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Abstract—Social connections among network nodes have been well investigated as an additional opportunity in network design (e.g.,

in routing strategies and trusted networking). This paper presents a paradigm shift that explores the design and performance analysis

of combining social links jointly with communication links for message delivery in wireless networks. In a combined multi-layer social

and communication network, communication links are based on conventional wireless technologies (e.g., WiFi, Bluetooth) and social

links are overlaid over a communication infrastructure (e.g., cellular network) that provides an alternative way for data transmission.

The goal is to characterize the performance analytically when routing is designed by combining social and communication links. A

distance discretization technique is applied to model the reliability and delay of message delivery. The analytical foundation is

developed to analyze the end-to-end delay and success probability under various effects of persistent transmission, potential error in

distance estimation, and mobility. Systematic routing strategies that employ network inference are then designed to improve the

performance in different aspects, such as delivery delay, delivery success probability, and energy-saving. A network emulation testbed

is implemented with actual radios and real-world social network datasets to measure the performance of a heterogeneous network with

social and communication links. The results in this paper show that the integration of social links in wireless network routing as a

multi-layer design leads to substantial performance improvement for delay and reliability of message delivery.

Index Terms—Wireless networks; network science; multi-layer networks; social links; delay; reliability.

F

1 INTRODUCTION

Leveraging social relationships to improve the network
performance has been recently investigated in network rout-
ing protocol design, such as social-aware routing in delay-
tolerant network (DTN) [1]–[6]. In these protocols, social ties
are typically used as abstract or conceptual links for a node’s
decision making in routing.

A social network can be considered not only as a logical
topology that represents social connections used for decision
making, but also as an overlay network over a physical
infrastructure for information delivery. For example, when
people make phone calls to their friends, they can commu-
nicate with each other because they have social links and
the cellular network infrastructure serves as the underlying
communication medium for such social links. In this regard,
cellular networks feature a heterogeneous architecture, in
which social links on top of the cellular (such as LTE)
infrastructure constitute an overlay network, and at the
same time WiFi or Bluetooth links of smart phones form
a conventional wireless network with peer-to-peer commu-
nication. Alternatively, social links can be also considered
as other communication means (such as using airborne
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relays, satellite communications, high power or directional
transmissions) to enable social connections. Current routing
and data delivery processes in cellular networks, by default,
operate over one network interface (e.g., web surfing in
smart phones through either the WiFi or cellular network
interface). If network design jointly takes into account the
overlaid social links and the conventional communication
links, the network performance can be potentially improved
with more reliable end-to-end delivery, higher throughput,
or smaller message delay.

Although a social network infrastructure may support
transmissions to non-friends (strangers), a stranger may not
want to forward data towards a destination. For example,
a person may send a message over a cellular network to
anyone and ask for forwarding this message. A social friend
is likely to forward but a stranger may not. As a result,
we assume that a node only sends data to friends in a
social network. Therefore, social links as a whole become
vital routing information at the network layer. There exists
a design space with performance benefits for integrating
social links as another type of data links into a wireless
network to form a combined social and communication
network.

Some recent studies have already considered a combined
network with both social and communication links [7]–[10].
The typical assumption for analytical foundations in these
works is that there exist an infinite number of users in a
finite-area network such that greedy routing [11]–[14] can
always reliably find a next hop neighbor to move a message
closer to the destination. Nonetheless, such an assumption
does not always hold due to two main reasons: (i) there are
only a finite number of nodes in a network therefore reliable
routing is not always guaranteed; and (ii) message delivery
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may also fail due to communication or social link failures
(as data delivery on social links still rely on an underlying
communication infrastructure).

In this paper, we aim to model the performance of a
combined social and communication network with a finite
number of nodes and link unreliability. We derive multi–
layer network routing strategies to optimize the perfor-
mance according to this model. Our approach to analyze the
performance of data delivery is based on a novel distance dis-
cretization technique, which gradually aggregates the delay
or success probability of a message that reaches a discretized
distance to the destination. Based on this approach, we
model and analyze the delivery delay and success probabil-
ity of a combined social and communication network with
respect to a variety of network conditions, such as node
density, mobility, and link failure pattern. We also develop
a proof-of-concept testbed to perform real-time high-fidelity
evaluation of combined social and communication network
design. The paper can be considered as an exploratory work
to model, analyze and evaluate a new type of wireless
networks with social links integrated as data links to show
the potential benefits of such a new network type. Our
contributions can be summarized as follows.

1) We developed a novel network discretization tech-
nique to model the message delivery of combined
social and communication networks.

2) We analyzed end-to-end delay and success probabil-
ity under effects of persistent transmission, potential
error in distance estimation, and mobility.

3) We designed and implemented systematic routing
strategies that employ network inference to improve
the performance in different aspects, such as deliv-
ery delay, delivery success probability, and energy-
saving.

4) We implemented a testbed with actual radios and
real-world social network datasets to measure the
performance of combined social and communica-
tion networks.

5) Our results motivate the integration of social links
into wireless network design to improve the mes-
sage delivery performance.

The remainder of this paper is organized as follows. In
Section 2, we introduce the preliminaries and models. In
Section 3, we present the performance analysis and simu-
lations of combined social and communication networks.
In Section 4, we show how to improve the performance
by changing routing strategies. In Section 5, we describe
the network emulation testbed and experimental results.
Section 6 reviews related work. Finally, we conclude this
paper in Section 7.

2 PRELIMINARIES AND MODELS

In this section, we present assumptions and models, and
then formulate the problem of message delivery in com-
bined social and communication networks.

2.1 Wireless and Social Network Models

We consider a multi-layer social and communication net-
work with a finite number of nodes, in which communi-
cation links are based on short-range wireless connections

(e.g., WiFi, Bluetooth) and social links are overlaid over
long-range communication infrastructures (e.g., satellite and
cellular networks). Both links can be used for data trans-
mission. Hence, the combined social and communication
network model differs from existing models [15]–[18] that
leverage social links only for decision making in routing.

To provide an analytical framework to model such a sce-
nario, we integrate social links into the traditional approach
of wireless ad hoc network modeling. We consider the
commonly adopted multi-hop wireless network model (e.g.,
[19]–[21]) where N nodes are uniformly and independently
distributed on a disk area with radius R. Nodes can com-
municate using communication links if they are within each
other’s communication range rc ≪ R, indicating that the
maximum number of hops in the network can be consider-
ably large. The uniform node distribution and the common
communication range are assumed to achieve a balance
between mathematical traceability and practical indication
in our modeling. As many mobility models (e.g., random
walk and random direction model [22]) statistically lead to
the uniform (or closely uniform) distribution of nodes over
the network given a snapshot of the network topology at a
particular time, our modeling and analysis apply to static
networks as well as model networks with node mobility
resulting in the stationary uniform node distribution.

