
PDF Mirage: Content Masking Attack
Against Information-Based Online Services

Ian Markwood∗
†
, Dakun Shen∗

†
, Yao Liu

†
, and Zhuo Lu

†

†
University of South Florida, Tampa, FL, U.S.A

*Co-First Authors

Abstract

We present a new class of content masking attacks
against the Adobe PDF standard, causing documents to
appear to humans dissimilar to the underlying content ex-
tracted by information-based services. We show three at-
tack variants with notable impact on real-world systems.
Our first attack allows academic paper writers and re-
viewers to collude via subverting the automatic reviewer
assignment systems in current use by academic confer-
ences including INFOCOM, which we reproduced. Our
second attack renders ineffective plagiarism detection
software, particularly Turnitin, targeting specific small
plagiarism similarity scores to appear natural and evade
detection. In our final attack, we place masked con-
tent into the indexes for Bing, Yahoo!, and DuckDuckGo
which renders as information entirely different from the
keywords used to locate it, enabling spam, profane, or
possibly illegal content to go unnoticed by these search
engines but still returned in unrelated search results.
Lastly, as these systems eschew optical character recog-
nition (OCR) for its overhead, we offer a comprehensive
and lightweight alternative mitigation method.

1 Introduction

Designed as a solution for displaying formatted infor-
mation consistently on computers with myriad hardware
and software configurations, Adobe’s Portable Docu-
ment Format (PDF) has become the standard for elec-
tronic documents. Academic and collegiate papers, busi-
ness write-ups and fact sheets, advertisements for print,
and anything else meant to be viewed as a final product
make use of the PDF standard. Indeed, there is an ele-
ment of constancy implied in the creation of a PDF doc-
ument. End users cannot easily change the text of a PDF
document, so most come to expect a degree of integrity
present in all PDF documents encountered.

Attacks are studied and corresponding defenses devel-

oped dealing with arbitrary code execution through some
allowances made by Adobe to execute JavaScript within
the rendering process of a PDF file [1] [2] or from other
rendering vulnerabilities [3] [4]. These typically allow
data exfiltration, botnet creation, or other objectives un-
related to the PDF file itself aside from using it as a de-
livery mechanism [5] [6] [7] [8]. We present a class of
attacks against the content integrity of PDF documents
themselves, and following this, describe and test a com-
prehensive defense method against these attacks. With-
out changing the appearance of a PDF, we are able to
alter how several information-based services see it, with
the following implications:

1. We demonstrate how academic paper writers can
collude with multiple conference reviewers, by altering
a paper invisibly to humans, to be assigned to those re-
viewers by automatic reviewer assignment systems, such
as that used by the IEEE International Conference on
Computer Communications (INFOCOM) [9] that openly
publishes its automated algorithm. We simulate this re-
viewer assignment system using 100 sample academic
papers and a corpus of 2094 papers from 114 reviewers
of a past security conference, finding that we can cause
any of said sample papers to match with any reviewer.

2. We show how an unethical student can invisibly
alter a document to avoid plagiarism detection, namely
the dominant market share Turnitin [10], and general-
ize methods to target specific small plagiarism similarity
scores to simulate the few false positives such systems
typically detect. We illustrate this attack by inducing pla-
giarism scores, as measured by Turnitin, from 0-100% in
10 academic papers without changing their appearance.

3. Lastly, we show real-world examples of mak-
ing leading search engines display arbitrary (potentially
spam, offensive material, etc.) results for innocuous key-
words. We have successfully caused Bing, Yahoo!, and
DuckDuckGo to index five documents under keywords
not displayed in those documents.

These systems have in common the need to scrape

PDFs for their content for further processing or search-
ing within. Online conference paper or other document
repositories and companies that index the Internet re-
quire text from PDFs so they may be located via search.
Natural language processing tools scrape PDFs to dis-
cover the topics within, and this information is used in
several large conferences to assign unpublished work to
conference reviewers as well as in document repositories
to categorize large volumes of works without manual ef-
fort. Finally, plagiarism checkers require text from new
articles for comparison against currently published work
to detect impermissible similarity.

Scraping of PDF documents can be done in an au-
tomated setting by text extraction tools such as the
PDFMiner package [11]. However, fonts of any name
may be embedded in the PDF document, and these tools
cannot check the fonts’ authenticity. A font is actu-
ally akin to an encoding mechanism, which maps keys
pressed on a keyboard to glyphs representing those keys.
Without some way to check the validity of fonts in a PDF,
which glyphs a font maps keys to is arbitrary. Moreover,
humans reading a PDF read the rendered version of what
a tool such as PDFMiner reads, meaning that machines
and humans are on opposite ends of this encoding mech-
anism and may be caused to read different information.

Consequently, the various PDF document scraping en-
vironments may be misused through the remapping of
keys to arbitrary rendered glyphs. Using one or more
custom fonts, an attacker may cause a word to be ren-
dered as another word by switching the glyph mapping
within the font file, or rather change the underlying text
while keeping a constant rendered output. That is to
say, in a document containing the word “kind” an at-
tacker may force that to be rendered as “mean” with a
custom font mapping k to m, i to e, n to a, and d to n,
so the human now sees “mean” while the machine still
sees “kind”; or to avoid human detection an attacker can
change the underlying text to “mean” and use a font with
the reverse mapping to render it as “kind” for the human
to see. The latter tactic subverts aforementioned end ap-
plications, while still rendering PDFs in all appearances
normal to humans. We refer to this as a content masking
attack, as humans are caused to view a masked version
of the content these computer systems read.

To assign papers to reviewers for a conference, several
large conferences employ automated systems to com-
pare the subject paper with a corpus of papers written
by each reviewer to find the best match. This matching
is executed upon the most important topics, or keywords,
found in the paper via natural language processing meth-
ods. If an author replaces the keywords of a paper with
those of a reviewer’s paper, a high match is guaranteed,
and the two may thereby collude. By creating custom
glyph mappings for characters, the masked paper can

make perfect sense to the human eye, while the underly-
ing text read by the machine has many substituted words
which would not make sense to a human reader. This
exploit has the technical challenges of replacing words
of differing lengths (larger and smaller replacements re-
quire different methods) and also constructing multiple
fonts required for different mappings of the same letter
(for example, to map the word “green” to “brown” re-
quires two different font mappings for e). A naive de-
fense could check the number of fonts embedded, so in
Section 4 we design algorithms to minimize the num-
ber of auxiliary fonts used, in order to avoid detection.
To evaluate, we construct our own automatic reviewer
assignment system reproducing the current INFOCOM
system [9], and show that for 100 test papers, targeting
a specific reviewer is possible by masking 4-9 unique
words in most papers and no more than 12 for all tested.

