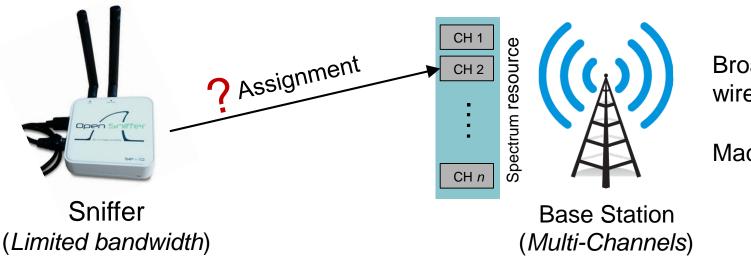
Learning Optimal Sniffer Channel Assignment for Small Cell Cognitive Radio Networks

Lixing Chen¹, Zhuo Lu², Pan Zhou³, Jie Xu¹

¹University of Miami, FL, USA ²University of South Florida, FL, USA ³Huazhong University and Science and Technology, Wuhan, China

Introduction

- Passive Monitoring in Wireless Networks
 - Capture network traffic to analyze the network conditions and performance.
 - Network operations: resource management, network configuration, fault diagnosis, network intrusion detection
- Sniffer Channel Assignment (SCA)

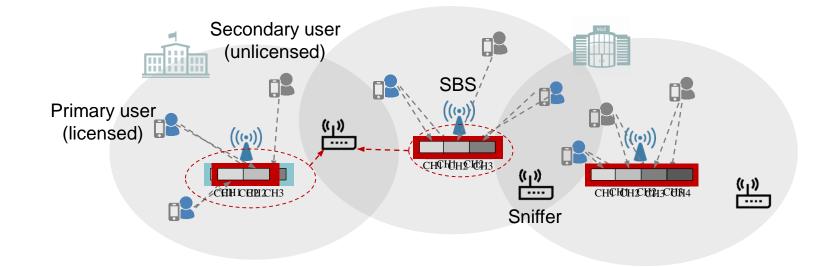


Broadband multi-channel wireless networks

Macrocell networks

Sniffer Channel Assignment in Small-cell Cognitive Radio

Small-cell Network Towards 5G



New Challenges

- Multi-cell scenario and SCA subjects to physical constraints
- Time-varying spectrum resource at small-cell base station (SBSs)
- Imperfect monitoring, unreliability of mmWave propagation

Contributions

- Sniffer Channel Assignment in Small-cell Cognitive Radio
 - Multi-cell scenario with assignment constraints
 - Time-varying spectrum resource
 - Imperfect monitoring
 - Redundant assignment
- Optimization-based Solution
 - With statistical knowledge about imperfect monitoring
- Online Sniffer Channel Assignment using Bandit Learning
 - Learn the knowledge about imperfect monitoring
 - Contextual Combinatorial Multi-armed bandit

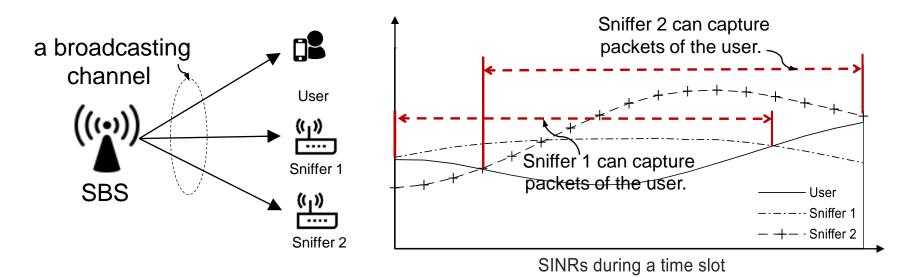
SCA Problem Formulation

- Sniffer Channel Assignment
 - Assign a set of sniffers $S = \{1, 2, ..., S\}$ to a set of channels \mathcal{H}^t
 - Assignment decision $\mathbf{a}^t \coloneqq \{a_s^t\}_{s \in S}$, $a_s^t \in \mathcal{C}_s^t \subseteq \mathcal{H}^t$
- Utility Maximization
 - Objective
 - Utility maximization: $u^t(\boldsymbol{a}^t; \boldsymbol{p}^t) = \sum_{k \in \mathcal{H}^t} w_k \theta_k^t(\boldsymbol{a}^t; \boldsymbol{p}^t)$
 - Importance of channel w_k , $k \in \mathcal{H}^t$
 - Amount of traffics on the channel
 - Time occupied by licensed users and unlicensed users
 - Packet capture probability $\theta_k^t(\boldsymbol{a}^t; \boldsymbol{p}^t)$
 - Assignment decision a^t : number of sniffers assigned to channel k
 - $p^t = \{p_{s,k}^t\}_{s \in S, k \in \mathcal{H}^t}$ denotes the performance of sniffer *s* on channel *k*