Besides communication links, nodes can also communi-
cate via social links. In this paper, the social links are high-
level abstract links built upon a realistic data communica-
tion infrastructure (e.g., cellular or satellite networks) that
spans over the network area. Such social links are not used
as logical links in traditional networks, but can be consid-
ered as super links used to deliver data between two nodes
that are socially connected. Hence, throughout this paper,
social links are assumed to also have the capability of data
delivery. As a result, how nodes are connected via social
links is essential for the performance of the combined social
and communication network. It is well known that social
networks exhibit the small-world phenomenon, i.e., social
actors are linked by short chains of acquaintances [23]–[26].
We adopt the Octopus model [27], [28] to capture such a
phenomenon together with additional degree distribution
characterization such as scale-free network properties.

In the Octopus model, there are two types of social links:
short-range (SR) and long-range (LR) connection links to
account for close and far social connections, respectively. In
practice, social links may be coupled with communication
links between nodes. For example, two socially close friends
may be also geographically close to each other (e.g., friends
living in the same apartment); then, they have both social
and communication links. To accommodate such correla-
tions, we use probabilities γ

CS
and γ

CL
to denote the probabil-

ities that an SR or LR social link, respectively, correspond to
a communication link. Similarly, we denote by γ

NCS
or γ

NCL

the probabilities, respectively, that an SR or LR social link
exists between two nodes without a communication link.

Fig. 1 shows an example of how the combined social
and communication network is modeled: nodes B and C
are within node A’s wireless transmission range. Therefore,
there exist two communication links for node A: A ↔ B,
A ↔ C. In addition, the fact that A and B or A and C
are physically close may indicate that they are also socially
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Fig. 1. Social and communication links of a node in a combined network.

close (i.e., there is a chance for them to be socially close).
Therefore, we assume that there exists an SR social link with
probability γ

CS
between nodes A and B (or C). On the other

hand, they may not be socially close but still know each
other (i.e., there is an LR link between them according to the
Octopus model). We assume that there is an LR social link
with probability γ

CL
between nodes A and B (or C) if there

is no SR link. Consider nodes D and E in Fig. 1; because
they are not within node A’s wireless transmission range,
there is no communication link from node A to D (or E).
However, there still exists an SR social link with probability
γNCS between nodes A and D (or E). If the SR link does not
exist, there is an LR social link with probability γ

NCL
between

nodes A and D (or E).

2.2 Greedy Routing Procedure

In a combined social and communication network, a mes-
sage can be transmitted over social or communication links
along an end-to-end delivery path. We adopt the greedy
routing mechanism [7], [11], [27] for message delivery, as a
viable solution over a multi-hop path using only local infor-
mation at each node. In particular, each node in the network
maintains a table about their social neighbors as well as their
one-hop communication network neighbors. The mecha-
nism makes routing adaptive to a dynamically-changing
network topology, where there exists no stable end-to-end
path between two nodes. There are several assumptions
associated with the greedy routing: (i) there is no centralized
routing coordination in the network; (ii) the source only
uses its local next-hop information to make the routing
decision; (iii) the routing source or a forwarding node has
knowledge about where the destination is (or its distance
to the destination); (iv) greedy routing always forwards the
data closer to destination (i.e., the routing decision of the
source or a forwarding node is always to make sure the
next hop has a smaller physical distance than the source
or the forwarding node to the destination). Assumptions
(i) and (ii) are to ensure that greedy routing can be used
under a dynamically-changing network topology. But when
only local information is used, greedy routing still needs
some level of global information to route data to the correct
destination; therefore, the knowledge of its distance to the
destination becomes essential, which is assumption (iii).
This knowledge does not need to be exactly accurate. The
impact of approximate knowledge with distance estimation
errors is analyzed in Section 3.3.2. Assumption (iv) is the
heuristic nature of greedy routing over geographical areas.

A forwarding node under greedy routing always at-
tempts to find the next-hop node in all of its social link

S

B

A

F

E

D
C

… … 

next hop 

here!

Fig. 2. Under greedy routing, source S wants to deliver a message to
destination D.

and communication link neighbors, whose distance1 to the
destination is the shortest, and at the same time smaller
than the forwarding node’s distance to the destination. An
example is shown in Fig. 2, where source node S wants
to transmit a message to destination node D. Node S first
checks its neighbors via both social links (nodes E and F)
and communication links (nodes A, B, and C). Among all
neighbors, it chooses the one that is closest to destination
D, namely, node A in this case. Then, the message will be
transmitted to node A, who will follow the same greedy
routing procedure to find the next hop node. If nodes A
and B do not exist in Fig. 2, node C would become the
neighbor closest to destination D. However, its distance
to D is larger than source S’s distance to D. This means
that the message would be delivered farther away from
the destination, which is, however, not allowed by greedy
routing. Therefore, source S would simply drop the message
and claim delivery failure.

Note that social information is considered in routing
decisions. Social and wireless links are combined in a joint
graph, where the delay is minimized with local decisions.
Implicitly, social information (such as the social links and
the corresponding link delays and success probabilities) is
used in routing decisions.

2.3 Problem Formulation

With network model and routing protocol defined, we eval-
uate the success probability and delay of message delivery
in a combined social and communication network to ana-
lyze the benefit of a joint (multi-layer) network design for
the routing protocol.

To facilitate performance evaluation, we define the hop
distance k between two nodes in the network as k = ⌈d/rc⌉,
where d is their distance and rc is the communication range.
In addition, we denote by βs and βc the social and commu-
nication link success ratios, respectively. All the notations
used throughout this paper are shown in Table 1.

In this paper, we aim to evaluate the performance of a
combined social and communication network in terms of
the success probability of message delivery Sk and average
delay of message delivery Tk both as functions of hop
distance k.

3 ANALYSIS AND EVALUATION

In this section, we derive the success probability and delay
of end-to-end message delivery analytically under greedy

1. In this paper, distance is referred to as the geographical or physical
distance, not the social distance, unless specified otherwise.
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TABLE 1
Notations used in the paper.

N : number of nodes in the network.

R: network size.

λ: node density, defined as λ = N/(πR2).

rc: transmission range of a communication link.

βc: success ratio of a communication link.

βs: success ratio of a social link.

Dc: communication link delay.

Ds: social link delay.

γ
CS

: probability that there exists an SR social link
given the presence of a communication link.

γCL : probability that there exists an LR social link
given the presence of a communication link.