This content masking attack also undermines plagia-
rism detection. In this case, we need only switch out iso-
lated characters to change plagiarized text to text never
written before, while again masking these changes as the
original text to the human reader. In fact, as most pa-
pers have a small (false positive) percentage of similarity
present due to common phrases within the English lan-
guage, this method simulates that by varying the number
of characters changed, to simulate the usual small but
nonzero plagiarism percentage. Only one font is required
to make this mapping, as the resultant text does not need
to make sense to the plagiarism detector. Thus, say, all
rendered e’s may be represented by some other letter in
a font that maps that key to the glyph e, and other letters
may be changed similarly, building a one-to-one map-
ping covering at most all letters. The challenge is to tar-
get a small plagiarism percentage, but accomplishing that
as we do in Section 5, a single embedded font bearing the
name of a popular font will cause no suspicion.

Finally, search engines and document repositories may
be subverted to display unexpected content also. Here,
we may replace the entire text of a PDF without changing
the rendered view, with a variety of implications. One
may hide advertisements in academic papers or business
fact sheets, for example, to spam users searching for in-
formation. In this exploit, the attacker should replace an
entire document with the fewest number of fonts neces-
sary, to avoid seeming particularly unusual. This must
be done in a different way than for the topic matching
exploit, due to changing the entire document rather than
a few words, so we outline another method in Section 6.
We then test it on popular search engines, finding that
Yahoo!, Bing, and DuckDuckGo are susceptible.

Having enumerated these vulnerabilities, as these sys-
tems eschew optical character recognition (OCR) for its
overhead, we offer a comprehensive and lightweight al-
ternative mitigation method in Section 7. While a naive

method would perform OCR over the full document, we
instead render the unique characters used within the doc-
ument and perform OCR on these. This font verification
method has several technical challenges in its implemen-
tation, due to the number and variety of glyphs within
font files, and all these issues are overcome in the algo-
rithm we provide. We find it performs at a roughly con-
stant speed regardless of document length (a tenth of that
for full document OCR at 10 pages), with glyph distinc-
tion accuracy just under 100%, and with 100% content
masking attack detection rate.

2 Background Information

PDF Text Extraction: The Adobe PDF standard con-
tains eight basic types of objects, including strings.
Strings house the text in a document, including plain text,
octal or hexadecimal representations of plain text, or text
with some type of encoding [12]. PDF rendering soft-
ware treats each string as a series of character identifiers
(CIDs), each mapping to its corresponding glyph within
the font associated with that string via the Character Map
(CMap) [13]. A series of glyphs is thus displayed.

Text information extracted from PDF files by using
tools like the Python package PDFMiner. These tools ex-
tract text by copying the plaintext from all string objects
in a PDF file. Though these tools can extract the font
name for each string as well, a whitelist will not defend
against this attack, as fonts may be given any name.

Topic Matching: The exponential growth of human
knowledge/record keeping and the ease of its access de-
mands an efficient means of providing context-relevant
search results, stemming the research field of natural lan-
guage processing. This field extracts the specific subject
of a document without the need for human classification.
The ultimate goal of useful search results prompts the
companion research field of matching keywords to top-
ics which has been tackled by the leading search engines.

Latent Semantic Indexing (LSI) is a popular natu-
ral language processing algorithm for extracting topics
from documents. The LSI approach infers synonymous
words/phrases to be those with similar surrounding con-
texts, rather than constructing a thesaurus. These de-
tected patterns can allow singular value decomposition
to reduce the number of important words in a document
such that it may be represented by a small subset. This
small subset, of cardinality k, then contains frequency
data for each element, such that the document may be
represented by a dot in k-space. Similarity between doc-
uments is easily calculated via their Euclidean distances
apart in this geometric representation [14].

Latent Dirichlet Allocation is a newer popular topic
extraction algorithm, which is generally speaking a prob-
abilistic extension of LSI [9]. Topics are generated as

collections of related words, using supervised learning.
The probability of a document corresponding to each of
the predefined topics is calculated based on how well
the words within the document correspond to the words
within each topic [15, 16].

Topic matching is used within the automation of the
review assignment process for several large conferences,
such as the ACM Conference on Computer and Commu-
nications Security (CCS) or the IEEE International Con-
ference on Computer Communications (INFOCOM).
These conferences receive many submissions and have
many reviewers, and the manual task of finding the most
suitable reviewers for each paper is onerous, so they au-
tomate by comparing topics extracted from subject pa-
pers and papers published by reviewers. The authors
of [9] execute a performance comparison between LSI
and LDA for use in the present (as of 2016) INFOCOM
reviewer assignment system, which uses PDFMiner for
text extraction, finding LSI to work well with the aca-
demic papers submitted to that conference. We accord-
ingly perform our experiments using LSI to determine
the important keywords of each paper, and note that the
attack functions equivalently using LDA.

Plagiarism Detection: Turnitin, LLC has the domi-
nant market share for plagiarism detection software. Its
software is proprietary, but current documentation states
“Turnitin will not accept PDF image files, forms, or port-
folios, files that do not contain highlightable text...” [10],
indicating that PDFMiner or some similar internally de-
veloped tool is used to scrape the text from PDF docu-
ments. We may assume from the lack of support for im-
age files that optical character recognition (OCR) is not
used, meaning that our proposed attack should succeed,
which is proved in Section 5.2.

Additionally, the Turnitin documentation states that
“All document data must be encoded using UTF-8 char-
acter set” [17]. As mentioned in Section 2, text may have
custom encodings, but here we find they are not permit-
ted by Turnitin. This disallows any attack where text,
gibberish in appearance, is translated via decoding into
legible text. However, no restriction on fonts is in place,
due to the necessary ability for Turnitin’s client institu-
tions to specify their own format requirements.

Document Indexing: Extracting topics from a docu-
ment is somewhat of a subproblem to the larger issue of
document indexing. As information highly relevant to a
search may appear in a small portion of a document, sim-
ply relying on the overall topic of every document to in-
fer relevancy to a search may miss some useful results. A
search engine should do more than simply topic model-
ing to show results for a query. In fact, Google uses more
than 200 metrics to determine search relevancy [18], in-
cluding its famous PageRank system of inferring quality
of a site based on the number of sites linking to it [19].

Though documentation is sparse on other search en-
gines such as Bing or Yahoo, Google does host some
discussion of its treatment of PDF files. It states that
they can index “textual content . . . from PDF files that
use various kinds of character encodings” [20] but that
aren’t encrypted. “If the text is embedded as images, we
may process the images with OCR algorithms to extract
the text” [20], but for our content masking attack, text is
not embedded as images, so logically the system would
not perform OCR. Our experiment finds out for sure for
Google, Bing, Yahoo, and DuckDuckGo in Section 6.2.

3 Masking Font Creation

The content masking attack is facilitated by the ability
to embed custom fonts within PDF documents. In fact,
having all fonts embedded is a formatting requirement
for the submission of academic papers to conferences.
However, no integrity check is performed on those fonts
as to the proper correlation between text strings within
the PDF file and the respective glyphs rendered in the
PDF viewer. An attacker may map characters to arbitrary
glyphs and alter the text extracted from a PDF document
while it appears unchanged to humans in a PDF viewer.
This requires two steps, firstly to create the requisite font
files and secondly to encode the text via these font files.