SCA Problem Formulation

Theory of Secrecy Channel Capacity

 $p_{s,k}^t = \Pr{\{\text{SINR}_{\text{sniffer},k}^t \ge \text{SINR}_{\text{user},k}^t\}}$ (Non-outage probability)



Redundant Sniffer Assignment

Packet capture probability:
$$\theta_k^t(a^t; p^t) = \begin{cases} 1 - \prod_{s \in S_k(a^t)} (1 - p_{s,k}^t), & \text{if } S_k(a^t) \neq \emptyset \end{cases}$$

Sniffers assigned to channel k
 $0, & \text{if } S_k(a^t) = \emptyset \end{cases}$

Sniffer Channel with Oracle Information

Oracle Solution

- Assuming the packet capture probability is known
 - Solve in each time slot *t*:

$$\mathcal{P}1: \max_{\boldsymbol{a}^t} u^t(\boldsymbol{a}^t; \boldsymbol{p}^t) = \sum_{k \in \mathcal{H}^t} w_k \theta_k^t(\boldsymbol{a}^t; \boldsymbol{p}^t), \quad \text{s.t. } a_s^t \in \mathcal{C}_s^t \cup \{null\}$$

- Result
 - $\mathcal{P}1$ is a Matroid-constrained Submodular Maximization (MCSM) problem.
 - Greedy algorithm solves MCSM problem with 1/2 approximation.

$$u^{t}(\boldsymbol{a}^{*,t};\boldsymbol{p}^{t}) \geq \frac{1}{2}u^{t}(\boldsymbol{a}^{\text{opt},t};\boldsymbol{p}^{t})$$
Action obtained by Optimal actions greedy algorithm

Sniffer Channel Assignment via Online Learning

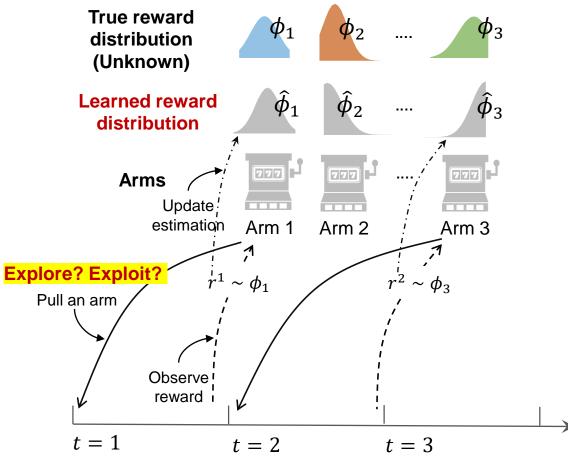
- Necessity of learning
 - Non-outage probability p^t is **unknown** in practice
 - Algorithm: Online Sniffer Channel Assignment (OSA)
 - Solve a long-term problem in a time horizon *1*,*2*,..,*T* :

$$\max_{\boldsymbol{a}^{1},\boldsymbol{a}^{2},\ldots,\boldsymbol{a}^{T}} \sum_{t=1}^{T} \sum_{k\in\mathcal{H}^{t}} w_{k}\theta_{k}^{t}(\boldsymbol{a}^{t};\boldsymbol{\widehat{p}}^{t}),$$

s.t. $a_{s}^{t}\in\mathcal{C}_{s}^{t}\cup\{null\},\forall t$

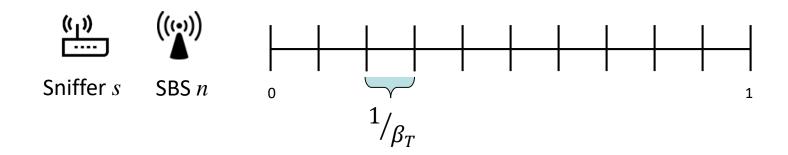
- Learning while optimizing
 - Task1: Learning the non-outage probabilities \widehat{p}^t over time
 - Task2: Maximize the utility based on the learned knowledge
 - Trade-off between two purposes, balanced by Multi-armed bandit

- Multi-armed Bandit Problem (MAB)
 - Learn the reward of arms
 - Arm/Action: sniffer-channel pairs
 - Rewards to be learned: non-outage probability
 - Objective
 - Maximize the collected rewards
 - Exploration-Exploitation Tradeoff
 - Exploration: pull an arm to learn the its reward
 - Exploitation: pull an arm that yielded highest reward experience
- Limitations
 - Pull one arm each time slot
 - Assign one sniffer at a time
 - Learn general rewards
 - Not aware of available side-information (context)