γ
NCS

: probability that there exists an SR social link
given the non-presence of a communication link.

γ
NCL

: probability that there exists an LR social link
given the non-presence of a communication link.

ρ: probability that two nodes are socially connected.

Sk : delivery success probability at hop distance k.

Tk : average delivery delay at hop distance k.

S′

m: delivery success probability at mini-hop distance m.

T ′

m: average delivery delay at mini-hop distance m.

routing, and then use simulations to validate the analysis.

3.1 Performance under Greedy Routing

To facilitate tractable analysis, our methodology is to pro-
pose a new approximation technique called distance dis-
cretization: First, rings are drawn with radii rc, 2rc, · · · ,
centered around the destination as shown in Fig. 3. If
the source has a hop distance of k to the destination, it
will fall between the (k − 1)-th and k-th rings. Second,
n − 1 mini-rings are drawn with equal space r′c = rc/n
between adjacent rings. The mini-hop distance m between
two nodes is defined as m = ⌈d/r′c⌉. Thus, if the source-
destination hop distance is k, its mini-hop distance satisfies
(k − 1)n + 1 ≤ m ≤ nk. The number n adjusts the
level of refinement of discretization (higher n means closer
approximation to continuous distances).

destination

...

...

...

mini-rings

source

1st ring

kth ring

k-1th ring

…

… wireless 

range rc

rings
...

Fig. 3. The source-destination distance divided by rings and mini-rings.

The success probability S′
m is defined as the probability

that message delivery is successful for a source-destination
path with mini-hop distance of m ≥ 1, and the delivery
delay T ′

m is defined as the delivery delay for a source-
destination path with mini-hop distance of m ≥ 1.

Given the complexity of combined social and commu-
nication networks, the direct derivation of S′

m (or T ′
m) is

mathematically intractable. Our approach is to derive a

recursive solution to S′
m (or T ′

m) that only includes the set of
{S′

j}1≤j≤m−1 (or {T ′
j}1≤j≤m−1) such that a numerical value

of S′
m (or T ′

m) can be computed given any network setup.

3.1.1 Delivery Success Probability

We first compute S′
m. Suppose that a source has a message

to send to its destination with mini-hop distance m. If
1 ≤ m ≤ n (i.e., the source is within one hop to the des-
tination), the source can always send the message directly
to the destination using the communication link. Thus, the
delivery success probability is the link success ratio of the
communication link, i.e., S′

m = βc for 1≤m≤n.
Now consider the case that m > n. Under greedy

routing, the source tries to find among its neighbors the
next-hop node with the smallest mini-hop distance (to the
destination) to forward the message. The next-hop node
must have a mini-hop distance smaller than m. Let Zm,j

denote the event that there exists a next hop node (via either
communication or social link) that reduces the mini-hop
distance by j, where 1 ≤ j ≤ m, i.e., the message will be
forwarded to a next-hop node with mini-hop distance m−j.
The next-hop node will then use the same greedy routing
strategy to forward the message. Thus, the delivery success
probability from the next-hop node is Sm−j . Then, we can
write S′

m recursively as

S′
m =







βc

∑n
j=1 P(Zm,j)S

′
m−j+

βs

∑m
j=n+1 P(Zm,j)S

′
m−j m ≥ n+ 1

βc 1 ≤ m ≤ n,
(1)

where S′
0 = 1 and P(e) is the probability of event e.

Next, we solve for P(Zm,j) in (1). We denote Em,x as
the event that the forwarding node can find a node via
either communication or social link that reduces the mini-
hop distance by x, where 1 ≤ x ≤ m. Recall that Zm,j is the
event that the next hop node reduces the mini-hop distance
by j, where 1 ≤ j ≤ m. Thus, event Zm,j is equivalent to
the event that Em,j happens but at the same time Em,j+1,
Em,j+2, · · · , and Em,m do not happen. Therefore, we can
express Zm,j as

Zm,j = Em,j

⋂





m
⋂

x=j+1

Ec
m,x



 , (2)

where Ec
m,x denotes the complementary of event Em,x,

i.e., the event that Em,x does not happen. Because of the
independent node distribution in the network, we have
from (2) that

P(Zm,j) = P



Em,j

⋂





m
⋂

x=j+1

Ec
m,x









≈ P(Em,j)
m
∏

x=j+1

P
(

Ec
m,x

)

= pm,j

m
∏

x=j+1

(1 − pm,x), (3)

where pm,x = P(Em,x). Note that the approximation in (3) is
to assume that {Em,x}x∈[j,m] are independent of each other.
From our comprehensive simulations, the approximation
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does not substantially affect the results in terms of success
probability and delay of message delivery.

Computing pm,x (i.e., the probability that the forwarding
node with mini-hop distance m can find a node to reduce
the mini-distance by x) consists of two parts in terms of hop
distance: 1 ≤ x ≤ n and n+ 1 ≤ x ≤ m.

...

...

mr'c

(m-x)r'c

(m-n)r'c

forwarding 

node

destination

(m-x+1)r'c

pm,x

...

...

Fig. 4. Areas between mini-ring pairs inside the communication range.

1) 1 ≤ x ≤ n: pm,x is the probability that there exists
a node in the shaded area between adjacent mini-rings
(m− x)r′c and (m− x+1)r′c, as shown in Fig. 4. We denote
by EIN

m,x and EOUT
m,x the events that the forwarding node

can find a node between adjacent mini-rings (m− x)r′c and
(m−x+1)r′c in Fig. 4 that reduces the mini-hop distance by
x inside and outside the transmission range, respectively. If
event EIN

m,x happens, the node can be reached via commu-

nication link. To compute EIN
m,x, we denote p1 = P((EIN

m,x)
c)

as the probability that there exists no node on the area
between mini-rings (m − x)r′c and (m − x + 1)r′c, which
can be computed via Poisson point process approximation
[29] as

p1=exp(−λ(A((m− x+ 1)r′c, nr
′
c,mr′c)

−A((m− x)r′c, nr
′
c,mr′c))). (4)

where λ = N/(πR)2 is the node density on the network
area, and A((m−x+1)r′c, nr

′
c,mr′c)−A((m−x)r′c, nr

′
c,mr′c)

is the area between mini-rings (m − x)r′c and (m − x +
1)r′c inside the communication range, in which A(ra, rb, d)
is a function to compute the intersection area of two circles
[30] with distance d that have radii ra and rb, respectively,
satisfying

A(ra, rb, d) = r2a cos
−1 r2a + d2 − r2b

2dra
+

r2b cos
−1 r2b + d2 − r2a

2drb
−

√

(−d+ra+rb)(d−ra+rb)(d+ra−rb)(d+ra+rb)

2
.