The first step may employ one of the multiple open
source multi-platform font editing tools such as Font-
Forge [21]. With this tool, one can open a font and di-
rectly edit the character glyphs with the typical vector
graphics toolbox, or copy the glyph for a character and
paste it into the entry for another character. One can then
edit the PDF file directly with open source tools such
as QPDF [22], or in the case of manipulating academic
papers, quicken the process by adding custom fonts in
LATEX, and aliasing each to a simple command [23]. We
employ the latter method for its greater ease. It em-
ploys the program ttf2tfm, included with LATEX, to con-
vert TrueType fonts to “TeX font metric” fonts which are
usable by LATEX. Two LATEXcode files are supplied by
[23]: T1-WGL4.enc for encoding, and t1custom.fd for
easy importing of the font into a LATEXdocument.

The second step of choosing how to mask this con-
tent and what in a document to encode with custom fonts
depends on the system targeted, and the technique and
evaluation for each of the three scenarios introduced in
Section 1 appears in the following three sections.

4 Content Masking Attack Against Con-
ference Reviewer Assignment Systems

As learned in Section 2, topic matching works from
groups of words constituting the main topic of the doc-

ument. Assignment of conference paper submissions to
reviewers is accomplished by finding the highest similar-
ity between detected topics within submissions and those
within a corpus of reviewers’ papers. Meanwhile, a lazy
paper writer may wish to collude with specific review-
ers, know of some more generous to papers, or just think
reviewers may be less critical of papers not within their
specializations. This lazy writer needs to change the pa-
per topic to target a specific reviewer, replacing words
corresponding to the topic of the paper with words com-
prising the topic of a paper from the reviewer’s corpus,
while being masked as the original words to still make
visual sense. We now discuss the challenges for this at-
tack and methods to target one or more reviewers, and
subsequently evaluate the attack efficacy.

4.1 Construct Word and Character Maps

We primarily require a list of original words within the
subject document to change, and a list of words from the
target document to which to change these original words.
The new words will then be masked to display as the
original words using the masking fonts described in Sec-
tion 3. First, any stopwords within the document should
be eliminated from consideration. These are common
words within the paper’s language, such as “the,” “of,”
“her,” or “from.” Stopwords may be removed by using
existing tools like the Natural Language Toolkit (NLTK)
Python package [24]. From here an attacker can replace
the most frequently used words in the subject paper with
the most frequently used words in the target reviewers
paper. This will result in the most frequently used words
in the target paper also appearing in the subject paper, for
a high similarity score as measured by the LSI method
within the automatic reviewer assignment system.

Consider word lists A and B having constituent words
{a1,a2, ...,an} and {b1,b2, ...,bn} which are in descend-
ing order of appearance within the subject and target pa-
pers, respectively. An attacker wishes to replace words
A with topic B and must therefore replace each word
ai within the text of the subject paper with a word
bi, encoded using some font(s) to render bi the same
graphically as ai (a word mapping). No other words
should/need be changed. Consequently, the objective is
to construct a mapping between the letters of each bi
and ai (a character mapping). If ai and bi are character
arrays {ai[1],ai[2], ...,ai[pi]} and {bi[1],bi[2], ...,bi[qi]},
then the attacker should construct a masking font such
that the character bi[1] maps to the glyph ai[1], bi[2] to
ai[2], etc. We may consider this analogous to a map data
structure, where bi[1] is a key and ai[1] its value, and so
on. Two challenges naturally arise in constructing the
required character mappings:

One-to-Many Character Mapping: From the brief

Original
Text

Masked
Text

blank
(clearing font)

Favorable Mapping

Unfavorable Mapping

Figure 1: Handling the word length disparity challenge.
Each box represents a character.

Algorithm 1 Build Character Map

Input: subject paper s, target paper t
Output: character mapping C : B→ A, encoding fonts

F = { f1, f2, ..., fx}
1: A← top k topic words of LSI(s)
2: B← top k topic words of LSI(t)
3: C← empty character map
4: for i← 1 to k do
5: pi← length(ai)
6: qi← length(bi)
7: if pi < qi then . favorable mapping
8: for j← 1 to pi do
9: C←C∪{(bi[j],ai[j])}

10: for j← pi +1 to qi do
11: C←C∪{(bi[j], /0)}
12: else if pi > qi then . unfavorable mapping
13: for j← 1 to qi−1 do
14: C←C∪{(bi[j],ai[j])}
15: rest← combine {ai[qi], ...,ai[pi]}
16: C←C∪{(bi[qi],rest)}
17: else . equal word length
18: for j← 1 to qi do
19: C←C∪{(bi[j],ai[j])}
20: x← largest number of key collisions in C
21: temp←C
22: for i← 1 to x do . build fonts
23: fi← empty font
24: for each c ∈C do
25: if value in c is /0 then
26: C←C \{c}
27: use clearing font for key in c
28: else if no key collision between c, fi then
29: C←C \{c}
30: fi← fi∪{c}
31: F ← F ∪ fi

32: C← temp
33: return C,F

example in Section 1 of changing the word green to
brown, we know that in terms of a map data structure
there is a collision for the key e and the values o and
w, such that an attacker will require two masking font
“maps” to render green as brown. The first challenge is to
minimize the number of fonts required in the document,
so as to avoid suspicion, while fully switching topic A
for B. This problem is not delimited by word: some
character mappings may be reused in the same or other
words, and many may not. Additionally, changing all of
the words in A to those in B may be unnecessary, which
also impacts the number of one-to-many mappings and
resultant number of required font files. If fewer words
must be changed while ensuring the required similarity
between papers, fewer fonts may be required, and a naive
font count threshold defense will be less effective.

Word Length Disparity: Further, the lengths pi and
qi of words ai and bi may differ, causing ai to be longer
than bi or vice versa. If pi > qi, to render bi as ai, a font
file entry is necessary for the letter bi[qi] mapping to the
last pi−qi +1 letters of ai. Several additional fonts may
be necessary if some bi ∈ B have the same last character.
Thus, we define a favorable keyword mapping as a word
mapping bi → ai such that pi < qi. In this case, only
a single clearing font is needed, wherein all characters
map to a blank glyph of no width. Figure 1 illustrates
handling favorable and unfavorable mappings. In prac-
tice, a blank glyph of no width is in fact a single dot, of
width (and height) equal to the smallest unit of measure
within a font drawing program. In contrast, an i is 569
units wide (and a w is 1500 units wide), so this dot will
not be rendered at all. And because this clearing font has
all letters map to no-width blanks, it will be the only ad-
ditional font required if ∀i, pi < qi, hence its favorability.

4.2 Matching One or More Papers to One
Reviewer

Mapping of words from B to A is by their original de-
scending order of frequency within the target and subject
papers, respectively. Algorithm 1 shows the overall en-
coding process and begins by running the LSI model on
the subject and target papers, then constructing a map be-
tween characters in k of the topic words returned. Then,
the mapping is added to C for each character, for each
word of B, to the corresponding character(s) in the cor-
responding word of A. Here, comments (Lines 7, 12,
17) indicate the steps taken for favorable and unfavorable
mappings and the case when both words are of the same
length. Finally at Line 22, the mappings in C are bro-
ken up into collections to be made into custom masking
fonts, with the exception of those characters from favor-
able mappings which map to null, for which the previ-
ously introduced single clearing font is used. Resulting

from this algorithm are fonts to be used for each charac-
ter of the words in B to mask them as the words in A. If
the attacker has multiple papers under submission, this
process may be repeated independently for each paper.