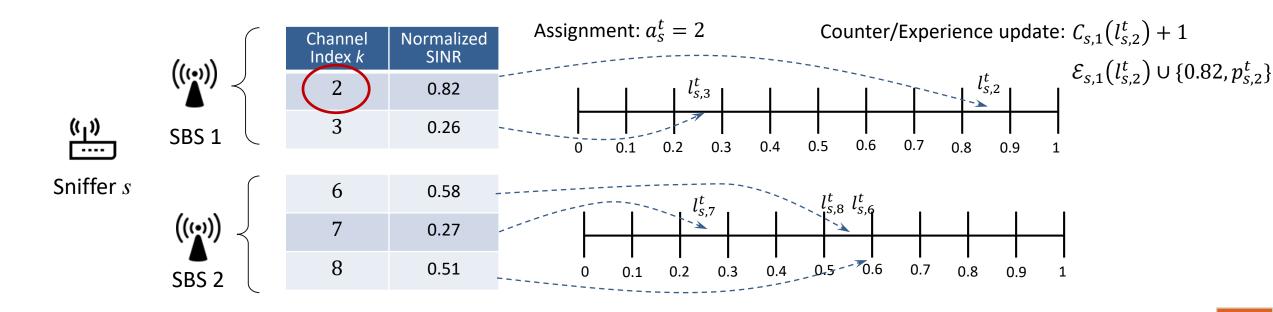


Contextual Combinatorial MAB (CCMAB)

- Utilize Context Information
 - Context: SINR of Sniffers
 - Recall $p_{s,k}^t = \Pr\{SINR_{s,k}^t \ge SINR_{u,k}^t\}$
 - $SINR_{u,k}^{t}$ of users is unknown yet $SINR_{s,k}^{t}$ of sniffers is observable (denoted by $\phi_{s,k}^{t} \in \Phi$)
 - Context-parameterized non-outage probability
 - $p_{s,k}^t \sim p_{s,n}(\phi_{s,k}^t)$ from unknown distribution parameterized by $\phi_{s,k}^t$
 - $\mu_{s,n}(\phi_{s,k}^t) \coloneqq \mathbb{E}[p_{s,n}(\phi_{s,k}^t)]$
 - Estimation of non-outage probability
 - Collect historical data for each context $\mathcal{E} \sim p_{s,n}(\phi_{s,k}^t)$
 - Estimate the expected value $\mathcal{E} \rightarrow \hat{\mu}_{s,n}(\phi_{s,k}^t)$
 - Context partitioning
 - Continuous context $\Phi \coloneqq [0,1] \rightarrow$ discrete context intervals \mathcal{L}_T
 - Similarity assumption: Similar context \rightarrow Similar non-outage probability



- Counter and Experience
 - Counter $C_{s,n}(l)$ and Experience $\mathcal{E}_{s,n}(l)$
 - Counter $C_{s,n}(l)$ records amount of collected data
 - $\mathcal{E}_{s,n}(l)$ stores the observed non-outage probabilities
 - Estimated non-outage probability $\hat{\mu}_{s,n}^t(l) = \frac{1}{C_{s,n}^t(l)} \sum_{p \in \mathcal{E}_{s,n}(l)} p$



- Online Sniffer Channel Assignment with CCMAB
 - Context observation
 - Each sniffer s senses SINRs $\phi_{s,k}^t$ on accessible channels $k \in C_s$, Determine whether the estimation is accurate
 - Find $l_{s,k}^t$ such that $\phi_{s,k}^t \in l_{s,k}^t$
 - Under-explored channels for sniffer $\mathcal{C}_{s}^{ue,t} \coloneqq \{k \in \mathcal{C}_{s}^{t} \mid \mathcal{C}_{s,n}(l_{s,k}^{t}) < Q(t)\}$
 - Exploration

- $S^{ue,t} = \{s \in S \mid C_s^{ue,t} \neq \emptyset\}$, randomly assign sniffer $s \in S^{ue,t}$ to a channel in $C_s^{ue,t}$

Exploitation

-
$$\mathcal{S}^{\mathrm{ed},t} = \{ s \in \mathcal{S} \mid \mathcal{C}^{ue,t}_{\mathrm{s}} = \emptyset \}$$

$$\max_{\boldsymbol{a}^{t}} \sum_{k \in \mathcal{H}^{t}} w_{k} \theta_{k}^{t}(\boldsymbol{a}^{t}; \boldsymbol{\hat{p}}^{t})$$

s.t. $a_{s}^{t} \in \mathcal{C}_{s}^{t} \cup \{null\}, \forall s \in \mathcal{S}^{\text{ed},t}$
 $a_{s}^{t} = null, \forall s \in \mathcal{S}^{\text{ue},t}$

