N − 1 =

l∑

d=1

δ(δ − 1)(d−1), (56)

and

l∑

d=1

E(Kd
i ) = E(Nk

ij)− 1 ≥
l∑

d=1

k(k − 1)(d−1). (57)

Combining (56) and (57) together, we can derive the lower

bound of E(Nk
ij). Note that according to (57), k = 2 is

a special scenario, therefore we split our results into two

scenarios, i.e., k = 2 and k > 2 . Fig. 9 shows an illustrative

example of k = 2 and k = 3. Then after jointly manipulating

(56) and (57), we complete the proof. �
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