4.3 Matching One Paper to Multiple Re-
viewers

For a better chance at cheating the peer review process
and to collude with multiple reviewers, the content mask-
ing attack can be adapted to split up the masked words
among two (or more) different lists of frequently used
words. Instead of mapping between word lists A and B,
the attacker will map between A and B and A and C, such
that a1 will be replaced with b1 part of the time and c1 the
rest of the time, and so on. The method is otherwise the
same as shown in Algorithm 1, but has its own challenge.

Intuition would suggest replacing a1 half of the time
with b1 and half of the time with c1. However, the re-
quirement for the attacker’s paper to be the most similar
of a large number of papers to a reviewer’s paper and
also the most similar of all others to another reviewer’s
paper is quite stringent. The intuitive method fails as
the similarity score for one target reviewer will be high
enough but the other too low. So we use an iterative re-
finement method which tunes the replacement percent-
ages according to the calculated similarity scores until
they are both the highest among their peers. This is gen-
eralizable to more than two reviewers, by refining the
percentages proportionally according to the successive
differences in similarity scores between the subject pa-
per and each of the target papers. We match one paper to
three reviewers in Section 4.4, the typical number of re-
viewers to which papers are assigned (barring contention
in reviews, which would not happen during collusion).

4.4 Experiment

We have built a conference simulation system reproduc-
ing the INFOCOM automatic assignment process de-
scribed in [9]. We imported into this system 114 TPC
members from a well-known recent security conference
as reviewers, and downloaded a collection of each of
these reviewers’ papers published in recent years. In to-
tal, this comprised 2094 papers used as training data for
the automatic reviewer assignment system. For testing
data, we also downloaded 100 papers published in the
greater Computer Science field. Our experiment, then,
is to test the topic matching of the test papers with the
training papers, via our content masking attack. Follow-
ing are evaluations of the content masking attack match-
ing one paper to one reviewer, multiple papers to one
reviewer, and one paper to multiple reviewers.

Matching one paper to one reviewer: The automatic
reviewer assignment process compares a subject paper
with every paper from the collection of reviewers’ papers
to gather a list of similarity scores. The reviewer with the
highest similarity score is assigned the paper to judge (if
available). We therefore aim to change a testing paper
topic to a training paper topic, and to examine how well
this works with all papers. For each such pair of papers,
then, we replace the frequently appearing words A in the
testing paper with those frequently appearing words B
in the training paper via Algorithm 1. We test the topic
matching of each of the 100 testing papers against our
training data to see what is required to induce a match.

For each pair of training and testing papers, we re-
place important words in the testing paper one by one, to
see how many replacements are needed to make that pair
the most similar. Figure 2 illustrates this iterative pro-
cess for one example training/testing paper pair, showing
resultant similarity scores. The box plots show where
the greatest concentration of the 2094 similarity scores
dwell, while red pluses show outliers. The blue stars
which emerge to the top correspond to the similarity
scores between the testing paper and the target training
paper. Figure 2 shows a clear separation of that similarity
score from the rest after replacing 9 words, meaning that
for this pair, content masking all appearances of those 9
unique words in the testing paper will result in its assign-
ment to the reviewer who wrote that training paper.

Performing this process for all 100 testing papers, we
compile the results into Figure 3, which displays the cu-
mulative distribution function (CDF) for the number of
words requiring replacement. Evidently, all 100 papers
may be matched with the target with 12 words or fewer
masked. The sharp jump appearing from 4-9 words indi-
cates that most papers can be successfully targeted to a
specific reviewer masking between 4 and 9 words. The
font requirements for replacing these words is then rep-
resented in Figure 4. A majority of papers require 3 or
fewer masking fonts, while almost all of them need only
as many as 5. This is a comparatively small number and
should go unnoticed among the collection of fonts nat-
ural to academic papers. For example, this paper has
some 19 embedded fonts, between bold/italic variants,
fonts used in figures, and one picture font used in Table
1.

Matching multiple papers to a single reviewer:
Should an author wish to have multiple submitted papers
all assigned to a target reviewer, the author may simply
repeat the content masking process on each paper. While
in the previous case we find that an average of 3 or 4
fonts is necessary to make a single test paper sufficiently
similar to the target training paper, that needs not directly
translate to 3 or 4 fonts per paper with multiple papers.
Some fonts may be reused among papers, resulting in

1 3 5 7 9 11 13 15

Number of words masked

0

0.2

0.4

0.6

0.8
S

im
ila

ri
ty

Figure 2: Similarity scores relative
to amount of words masked. Blue
stars show the desired matching.

0 5 10 15

Number of words masked

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 3: Word masking require-
ments for all 100 testing papers.

2 4 6 8 10

Number of masking fonts

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 4: Masking font require-
ments for all 100 testing papers.

0 50 100

Number of masking fonts

0

20

40

60

80

100

N
u

m
b

e
r

o
f

p
a

p
e

rs

Figure 5: Masking font requirements for matching from
1 to all 100 testing papers to a single reviewer.

1 10 20 30 40 50 60 70 80 90
Number of words masked

0

0.2

0.4

0.6

0.8

S
im

ila
rit

y

Figure 6: Similarity scores relative to amount of words
masked, between a paper and three reviewers. Blue
stars, black circles, and green triangles show the desired
matchings.

fewer overall fonts used. Figure 5 confirms this, show-
ing a trend more logarithmic than linear.

Matching a paper to multiple reviewers: Finally, we
evaluate the iterative refinement method to split masked
words among three reviewers’ papers as discussed in
Section 4.3. Figure 6 shows that the similarity scores
for the three target reviewers (blue star, black circle,
and green triangle) consistently increase; after some 70
words masked, the subject paper is more similar to the
three target papers than any others.

5 Content Masking Attack Against Plagia-
rism Detection

While a method similar to the topic matching subver-
sion technique just outlined may be used to hide plagia-
rism, fewer requirements constrain the plagiarist than the
lazy author targeting a specific reviewer in a conference.
Specifically, an attacker needs only make the underlying
text different than the rendered, plagiarized text. The un-
derlying text does not need to be actual words, and so
only one font is needed, ensuring the naive defense of
limiting fonts is defeated. This scrambling font is just a
random scrambling of the characters. Each original letter
is replaced with the letter which displays as the original.
Resulting is a human-legible PDF document which ap-
pears as gibberish to Turnitin and necessarily has a sim-
ilarity score of 0%. Details and options for this method
are below, followed by an evaluation of each option.