If event EOUT
m,x happens, the node can be only reached via

a social link. Fig. 5 shows an example of such an event: the
potential next-hop node is outside the communication range
of the forwarding node, but is socially connected to it. Thus,
it can reach the next-hop via the social link to reduce the
mini-hop distance by x.

In this case, as two nodes are socially connected with
some probability ρ, this probability can be computed based

...

...

forwarding 

node

destination

...

...

potential next-hop

only reachable via 

social link)

pm,x

Fig. 5. An example of the scenario that event EOUT
m,x happens when 1 ≤

x ≤ n.

on the social-communication link correlation model in Sec-
tion 2, i.e.,

ρ = γNCS + (1− γNCS)γNCL . (5)

We denote by p2=P((EOUT
m,x )

c) the probability that there
exists no node on the area between mini-rings (m − x)r′c
and (m− x+ 1)r′c outside the communication range. Using
the Poisson point process approximation and the thinning
theorem [29], we can get p2 as

p2 = exp(−ρλ((2(m− x) + 1)πr′2c −A((m− x+1)r′c,

nr′c,mr′c)+A((m−x)r′c, nr
′
c,mr′c))). (6)

It follows from (4) and (6) that

pm,x = 1− P((EIN
m,x)

c)P((EOUT
m,x )

c) = 1− p1p2. (7)

(m-n-1)r'c

(m-x+1)r'c

(m-x)r'c…… 

…

fowarding 

node

destination

…

…

…

Fig. 6. Areas between mini-ring pairs outside the communication range.

2) n + 1 ≤ x ≤ m: We consider two cases that x = m
and n + 1 ≤ x < m. If x = m, pm,x is the probability that
the forwarding node is socially connected to the destination.
Then, we have pm,x = ρ given in (5). If n+1 ≤ x < m, pm,x

is the probability that there exists a node in the shaded area
between mini-rings (m− x)r′c and (m− x+ 1)r′c, as shown
in Fig. 6. For a Poisson point process with density ρλ on the
area, we obtain

pm,x = 1− eρλπ(2(m−x)+1)r′2
c . (8)

In summary, we have the delivery success probability at
mini-hop distance of m as

S′
m =







βc

∑n
j=1 P(Zm,j)S

′
m−j+

βs

∑m
j=n+1 P(Zm,j)S

′
m−j m ≥ n+ 1

βc 1 ≤ m ≤ n,
(9)
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...

...

...

kth ring

success probability Sk between two rings

(k-1)th ring

area am with success probability Sm’

Fig. 7. Compute Sk from S′

m.

where the initial condition is S′
0 = 1, P(Zm,j) =

pm,j

∏m
x=j+1(1− pm,x),

pm,x =







1− p1p2 1 ≤ x ≤ n

1− eρλπ(2(m−x)+1)r′2
c n+ 1 ≤ x < m

ρ x = m,

ρ = γ
NCS

+(1− γ
NCS

)γ
NCS

, and λ = N/(πR)2. Accordingly, as
shown in Fig. 7, the success probability Sk at hop distance
k can be computed from mini-hop distance S′

m as

Sk =

∑kn
m=(k−1)n+1 amS′

m

π(2k − 1)r2c
,

where am is the area between the (m−1)-th and m-th mini-
rings, satisfying am = (2m− 1)r′2c .

3.1.2 Delivery Delay

Next, we proceed to derive the average delivery delay T ′
m.

We denote by Am the event that message delivery at mini-
hop distance m is successful. Then, P(Am) is the delivery
success probability and it is given in (9). Conditioned on
event Am, the average delay at mini-hop distance m is
expressed in a recursive way as

T ′
m =

m
∑

j=1

P(Zm,j |Am)(Dj + T ′
m−j), (10)

where the initial condition is T ′
0 = 0, Dj is the delay over j

hops, satisfying

Dj =

{

Dc(communication link delay) j ≤ n
Ds(social link delay) j > n,

(11)

and

P(Zm,j |Am) = P(Zm,j ∩ Am)/P(Am)

= P(Zm,j ∩ ((Bm,j ∩ Zm,j ∩Am−j) ∪

(∩m
k=1,k 6=j(Bm,k ∩ Zm,k ∩ Am−k))))/P(Am)

= P(Bm,j)P (Zm,j)P (Am−j)/P(Am). (12)

In (12), Bm,j is the event that the link from the node with
mini-hop distance m to the node with mini-hop distance
m− j does not fail. It follows from (10) and (12) that

T ′
m = βc

n
∑

j=1

(P(Zm,j)S
′
m−j

S′
m

(Dc + T ′
m−j)

+βs

m
∑

j=n+1

P(Zm,j)S
′
m−j

S′
m

(Ds + T ′
m−j). (13)

Then, the average delivery delay Tk at hop distance k can
be computed from mini-hop distance delay T ′

m as

Tk =

∑kn
m=(k−1)n+1 amT ′

m

π(2k − 1)r2c
,

where am is the area between the (m−1)-th and m-th mini-
rings, satisfying am = (2m− 1)r′2c .

Consequently, the delivery success probability and delay
can be computed by (9) and (13), respectively. Note that (9)
and (13) are based on the distance discretization technique,
which separates the distance between two nodes into mini-
rings with space rc/n, as shown in Fig. 3. It is expected
that the best approximation is achieved when n → ∞ (i.e.,
the number of mini-rings used to discretize the continuous
distance goes to infinity).

3.2 Simulation Validation

Simulations are used to validate the theoretical analy-
sis and measure the performance of combined social-
communication networks. We set up a 100-node network on
a disk with radius 700 meters (m). The communication range
of each node is rc = 65m. We map the social network on
the communication network with the following parameters:
γ

CS
= 0.3, γ

CL
= 0.01, γ

NCS
= 0.01, and γ

NCL
= 0.077,

which represent geographically correlated social relation-
ships between nodes. These numbers are computed based
on the Reality Mining dataset [31] that includes self-report
relationship/friendship data and cell tower proximity in-
formation used in our experiments in Section 5. We use
n = 20 to compute the theoretical results based on distance
discretization in all simulations and experiments.
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Fig. 8. Success probability with different communication and social link
failures.