- Performance Analysis
 - Regret

Optimal actions Decision of OSA

$$R(T) = \sum_{t=1}^{T} u(\mathbf{a}^{\text{opt},t}; \mathbf{p}^{t}) - \sum_{t=1}^{T} u(\mathbf{a}^{t}; \mathbf{p}^{t})$$

Regret Upper Bound

Theorem. Let $Q(t) = t^{\frac{2\alpha}{3\alpha+1}}\log(t)$ and $\beta_T = \begin{bmatrix} T^{\frac{1}{3\alpha+1}} \end{bmatrix}$, the upper bound of $\mathbb{E}[R(T)]$ is $O(NS^2w^{max}T^{\frac{2\alpha+1}{3\alpha+1}}\log T)$

- The regret upper bound is sublinear \Rightarrow Asymptotically optimal

Simulations

- Setup
 - 8 SBSs (blue tringles) in 1200m×1200m area
 - 25 sniffers (red squares) with grid layout
 - Randomly deployed Users (yellow dots)
 - Background color is the user density
- Factors affects SINR
 - Pathloss (distance and random shadowing)
 - Interferences (# of nearby users)

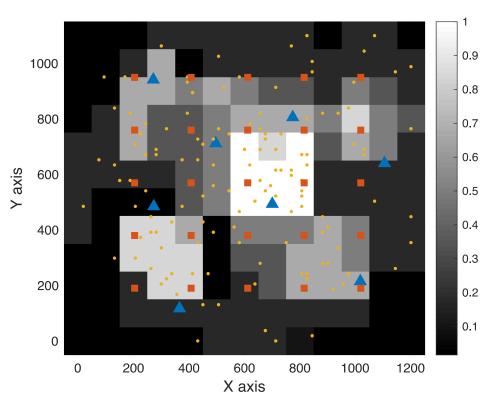
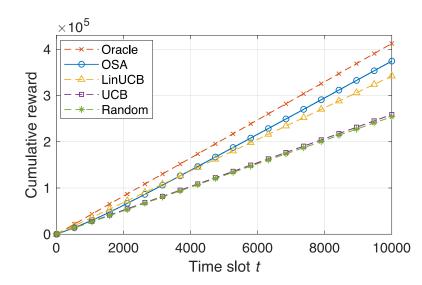
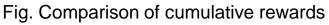


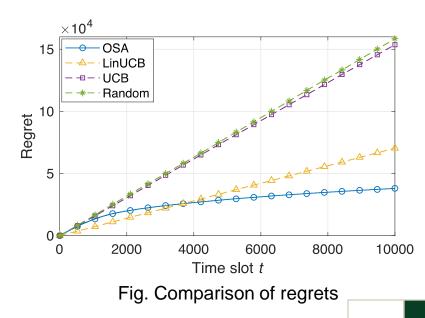
Fig. Simulation model

Simulations

- Benchmarks
 - **Oracle**: knowns the non-outage probability when making the SCA decision
 - UCB: a classic MAB algorithm, non-contextual and non-combinatorial
 - LinUCB: a variant of UCB and assumes the reward is a linear function of context
 - **Random**: takes random assignment decisions
- Cumulative rewards
 - OSA achieves close-to-oracle performance
- Regret
 - OSA achieves sublinear regret







Simulations

- OSA Variants
 - OSA with Assumed Perfect Monitoring (OSA-APM)
 - OSA with Non-Redundant Assignments (OSA-NRA)
- Rewards and Regret
 - Considering imperfect monitoring and redundant assignment is beneficial
 - Considering redundant assignment provides greater improvement

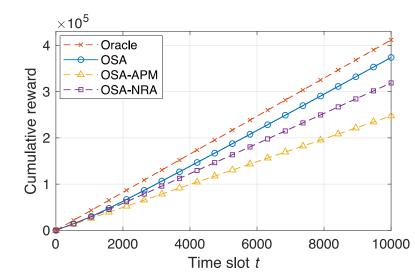
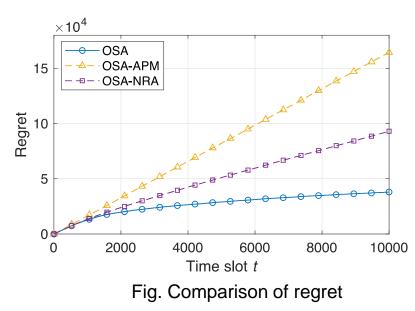


Fig. Comparison of cumulative rewards



Thank You!

Questions?

E-mail: lx.chen@miami.edu