5.1 Targeting a Specific Plagiarism Score

Because Turnitin is a similarity checker, not a plagiarism
detector, it relies on the human factor to actually detect
plagiarism. Turnitin informs the individual with grad-
ing duties of any pieces of similar prose, which naturally
arise due to the plethora of written work in existence and
the human tendency toward common patterns and figures
of speech. It is unlikely then, and would stand out to
the grader, that a submission would have 0% similarity
with anything ever written. We offer and evaluate two
methods an attacker can use to target a specific (low but
non-zero) similarity score and more likely go unnoticed.

By Letter: Here, the attacker begins with a scram-
bling font and removes characters from being scrambled
successively until a target percentage of the text is not
being replaced. Intuitively, this small target percentage
would then appear plagiarized, yielding a credible simi-
larity score. This may be done in a calculated fashion us-
ing the known frequency of usage of letters in the English
(or other) language. The letters may be listed by their

0 0.1 0.2 0.3 0.4
Percentage

0

0.2

0.4

0.6

0.8

1

S
im

ila
ri
ty

Frequency descending
Random replacment
Letter usage descending

Figure 7: Effects of the percentage of text changed upon
plagiarism similarity scores for 10 sample documents.

frequency in ascending or descending order (we evaluate
both) and then excluded from scrambling in that order
until the target percentage of unaltered text is reached.

By Word: This method is similar to the previous, but
instead of leaving some characters unscrambled in the
custom font, the attacker leaves some words unaltered by
not applying the custom scrambling font to them. Here,
words within the document may be listed in frequency
of appearance, ascending or descending, and excluded
from the scrambling font in that order (we again evaluate
both). We also consider changing words at random with a
probability targeting some similarity score. This method
may be more effective for an attacker in the long run, if
Turnitin implements a requirement that some percentage
of words be found in a dictionary, English or otherwise.
In that case, this attack may be augmented by the previ-
ously described method of replacing real words for other
real words rendered as the originals.

5.2 Experiment
We use 10 already published papers retrieved from the
Internet and mask the content in varying degrees to see
the effects on Turnitin’s returned similarity scores. We
vary the amount a scrambling font is applied to the text
according to the previously described methods and up-
load the resultant papers to Turnitin. Again, we target a
specific range of similarity scores, between 5% and 15%,
such that a human grader is unlikely to suspect foul play.

Figure 7 plots the three methods. “Frequency descend-
ing” refers to the method of masking words in the order
of their frequency of appearance in the document, while
“Letter usage descending” refers to masking letters by
their frequency of usage. Ascending order proved un-
wieldy in both cases and not worth displaying. Finally,
“Random replacement” refers to the method of iterating
over all words and masking them with a probability of
1-100% in increments of 1%. These are all plotted in
terms of the percentage of text changed. Masking let-
ters by their frequency of usage results in a similarity

curve that is too steep to be manageable for selecting a
small range of similarity scores. In contrast, the other
two methods are very suitable for comfortably picking a
specific range. Any probability between 17% and 20%
will net a similarity score in our desired 5-15% range in
the case of randomly chosen masking. When words are
replaced in order of their frequency of appearance, the 5-
15% range may be achieved by replacing anywhere be-
tween 20 and 40% of the words, offering a very wide
range of safety for the plagiarist.

6 Document Indexing Subversion

The final direction of this attack is against search en-
gines, whether for the entire web or for small document
repositories or websites. Websites can implement a sim-
ple search returning pages housing the query text, or they
can use custom search engines offered by Google [25] or
Yahoo! [26]. Microsoft Bing also offers its API [27].
As small sites are unlikely to have a more sophisticated
search mechanism than the leading search engines, we
target and demonstrate our attack against these.

6.1 Method
We here consider modifying the entire content of a PDF
to render as something else. Both the underlying text
extracted by PDFMiner (or otherwise) and the rendered
text should make sense in this case, so that an individual
searching for certain terms will be caused to find a PDF
holding those words but displaying something entirely
different. This results in a more extreme version of the
one-to-many character mapping challenge from the at-
tack against topic matching. Instead of masking a small
finite number of words, we now examine masking the en-
tire content. However, this is facilitated by the realization
that these masks are not necessarily delineated by spaces
as before; the attacker can treat the entire document as
a single word to be masked. It consequently encounters
the word length disparity challenge, to treat the variation
in length between real and rendered text, but only once.

Nevertheless, the strategy of adding new fonts, ad hoc,
to cover each new mapping quickly balloons out of con-
trol, in terms of the attacker needing to keep track of what
mappings appear in what font. The number of fonts will
increase with the number of characters to be masked, to
an upper limit of every character needing a map to every
other. Considering (for English) upper and lower case
letters, numbers, and common punctuation (22 symbols,
dependent upon count), all 26+26+10+22 = 84 char-
acters must each map to the other 83 different characters,
as well as themselves for those cases which a character
and its mask are the same. This requires 84 fonts and
represents 842 = 7056 mappings. Code can certainly be

Search Engine Indexed Papers Attack Successful Evades Spam Detection Not Later Removed
Google 3 7 7 7
Bing 3 3 3 3

Yahoo! 3 3 Flagged / Cleared 3
DuckDuckGo 3 3 3 3

Table 1: Results of content masking attack on search engines.

written to automatically construct all these mappings, but
to make this more efficient, we offer an alternative - 84
fonts, in each of which all characters map to one masking
character. For example, in font “MaskAsA” character a
maps to a, b to a, 4 to a, ! to a, etc. To mask a document
as another, the attacker may simply apply fonts, charac-
ter by character, that correspond to the desired mask. At
the end of the documents, the three end behavior options
presented as part of Algorithm 1 and illustrated in Figure
1 function here as well, to handle the length variation.

6.2 Experiment
To demonstrate the efficacy of this attack, we obtained
a handful of well-known academic papers, masked their
content, and then placed them on one author’s university
website to be indexed by several leading search engines.
For this simple proof of attack, we only used one mask-
ing font which scrambled the letters for rendering. The
resulting papers have legible text that renders to gibber-
ish, meaning that if they can be located by searching for
that legible text, the search engine is fooled.

We submitted the site housing these papers to Google,
Bing, and Yahoo! and searched for them some days
later. Search engine DuckDuckGo does not accept web-
site submissions but we searched there as well. Table 1
lists the results of our content masking attack on these
search engines. “Indexed Papers” indicates the search
engine listed the papers in its index. “Attack Successful”
means they are indexed using the underlying text, not
the rendered gibberish. After a successful attack, the pa-
pers may later be put behind a spam warning or removed
from the index, as shown in the last two columns. We
found similar results for each of the 5 papers tested: that
Bing, Yahoo!, and DuckDuckGo all indexed the papers
according to the masked legible text, and none removed
them later (at time of writing). Yahoo! did mark them as
spam after two days but confusingly some days after that
removed the spam warning.

Figure 8 illustrates this for one of tested paper. The
masked paper is shown in Figure 8a and contains no ren-
dered English words beyond what is shown. Figures 8b,
8c, and 8d show the search results for the legible underly-
ing text, and Figure 8e shows the spam warning appear-
ing days later but later disappearing. Each query was

(a) Gibberish paper

(b) Bing result for the gibberish paper

(c) DuckDuckGo result for the gibberish paper

(d) Yahoo! result for the gibberish paper

(e) Temporary Yahoo! spam warning

Figure 8: Results of the content masking attack against
popular search engines. The attack was not successful
against Google.

appended with “site:XXX.edu” to isolate the university
website where they are hosted for this proof of concept.