We measure the success probability in Fig. 8, which
shows that as the hop distance increases, the success prob-
ability first sharply decreases then stabilizes and converges
to some constant. In addition, more communication or so-
cial link failure leads to smaller success probability. This
means the successful message delivery relies heavily on
the reliability of communication and social links. Note
that there are 100 nodes over the disk region with radius
700m and the wireless communication range rc = 65m.
This means that the average coverage is approximately
100 × (652π)/(7002π) ≈ 0.86 in the network. As a result,
it is a relatively sparse random network scenario and a
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Fig. 9. Distant node has more chance to find through the communication
link a next hop that has a direct social link to the destination under
greedy routing.
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Fig. 10. Average delivery delay with different communication and social
link failures.

node is likely not to find a next-hop node to forward data.
Therefore, the success probability (when the hop distance
is larger than 1) appears to be relative low in Fig. 8.
Moreover, if we consider the network as a traditional multi-
hop wireless ad hoc network without any social link, the
success probability decays exponentially to zero as the hop
distance increases. In contrast, by integrating social links
into wireless networks, we can see that from Fig. 8 that
the exponential decay to zero vanishes and the success
probability remains positive even when the hop distance
is large. This in fact shows that the joint greedy routing
over the combined network brings benefits to the network
performance.

It is worth noting that as Fig. 8 shows, after the initial
sharp decrease, the success probability slightly increases
when the hop distance increases. This indicates that larger
distance between two nodes does not always lead to less
reliable delivery. The reason behind this apparently counter-
intuitive result is that greedy routing always attempts to
move a message closer to the destination. However, a closer
node in fact has less chance to find a next hop with a social
link to the destination. An example is shown in Fig. 9,
where node 1 is closer than node 2 to the destination. Under
greedy routing, they will examine if there exist neighbors
(as potential next hop nodes) in areas A and B, respectively.
However, area B is larger than area A. This means that
node 2 will have more chance to find a node through the
communication link as the next hop that has a social link
directly to the destination. As a result, Fig. 8 demonstrates
that after the initial sharp decrease, the success probability
then slightly increases and remains approximately constant
as the hop distance increases.

Fig. 10 shows the average delivery delay as a function of

hop distance. It is observed from Fig. 10 that the delay does
not increase linearly as the hop distance increases, but starts
to converge when the hop distance is large. The reason is
that a node can always have a chance to find a social link
that reduces the hop distance larger than 1. Moreover, an
interesting phenomenon in Fig. 10 is that the delivery delay
decreases as the link failure increases. The reason is that it is
very hard to deliver a message over multiple hops with high
failure probabilities. Therefore, when a message delivery is
successful, it is very likely to be delivered over one or few
hops. Thus, the delay is in fact smaller with higher failure
probabilities.

Figs. 8 and 10 demonstrate that there is a close match
between the theoretical analysis and simulation result (e.g.,
the maximum deviation for success probability is 6.7%
at hop distance d = 10), thereby validating the distance
discretization model to analyze the delay and success prob-
ability.

3.3 Further Analysis and Simulations

3.3.1 Improve Reliability using Persistent Transmission

In practice, either communication or social link could fail to
deliver a message. In some applications with high reliability
requirements, we can significantly improve the reliability of
hop-by-hop message delivery by retransmitting a message
until the transmission is successful at the cost of increasing
the delay. This means that the one-hop reliability via social
or communication link is guaranteed to be 1 while the
expected delay is increased to Ds/βs and Dc/βc for social
and communication links, respectively.
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Fig. 11. Success probability under persistent transmission with different
communication and social link failures.

Fig. 11 shows the success probability under persistent
transmission. The delivery success probability always re-
mains the same with different link failure probabilities.
Therefore, persistent transmission is able to substantially
improve the delivery success in the combined social and
communication network.

The cost or penalty of persistent transmission is the
degradation in delay performance. Fig. 12 demonstrates the
delivery delay under persistent transmission. It is clear in
Fig. 12 that higher failure probability increases the delivery
delay. For example, when the network and social link suc-
cess probabilities change from 80% and 90% to 30% and
20%, respectively, the delivery delay at the hop distance
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Fig. 12. Average delivery delay under persistent transmission with differ-
ent communication and social link failures.

of 10 increases from 12.7 ms to 48.12 ms under persistent
transmission, as shown in Fig. 12. In practice, we should
design the persistent transmission scheme with a reason-
able trade-off between the success probability improvement
and the delay degradation. For example, we should limit
the number of persistent transmissions for delay-sensitive
traffic, and choose a fairly large number of retransmissions
for best-effort traffic.

3.3.2 Impact of Distance Estimation Error

If every node has only incomplete local information, it may
estimate the distance values of its neighbors with errors.
For example, estimation errors in signal based distance esti-
mation methods are unavoidable [32]–[34]. We model such
uncertainty in location information as the error probability
ea,b, which is the probability that a node with actual mini-
hop distance a to a destination will be estimated as b.

To accommodate distance errors in analysis, we re-
compute the probability that the next forwarding node
reduces the hop distance by j, i.e., P(Z̃m,j). First, we denote
Ẽm,x as the event that the forwarding node can find a node
(not necessarily the next hop node because greedy routing
always chooses the node nearest to the destination as next
hop) via either communication or social link that reduces
the mini-hop distance by x, where 1 ≤ x ≤ m. This means
that event Z̃m,j is equivalent to the event that Ẽm,j happens
but at the same time Ẽm,j+1, Ẽm,j+2, · · · , and Ẽm,m do not
happen, or they happen but the errors make the forwarding
node believe they have longer distances.

Generally speaking, it is difficult to precisely analyze the
success probability and delay with arbitrary distance errors.
However, if the distance error is relatively small compared
with the mini-hop distance m, we can neglect the effect of
neighbors with original distances longer than the distance
of the forwarding node, and obtain approximately

Z̃m,j ≈ Ẽm,j ∩ (∪m−1
j∗=1(Um−j,m−j∗ ∩ (∩x 6=j∗(

Ẽc
m,x ∪ (Ẽm,x ∩ (∪j∗−1

e=1 Um−x,m−e)))))), (14)

where Ua,b denotes the event that the distance a is estimated
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Fig. 13. Success probability with distance estimation errors.
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Fig. 14. Delivery delay with distance estimation errors.

as b, and P(Ua,b) = ea,b. Accordingly we have

P(Z̃m,j) ≈ p̃m,j

m−1
∑

j∗=1

(em−j,m−j∗Π
m
x=1,x 6=j∗

((1− p̃m,x) + p̃m,x

j∗
∑

e=1

em−x,m−e)), (15)

where p̃m,x = P̃(Em,x). Then, the success probability fol-
lows immediately.

Figs. 13 and 14 show the success probability and de-
livery delay comparisons, respectively, between theoretical
analysis and simulation results under different distance
estimation errors. The simulation setups are the same as
those in Figs. 8 and 10 except for the distance estimation
error: when each node estimates the distance, the estimation
error is uniformly distributed within 1 or 2 hop distance.

It is seen from Figs. 13 and 14 that the simulation results
closely match the theoretical analysis, and also the distance
error does not have a significant impact on the routing
performance.

3.3.3 Impact of Mobility on Performance

Next, we analyze how mobility can affect the message
delivery. We consider the worst case for a multi-hop wireless
network: when a node transmits a message to the next hop,
the next hop always moves out of the transmitting node’s
wireless range and also farther away to the destination. In
other words, the next hop distance always increases after
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the delivery. In this setup, messages cannot be delivered by
communication links, because a node will always move out
of the communication range during the message transmis-
sion.

For each transmission, we denote by w the maximum
increase of the mini-hop distance of the next hop. That is,
when a node makes a routing decision to transmit to the
next hop with mini-hop distance m, after the transmission,
the mini-hop distance of the next hop becomes m+w in the
worst case. In this regard, a message can never be delivered
in wireless networks with communication links. However,
it can still have a chance to be delivered when social links in
a combined social and communication network are used.

We denote by Sworst
m the success probability of mini-hop

distance m under such a worst-case scenario. Because com-
munication links always fail due to the worst-case mobility,
Sworst
m becomes a function of social link success probability

βs, and we can write Sworst
m in a similar way as

Sworst
m =







βsP(Zm,m)+

βs

∑m−1
j=n+1P(Zm,j)S

worst
m−j+w m≥n+1

βs 1≤m≤n.
(16)

For a practical network, it is feasible to assume that the mini-
hop distance is always bounded above; i.e., m ≤ Mmax,
where Mmax = ⌈2Rn/rc⌉ is the maximum mini-hop dis-
tance between two nodes at the network boundaries. Then,
we can formulate and solve (16) as a linear system for all
Sworst
m , 1 ≤ m ≤ Mmax. Table 2 shows a numerical example

of the success probability due to the worst-case mobility
when (i) routing is performed with communication links
only, (ii) combined social and communication links are used.

TABLE 2
Success probability vs. hop distance.

Hop distance: 1 3 5 7 9

Success probability (i) 0% 0% 0% 0% 0%

Success probability (ii) 6.1% 6.2% 6.5% 6.9% 7.3%

Table 2 shows that if we use communication links only,
the success probability is always 0 because the next hop will
always move farther away from the destination. However,
if the routing design uses both social and communication
links, there always exists a positive probability that a mes-
sage can be delivered via social links even under the worst-
case mobility for multi-hop wireless networks.

4 IMPROVED ROUTING PROTOCOLS

In this section, we present how routing with only local
information can be adapted to improve either the delay
or the success probability by using analytical results and
network inference.

4.1 Improve the Delay Performance

We first show how to improve the delay performance. As
shown in Fig. 15, suppose that node A knows social link
delay Ds, communication link delay Dc, and the average

mini-hop distance advancement denoted by hm at mini-
hop distance m by using the communication link. When
node A finds a social link to forward a message to node B
that can reduce the mini-hop distance by d, it knows that
the delivery delay is Ds, if it uses the social link, and it also
knows that the average delivery delay to node B will be
dDc/hm, if it can find a path to node B with communication
links only. This means that if node A wants to reduce the
delivery delay, it should take the risk to find a path with
communication links only to node B if dDc/hm < Ds.

A

BSocial link delay Ds.

……
 

Average delay of a path 

with communication 

links only is dDc/hm.

Dc
Dc

Dc

Dc

Using the communication link can 

reduce the mini-hop distance by hm.

Compare these two 

values to choose a route.

Fig. 15. Illustration of how a node improves the delay.

Thus, greedy routing for delay improvement chooses a
social link compared to a communication link if the mini-
hop distance d between two nodes satisfies

d ≥ (hmDs)/Dc, (17)

where hm is given by

hm =

∑n
j=1 jP(Zm,j)

n
∑n

j=1 P(Zm,j)
. (18)

Then, the success probability becomes

Sopt1
m =







βc

∑n
j=1 P(Zm,j)S

′
m−j+

βs

∑m
j=y(hm)P(Zm,j)S

′
m−j m≥n+ 1

βc 1≤m ≤ n,
(19)

where y(hm) = n+1+⌊nhmDs

Dc

⌋, and S
opt1
0 = 1. In a similar

way, we obtain the delay as

T ′
m = βc

n
∑

j=1

P(Zm,j)S
′
m−j

S′
m

(Dc + T ′
m−j)

+βs

m
∑

j=y(hm)

P(Zm,j)S
′
m−j

S′
m

(Ds + T ′
m−j). (20)

4.2 Improve the Delivery Reliability

A

BSocial link success probability βs.

……
 

Success probability over a 

path with communication 

links only is (βc zm,j)d/hm.

βc

Using the communication link can reduce the mini-hop distance by 

hm. The probability of finding the next hop is zm,j.

Compare these two 

values to choose a route.
βc

βc

βc

Fig. 16. Illustration of how a node improves the success probability.

Similar to the greedy routing for delay improvement, as
shown Fig. 16, the greedy routing for success probability
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improvement chooses a social link compared to a com-
munication link in the combined network, if the mini-hop
distance satisfies

d ≥
hm log βs

log(zm,jβc)
, (21)

where hm is the average hop advancement for the commu-
nication link, and zm,j =

∑n
j=1 P(Zm,j) denotes the prob-

ability that node A can find a next-hop node through the
communication link. Then, the success probability and delay
have the same expressions as (19) and (20), respectively,
where y(hm) is different and follows from

y(hm) = n+ 1 +

⌊

nhm log βs

log(
∑n

j=1 P(Zm,j)βc)

⌋

. (22)

4.3 Improved Routing with Practical Implementation

Note that improved routing must work with the knowl-
edge of Ds, Dc, βs, βc, hm, and zm,j . The first four terms
are point-to-point parameters that can be measured locally
between a node and its neighbors. The last two terms are
non-local network statistics, which can be both computed
theoretically from node density λ and the probability ρ that
two nodes are socially connected.

If ρ and λ are unknown, a node can reverse-engineer
them out of observations (i.e., using network inference to ob-
tain ρ and λ). In particular, a node can compute the success

probability Ŝm from its messages received at different mini-
hop distance m (e.g., the node can compute the probability
by comparing the sequence numbers of received messages).