Interestingly, Google indexed the papers, but accord-
ing to the rendered gibberish, not the underlying text.
This indicates, of these four engines, only it performs
OCR on PDF files it indexes rather than extracting the
text through PDFMiner or the like. After two days, the
papers were removed from Google’s index, before the
authors obtained screenshots. We conclude that Google
has a robust defense against the content masking attack,
while the other three engines remain susceptible.

7 Defense Against Content Masking

As intoned through this paper, Optical Character Recog-
nition (OCR) is able to move the text extraction process
from targeting the underlying text to the rendered ver-
sion, preventing this masking attack. OCR is required
for print documents scanned to PDF, but for documents
with rendered text, system designers have been loath to
use OCR in lieu of PDFMiner or its ilk. OCR is far more
complex and requires more processing time than simply
running the PDF file through a lightweight parser to col-
lect its strings. We propose here a lightweight font veri-
fication method that enables the use of OCR in a highly
efficient way to prevent the content masking attack. The
intuition is simple; we render each character in the fonts
embedded in the subject PDF file and then perform OCR
on those characters rather than the rendered PDF file it-
self. Where an academic paper may be some 50,-75,000
characters, the fonts embedded therein usually contain at
most just a couple hundred characters.

Challenges and Technical Details: While the intu-
ition is simple, some challenges arise in its realization.
First, while most PDF generation tools will embed only
those letters used in the document, it is possible through
Adobe InDesign, as one example, to embed the whole
font. Some fonts accommodate many characters used in
many other languages, and the upper limit on font char-
acter capacity is 216 = 65,536 because characters have
a two-byte index. Clearly, performing OCR on a font of
that size will be equivalent to performing OCR on an aca-
demic paper in terms of computational overhead. Conse-
quently, we scan the document to extract the characters
used, and only render those characters (in their respective
fonts) for OCR verification. This requires iterating over
the entire document, but the overhead introduced here is
much less than with full-document OCR, as the process
just builds a list from the series of character codes rather
than executing image processing techniques on all char-
acter glyphs. OCR is then performed on the series of
character codes used in each font only.

Second, the existence of many special characters
within a font prompts the question of what characters

OCR can distinguish and how to handle those it can’t.
Theoretically, OCR may mature to the point where it can
distinguish any sort of accent mark over normal letters,
any characters used in languages other than English, and
any additional special characters used in typeset mathe-
matics, etc., and some OCR software may be currently
in development working on a subset of these problems.
However, we aim to provide a defense method readily in-
tegrable into current systems. Additionally, such an ad-
vanced software will likely incur overhead beyond that
of a current OCR package to achieve the requisite preci-
sion, where our solution must be sufficiently lightweight
to fit within systems where full-document OCR has not
been applied due to computational complexity. We de-
fine a normal set of character codes as those represent-
ing upper and lowercase English letters, numbers, and
common punctuation, which English OCR packages tar-
get, and then we check if the extracted character codes
appear in this normal set or not. A letter in the normal
set appearing as something other than itself is evidence
of the content masking attack, as is a letter outside the
normal set having the glyph of one inside. OCR is per-
formed on all used characters in the font, as previously
mentioned, and those within the normal set are required
to have the correct respective glyph, while those outside
the normal set are constrained not to have a distinguish-
able glyph (i.e. one appearing in the normal set).

The third issue arises with the fact that many special
characters have high similarity with normal characters,
especially for those fonts in common use which have
many thousands of available characters. If one such spe-
cial character is used legitimately in the text, the scheme
just described will flag it as a content masking attack
due to its similar appearance with a normal set character.
Worse, common OCR tools available presently will con-
flate characters which humans can easily tell apart but
for which the software is not precise enough to do so.
For example, it is easy to tell visually that π and n are
different characters, but not by common OCR tools.

Font Training Step: We therefore introduce a training
step, wherein OCR is performed on the font and lists of
intersections compiled. When we perform OCR on each
represented character and the detected glyph for a spe-
cial character but appears like a normal letter, we check
the list of characters similar to that normal letter. If the
special character appears on that list, we recognize that it
may be valid and that we cannot know if it is being used
legitimately or as part of a content masking attack. As
the purpose of the content masking attack is to disguise
the visually rendered text as some other text for the com-
puter to see, we simply replace the extracted character
code for this letter as the normal letter it looks like, and
pass this on to the end application. If content masking
is occurring, the rendered text is sent to the plagiarism

detector, reviewer assignment system, etc., thwarting the
attack. Otherwise, the string in which this special charac-
ter appears is with high probability not an English word
and would not be useful to the end application anyway. A
reviewer assignment system or plagiarism detector will
not make use of mathematical equations when assigning
reviewers, as these are not discernible words, so if πr2 is
extracted as nrz, no loss of function is suffered.

This training solution prompts one further issue,
which is that different fonts will need to be trained in-
dependently as their nuances cause different sets of char-
acters to appear similar. For the reviewer assignment and
plagiarism detection problems, we know a limited num-
ber of fonts should be used, due to academic formatting
requirements favoring a small set of fonts. Nevertheless,
for other applications, such as search indexing, the only
limit on the number of fonts that can be trained is that
those fonts must be legible enough for an OCR tool to
parse. These lists do not occupy too much space; for ex-
ample our lists for Times New Roman and Arial fonts are
29.4KB and 36.2KB, respectively. This database com-
piled, the OCR tool will be used to discern the real name
of each font used in the document, to counteract the prob-
lem mentioned early in this paper, that an attacker may
name a font anything desired. Open source OCR tools
such as Tesseract OCR [28] provide this functionality.

Font Verification Overview: The training process be-
gins by gathering a collection of fonts and training the
system on each. For each character in a font’s normal set,
all special characters are tested for OCR similarity, and
any identified as similar are added to the list for that nor-
mal character. Testing a new PDF file is outlined in Al-
gorithm 2, wherein the list of characters and their fonts is
reduced to unique combinations of those attributes, and
each then tested with OCR. Content masking attacks are
detected in lines 12 and 17 when the underlying char-
acter index is a normal character other than the OCR-
extracted character or when the underlying character in-
dex is a special character that does not appear in the simi-
larity list for the OCR-extracted character. In these cases,
this pseudocode exits to notify of the attack, though other
behavior could be inserted here. This protects all end
applications, except in the attack against plagiarism de-
tection in which the attacker replaces normal characters
with special characters similar in appearance. That spe-
cific attack is identified as possible at line 15, in the case
that the underlying character is a special character which
does appear in the similarity list for the OCR-extracted
character; in this case all instances of this character in the
text extracted from this file are replaced with the OCR-
extracted character for use in the end application.