Then, based on the observation Ŝm and the theoretical
modeling S′

m, the following grid search is performed to
estimate the network parameters ρ and λ:

(ρ̂, λ̂) = argmin
ρ, λ

∑

m

|S′
m(ρ, rc)− Ŝm|. (23)

The estimates (ρ̂, λ̂) are sent to the routing process to im-
prove either the delivery delay or the success probability.
Note that developing an efficient solution to (23) is outside
the scope of this paper. We simply use exhaustive grid
search for our experiments. In a practical system, a destina-

tion node can measure Ŝm by checking the sequence num-
bers of packets. For example, if one packet with sequence
number 1005 is followed by another packet with sequence
number 1010, the destination can deduce that 4 packets are

lost, from which it can measure Ŝm.
It is worth noting that the delay measurements can also

be used as a way to infer ρ and λ, i.e.,

(ρ̂, λ̂) = argmin
ρ, λ

∑

m

|T ′
m(ρ, rc)− T̂m|. (24)

An issue in (24) is that the destination must have a synchro-
nized clock with the source in order to precisely measure the
time delay, which is usually not available. Thus, we choose
to use (23) as a network inference method to improve the
routing performance.

4.4 Energy-Saving Routing

In addition to the two types of improved routing proto-
cols, another routing strategy can be built upon network

inference to save energy consumption at each node. Note
that after performing network inference, a node can intel-
ligently foresee message delivery outcomes with inferred
information. One direct application of such capability is to
save energy in the network by avoiding transmitting delay-
sensitive messages that have a high chance to miss the
deadline. Specifically, a node can infer an approximate delay
distribution for each hop distance. When it has a message
to transmit/forward, it can first compute the probability
that the message could miss the deadline. If the probability
is larger than a threshold, the node can simply discard
the message to save energy due to the high chance that
the message cannot reach the destination on time. We will
evaluate the performance of such a protocol in experiments.

5 TESTBED AND EXPERIMENTS

In this section, we set up a proof-of-concept testbed to
measure the performance of combined social and commu-
nication networks under greedy routing and its improved
versions. The testbed consists of programmable WiFi ra-
dios, RouterStation Pros [35], that represent network nodes,
an Ethernet switch, and a high-fidelity multi-hop wireless
channel emulator, called RFnestTM [36].

5.1 Network Setup

Each node has one WiFi interface as the wireless commu-
nication link. All nodes are connected via (radio frequency)
RF cables to network channel emulator RFnestTM that can
attenuate realistic RF signals according to any specific net-
work topology. They are also connected via Ethernet cables
to an Ethernet switch to emulate the social links. A social
network server is also connected with the switch. Any
message transmitted over a social link will go to the server
first, then be forwarded to the next hop. Thus, the social
link delay and failures are emulated at the social server to
accommodate various social network and link conditions.
During our experiments, the total number of nodes is set to
be 21 due to current hardware configurations.

5.2 Social Dataset

We use the Reality Mining dataset [31] to generate social
connections between nodes in the testbed. The Reality Min-
ing project was conducted from 2004-2005 at the MIT Media
Laboratory. There are measurements of 94 subjects using
mobile phones pre-installed with software that recorded and
sent the data about call logs, Bluetooth devices in proximity
of approximately five meters, cell tower IDs, application
usage, and phone status. The dataset also collected self-
report relational data from each individual, where subjects
were asked about friendship with others. We use the data of
21 individuals with the largest number of friends. We also
use the network connectivity data in Reality Mining to set
up the wireless network topology in RFnestTM.

5.3 Performance of Greedy Routing

We first measure the success probability and delivery delay
in Figs. 17 and 18, respectively. It is observed from Fig. 17
that as the hop distance increases, the success probability
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Fig. 17. Measurements of success probability with different communica-
tion and social link failures.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Hop Distance

D
e

liv
e

ry
 D

e
la

y
 (

m
s
)

 

 

Theoretical:β
 s

 = 90%, β
c
 = 95%

Experimental: β
 s

 = 90%, β
c
 = 95%

Theoretical: β
 s

 = 40%,β
c
 = 30%

Experimental: β
 s

 = 40%, β
c
 = 30%

Fig. 18. Measurements of delivery delay with different communication
and social link failures.

first sharply decreases then converges. In addition, if the so-
cial link is more reliable with low link failure probability, the
end-to-end success probability will also be improved. Note
that it is also found in experimental results that when the
hop distance increases, the success probability also slightly
increases. This means that under greedy routing, farther
nodes may have larger success probability than closer nodes
for message delivery to the destination.

Fig. 18 shows the delivery delay as a function of hop
distance. The delay does not increase linearly as the hop
distance increases, but starts to converge when the hop
distance is large. This is because a node can always have
a chance to find a social link that reduces the hop distance
larger than 1.

Figs. 17 and 18 also show that there is a reasonable
match between the theoretical analysis and experimental
results. For example, the maximum derivation for success
probability is 20.1% at hop distance d = 3 and the average
deviation is 9.3%. Therefore, our modeling does provide a
good prediction for the performance of the testbed system.

5.4 Performance of Improved Greedy Routing

Next, we consider improved greedy routing to improve de-
lay and success probability. Note that in practice, not every
node has knowledge of network parameters. Thus, nodes
have to obtain network parameters via network inference.
During our experiments, the probability ρ that two nodes
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Fig. 19. Delivery delay under delay-improved greedy routing (14.5%
inference error, 20% communication and 40% social link failure).
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Fig. 20. Success probability under delay-improved greedy routing
(14.5% inference error, 20% communication and 40% social link failure).

are socially connected and node density λ are both unknown
to every node. The improved greedy routing always uses

ρ̂ and λ̂ obtained from network inference (23) to make
routing decisions. We found that even with sufficiently
large number of samples of received packets, there always
exists an error floor of 10% - 20% errors to deduce network
parameters to improve greedy routing. The error floor is
due to two causes: (i) the sampled measurements are subject
to hardware randomness and errors; and (ii) the theoretical
analysis is based on an approximation technique, which will
lead to small errors in practice.

We first consider the delay-improved greedy routing.
Fig. 19 shows the delivery delay under delay-improved
greedy routing. We can see that although there is a per-
formance gap for the improved greedy routing between
ideal and inferred network parameters, the inference results
can still evidently help reduce the delay for the improved
greedy routing compared with the regular greedy routing.

Fig. 20 illustrates the comparison of success probability
between delay-improved routing and regular greedy rout-
ing. We can observe from Fig. 20 that there exists a slight
penalty to improve the delay performance as the success
probability is reduced under the delay-improved routing.

We next evaluate the performance of success probability-
improved greedy routing. Table 3 shows the comparison
of experimental results at hop distances 2 and 3 between
regular greedy routing and improved greedy routing for
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TABLE 3
Performance of Success Probability-Improved Routing.