Algorithm 2 Extract Rendered Text

Input: font list F = { f1, f2, ..., fp}, normal character
index set N = {n1,n2, ...,nq}, special character in-
dex set S = {s1,s2, ...,sr}, document character list
D = {d1,d2, ...,ds}

Output: extracted text T = {t1, t2, ..., ts}
1: Unique character index/font map list U = /0
2: for i← 1 to s do
3: if di /∈U then
4: U ←U ∪ (di, FONT(di))

5: m← |U |
6: OCR-extracted character index set O =
{o1,o2, ...,om}

7: for i← 1 to m do
8: oi← OCR(ui)
9: f ← ui. f ont

10: L ← list of similar character lists {l1, l2, ..., lv}
for f

11: if ui.index ∈ N then
12: if oi 6= ui.index then . Attack Detected
13: break
14: else if ui.index ∈ S then
15: if ui.index ∈ loi then . Attack Possible
16: ui← oi
17: else . Attack Detected
18: break
19: T ← Apply modified U to D
20: return T

Font Verification Performance: The implementation
for this defense method is written in Python and employs
PDF-Extract [29] to extract font files from PDFs, tex-
tract [30] to extract the text strings, and pytesseract [31],
a Python wrapper for Tesseract OCR [28]. The alterna-
tive to our font verification method is to perform OCR
on the entire document, so we use Tesseract OCR for
this purpose also for a fair comparison. This comparison
will illustrate not only that our method detects/mitigates
the content masking attack as well as the naive full docu-
ment OCR method, but that it performs far better in sev-
eral scenarios common to PDFs both in and out of the
presence of our content masking attack.

First, we compare the performance of the two meth-
ods with differing amounts of masked content. We gen-
erate 10 PDF files with masked characters varying from
5-20% in frequency of appearance, and apply both meth-
ods to each of these file. The results are shown in Fig-
ure 9 and show a distinct benefit to our font verifica-
tion method compared with the traditional full document
OCR. Here, detection rate refers to the correct extraction
of rendered text and the consequent ability to prevent the
content masking attack from occurring. For full docu-
ment OCR, we generate 10 PDF documents with no con-

20 17 14 11 8 5
Percentage of masked characters

0

50

100
D

et
ec

tio
n

ra
te

 (%
)

Full document OCR
Font verification

Figure 9: Attack detection under
varying degrees of attack.

2 4 6 8 10
Number of pages

80

90

100

D
et

ec
tio

n
ra

te
 (%

)

Full document OCR
Font verification

Figure 10: Attack detection on
PDFs of different sizes.

5 10 15 20
Number of pages

0

10

20

30

40

50

S
ec

on
ds

Full document OCR
Font verification

Figure 11: Attack detection time
relationship with PDF size.

tent masking and measure the error in character recog-
nition, and then we use this error as a threshold, such
that the attack is flagged for one of the content masked
PDF files if it is determined to have a larger difference
between characters and their glyphs. That threshold was
measured at 7%, and more than 20% of characters had
to be masked before the full document OCR method de-
tected the content masking attack (after this, detection
was 100%). The attack is considered detected by the
font verification method if Algorithm 2 flags it or the
edge case approach we take of replacing special char-
acters that look like normal letters with those normal let-
ters will enable the end application (plagiarism/spam de-
tector) to process the text properly and thereby flag the
attack. In all cases, our algorithm detected the attack or
constructed the proper English words required by the end
application to detect it.

The disparity here between the methods’ accuracy in
the 5-20% character masking range has a few aspects in-
volved. Fewer masked characters will appear in a sparser
distribution, which make them less visible among legit-
imate characters. OCR is affected by the distance be-
tween characters and the resolution of the image, among
other things, which we can control in the case of font
verification but which are not controlled when perform-
ing OCR over an entire document. We can generate an
optimal image of all relevant characters, check their va-
lidity, flag detected attacks, and in the case of special
characters which appear identical to normal letters, re-
place them with those normal letters for proper use in the
end application.

We also analyze the effects of document length on the
detection rate for each method, by comparing their re-
sults on 10 PDF files ranging from 1-10 pages in length
and having an even 30% distribution of masked charac-
ters. Figure 10 illustrates that while the font verification
method is almost perfectly static, full document OCR
gradually performs more poorly, reaching 14% misde-
tection by page 10. The aforementioned OCR error rate
explains this problem, where while 30% masked charac-
ters is above the required 20% to guarantee detection in

the previous experiment, additional pages of text steadily
allow more masked text to go unnoticed. The font verifi-
cation appears to be 100% throughout, but actually dips
to 99.8% halfway through. Our method is not immune
to the errors inherent to OCR as it also uses OCR, but its
more judicious approach minimizes those errors. In this
case, OCR is confusing the ’;’ and ’:’ characters; these
are rare but eventual in prose.

Finally, we demonstrate the performance gain of our
font verification method over the full document OCR
method, on 20 PDF files ranging from 1-20 pages in
length and having a 30% distribution of masked char-
acters. In Figure 11, the full document OCR method in-
creases linearly with pages added while the font verifi-
cation method unsurprisingly remains largely static, in-
creasing by roughly a second compared to the 45 expe-
rienced by the full document OCR method. In all, our
method requires about 6 seconds to check a 20 page doc-
ument, rather than 50 seconds, using one core on a laptop
processor (Intel i7 at 2.7GHz). This provides far better
scalability for the target systems than the alternative, and
is easily applied to current systems without requiring up-
grades.

8 Related Work

Most exploit research targeting the PDF standard has
been in bugs surrounding various programs rendering,
displaying, exporting, or otherwise handling PDF docu-
ments. The not-for-profit MITRE Corporation lists in its
Common Vulnerabilities and Exposures (CVE) collec-
tion 431 entries involving the keyword “PDF” and having
to do with these external programs [5]. These allow for
arbitrary code execution on the host computer and all the
associated security risks [6], including establishment of
botnets, data exfiltration, and other high-impact security
issues. They are, however, limited to basic hacking-type
exploits, zero-days chased by patches, and the PDF itself
is essentially a vehicle for the hack [7]. These attacks are
not thematically novel, and the patches indeed follow the
zero-days with reasonable speed [8].

Similarly, some exploration has been performed on
the JavaScript execution ability within the PDF standard.
When abused, this too allows for arbitrary code execu-
tion. Security researcher Didier Stevens offers a series
of blogs discussing how to misuse this JavaScript exe-
cution, including how to encode the strings involved to
create polymorphic malware resisting simple signature-
based antivirus products [32]. Some research finds
that writing polyglots (code valid in multiple languages)
within PDFs can expose security concerns depending on
what language the reader uses to interpret the code [2].
Successive updates to the PDF standard implement mea-
sures to block certain functions, such as reaching out to
the Internet, placing their function behind a confirmation
window for the user to view [12]. Additionally, most cur-
rent antivirus products offer real-time protection using
heuristics that can detect potentially malicious behaviors
despite simple code obfuscation.