Hop distance: Regular Improved

2 1.326e-1 1.387e-1

3 7.034e-2 8.984e-2

Parameters: 14.5% inference error, 10% communication and 99% social
link failures.
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Fig. 21. Comparison of success probability under regular greedy routing
and energy-saving greedy routing (20% communication and 40% social
link failure).

success probability. Table 3 shows that the success probabili-
ties are very small with slight improvements. This is because
if a social link is so unreliable that nodes have to choose a
communication link, it is still very hard to find a next hop
towards the destination via the communication link as there
are only a finite number of nodes in the network.

5.5 Energy-Saving Routing

An energy-saving routing is also implemented to measure
how energy can be saved by estimating message delivery
outcomes based on network inference. In the testbed, we
generate messages with a 5-ms deadline. Every node is
implemented to discard a message if it infers that the mes-
sage cannot be delivered with a probability larger than 80%.
Fig. 21 shows that there is a slight performance loss in terms
of success probability for such an energy-saving scheme.
However, Fig. 22 shows that the average delivery delay is
significantly reduced to values within the 5-ms deadline.

Fig. 23 shows the ratio of the number of saved trans-
missions with the energy-saving scheme over that without
energy-saving, which essentially represents how much en-
ergy is saved. It is noted from Fig. 23 that when the hop
distance is large, around 80% energy can be saved to avoid
unnecessary transmission of delay-sensitive messages.

5.6 Discussions and Limitations

We designed and implemented three routing protocols on
top of the testbed to decrease the delay of message de-
livery, improve reliability of message delivery, and save
transmission energy, respectively. Our studies showed that
adequately combining social links with wireless network
design can substantially benefit wireless networks in many
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Fig. 22. Comparison of delivery delay under regular greedy routing and
energy-saving greedy routing (20% communication and 40% social link
failure).
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Fig. 23. Percentage of saved transmissions in energy-saving greedy
routing (20% communication and 40% social link failure).

perspectives such as delay, reliability and energy saving. To-
day’s network infrastructures provide an underlying archi-
tecture that overlays social networks over wireless commu-
nication medium. Therefore, combined social and commu-
nication design for data delivery is a promising technique
for network performance optimization.

5.6.1 Complexity of Analytical Framework

In this paper, the analytical framework to solve the probabil-
ity of delivery success (e.g., (9)) and delay (e.g., (13)) requires
recursive computations with computational complexity pro-
portional to the parameter n in the distance discretization
approach. This means that the computation time becomes
longer if we increase n to improve the computation accuracy
(and the time will grow to ∞ when n → ∞). From our
simulations, we find that a range of n ∈ [15, 25] is sufficient
to obtain an approximate match between the theoretical
and simulated results, while reducing the computation time
in theoretical analysis. For example, in Figs. 8 and 10, we
choose n = 20 and observe the approximate matches under
various conditions.

5.6.2 Limitations

In this paper, we present an exploratory work to analyze the
network performance of a new type of wireless networks
with social links integrated as additional data links into
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the wireless communication links. Although today’s net-
work systems have not yet adopt such a design paradigm,
their underlying infrastructures as well as people’s social
conductivities do provide all necessary conditions for a
combined social and communication network design. Such
a combined network design shows potential benefits to
improve the network performance, such as delivery reli-
ability and delay. Our proof-of-concept testbed evaluation
was conducted at a relatively small scale. Hence, thorough
investigations are still needed to understand how a com-
bined network design can perform in a practical large-scale
network environment. The work in this paper can be served
as the first step to a comprehensive understanding on how
to combine social and communication network design.

6 RELATED WORK

Social-Aware Routing: Many social-aware routing proto-
cols have been developed in the literature for DTNs. These
designs leverage social relationships to improve the net-
work performance [1]–[6]. In these protocols, social ties are
typically used as abstract or conceptual links for a node’s
decision making in routing, and are not used as links for
data delivery. In particular, DTNs aim to tolerate the delay.

There have been few studies on data delivery and rout-
ing (with local information only) in purely social networks
[28], where the delay is the main objective without consid-
ering the potential link failures and there is also no commu-
nication network or overlaid/hybrid network architecture
considered.
Combined Social and Communication Network Analysis:
Some recent studies have already considered a combined
network with both social and communication links [7]–
[10] under the geometry-based greedy routing. The typical
assumption for analytical foundations in these works is that
there exist an infinite number of users in a finite-area net-
work such that the greedy routing [11]–[14] can be applied
by assuming a next hop neighbor closer to the destination
can be always found. For example, [7] and [10] analyzed
the performance of a combined network with an infinite
number of users, and [9] considers a mobile scenario, in
which there are an infinite number of nodes moving around
in the network.

Nonetheless, the assumption of infinite nodes does not
always hold. There are two under-explored issues in mod-
eling and evaluating a combined social and communication
network with a finite number of nodes:

1) It is not clear how to analyze the performance of
a practical network with a finite number of nodes,
where message delivery may fail not only due to
social or communication link failures, but also due
to the non-existence of a next-hop node closer to the
destination.

2) Existing design and schemes (either social aware
routing heuristics or combined network analysis
with an infinite number of nodes) were validated
in simulations only, but it is still unknown how
routing will perform in system-level experiments
with actual radios used for communication links
and a realistic social network dataset used for social
links.

Our work addresses the issues in existing studies by mod-
eling the performance of message delivery under greedy
routing in a combined social-mobile network with a finite
number of nodes and link unreliability. We further improve
the greedy routing strategy used in existing studies based
on our modeling and analysis, and evaluate the improved
strategies in comprehensive simulations and real-world im-
plementations.

Note that this paper extends the preliminary models
proposed in our conference version [37] in three aspects:
(i) we integrate more practical settings, including distance
estimation error and mobility, into the analytical frame-
work; (ii) we propose different improved routing strategies
based on the modeling and analysis; and (iii) we perform
comprehensive simulations and experiments to validate the
theoretical analysis. The framework of [37] for finite node
analysis has been applied in [38] to learning in mobile ad
hoc networks under the assumption of reliable links.

7 CONCLUSION

In this paper, we systematically studied the performance of
combined social and communication networks with a finite
number of nodes. We proposed a distance discretization
technique to derive the success probability and delay of
message delivery. The model incorporates the effects of per-
sistent transmission, potential error in distance estimation,
and mobility. We used the analytical results and the inferred
network properties to improve routing protocol design in
terms of success probability, delay, and energy saving. We
built a testbed to implement routing strategies to improve
the delivery reliability, energy, and delay performance. We
also conducted a variety of experiments on the testbed
to measure the performance of social and communication
networks. Our results motivate the use of social links in a
wireless network to substantially improve the performance
of end-to-end message delivery. The future work includes
adapting the modeling into realistic real-world protocols
and finding the best application domains for social-model
network integration.
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