Some academic research regarding PDF security ana-
lyzes the JavaScript being executed to verify safety. One
work analyzes a set of static features extracted from the
PDF, and then instruments with context monitoring code
the JavaScript within. This combination static and run-
time approach is tested on a collection of 18623 PDF
documents without malware and 7370 with, resulting in
few false negatives and no false positives [1]. Other
research targets attacks not dependent on JavaScript or
other parsing vulnerabilities, including one that works to
detect these attacks using machine learning on existing
flagged PDF files using data extracted from the structure
of the file as well as its content [3]. One may expect
this strategy to suffer from the same difficulties experi-
enced by signature-based antivirus products, namely an
inability to detect malware not already discovered by re-
searchers. Another work allows PDF documents to be
opened in an emulated environment to track how they
behave before doing so in the host environment [4].

Some works slightly closer to ours examine the pos-
sibility of causing PDF documents to be rendered differ-
ently on different computers, showing how to restrict the
syntax of the PDF standard to prevent this from occur-
ring [33] [34]. This attack against data consistency has
some vague similarity to the concept of content mask-
ing - displaying different content for the human than the
machine. However, we provide several real-world exam-
ples of how our content masking attack can subvert real
systems, while the impact of the attack in this work is rel-
atively limited to the document looking different to hu-
mans using different computers. Some works [35] [36]
[37] examine poisoning search results, but this is from
the perspective of presenting false data to the machine
through website code or manipulations of the PageRank
algorithm via botnets, an existing threat vector for which
defenses have been continually adapting.

Section 2 introduces the Character Map (CMap),
through which letters are mapped to entries within fonts,
ultimately displaying the associated glyphs. During our
literature search, we found a work [13] from a social
science journal of Assessment & Evaluation in Higher
Education which touches on a similar topic from a non-
scientific stance. [13] discusses how the CMap can be
altered to make letters map to different characters within
a font. In this way, plagiarism detection can be fooled
by mapping to obscure characters whose glyphs are sim-
ilar in appearance to those for the typically used charac-
ters. After devising our attacks, we discovered this work
also contains cursory mention of the ability to modify the
glyphs within a font, but does not explore this possibility
or demonstrate its practicality as we do. We evaluate new
methods to target specific similarity scores such that the
resultant PDF does not appear unnatural with a 0% sim-
ilarity score. Further, we show how these custom fonts
can be used to subvert conference reviewer-assignment
systems and search indexing, developing new and dis-
tinct attack methods specific to each of these very dif-
ferent targets. Additionally, we provide a robust defense
method, including a defense against the slightly differ-
ent attack proposed in [13] involving the use of existing
characters similar in appearance to normal letters.

9 Conclusion

In this paper, we have presented a new class of content
masking attacks against the Adobe PDF standard. Af-
ter creating algorithms for each of three content mask-
ing attack variants, we perform a comprehensive evalu-
ation showing that each lives up to its theory and oper-
ates in present state-of-the-art systems. Our first attack
allows academic paper writers and reviewers to collude
via subverting the automatic reviewer assignment sys-
tems in current use by academic conferences including
INFOCOM, which we simulated. This requires no visi-
ble changes to the paper being reviewed and the addition
of just 3-5 custom masking fonts for almost all of the 100
papers tested, easily lost in any paper’s natural fonts. We
show a second attack that renders ineffective plagiarism
detection software, particularly Turnitin, to the point of
being able to target specific small plagiarism similarity
scores to appear natural and evade detection. In our fi-
nal attack, we successfully place masked content into the
indexes for Bing, Yahoo!, and DuckDuckGo which ren-
ders as information entirely different from the keywords
used to locate it. Lastly, we provide and test a robust font
verification algorithm which is more accurate than full
document OCR and requires considerably less computa-
tion power.

References

[1] D. Liu, H. Wang, and A. Stavrou, “Detecting Mali-
cious Javascript in PDF through Document Instru-
mentation,” in 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and
Networks, pp. 100–111, June 2014.

[2] J. Magazinius, B. K. Rios, and A. Sabelfeld, “Poly-
glots: crossing origins by crossing formats,” in Pro-
ceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pp. 753–
764, ACM, 2013.

[3] D. Maiorca, D. Ariu, I. Corona, and G. Giacinto,
“A structural and content-based approach for a pre-
cise and robust detection of malicious PDF files,”
in 2015 International Conference on Information
Systems Security and Privacy (ICISSP), pp. 27–36,
Feb 2015.

[4] F. Schmitt, J. Gassen, and E. Gerhards-Padilla,
“PDF Scrutinizer: Detecting JavaScript-based at-
tacks in PDF documents,” in Privacy, Security and
Trust (PST), 2012 Tenth Annual International Con-
ference on, pp. 104–111, July 2012.

[5] MITRE Corporation, “CVE - Common
Vulnerabilities and Exposures (CVE).”
https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=pdf, 2016.

[6] K. Selvaraj and N. F. Gutierrez, The Rise of PDF
Malware. Symantec, Recurity Response, 2010.

[7] R. Brandis and L. Steller, Threat Modelling Adobe
PDF. DSTO Defence Science and Technology Ori-
ganisation, 2012.

[8] Adobe Security, PDF Security Reaches New Lev-
els with Adobe Reader XI and Adobe Acrobat XI.
Adobe, 2013.

[9] B. Li and Y. T. Hou, “The New Automated IEEE
INFOCOM Review Assignment System,” IEEE
Network, vol. 30, no. 5, pp. 18–24, 2016.

[10] “Submitting a Paper.” https://guides.

turnitin.com/01_Manuals_and_Guides/

Student/Classic_Student_User_Guide/09_

Submitting_a_Paper, 2016.

[11] Y. Shinyama, “PDFMiner.” https://euske.

github.io/pdfminer/, 2013.

[12] Adobe, PDF Reference. Adobe Systems Incorpo-
rated, 2006.

[13] J. Heather, “Turnitoff: Identifying and Fixing a
Hole in Current Plagiarism Detection Software,”
Assessment & Evaluation in Higher Education,
vol. 35, no. 6, pp. 647–660, 2010.

[14] S. T. Dumais, G. W. Furnas, T. K. Landauer,
S. Deerwester, and R. Harshman, “Using Latent
Semantic Analysis to Improve Access to Textual
Information,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
CHI ’88, (New York, NY, USA), pp. 281–285,
ACM, 1988.

[15] M. D. Blei, A. Y. Ng, and M. I. Jordan, “Latent
Dirichet Allocation,” Journal of machine learning
research, vol. 3, no. Jan, pp. 993–1022, 2003.

[16] L. K. Pritchard, M. Stephens, and P. Donnelly, “In-
ference of Population Structure Using Multilocus
Genotype Data,” Genetics, vol. 155, no. 2, pp. 945–
959, 2000.

[17] “Student Paper Migrations.” https:

//guides.turnitin.com/01_Manuals_and_

Guides/Administrator/Administrator_

User_Guide/22_Student_Paper_Migrations,
2016.

[18] “How Search Works: Algorithms.”
https://www.google.com/insidesearch/

howsearchworks/algorithms.html, 2016.

[19] S. Brin and L. Page, “Reprint of: The Anatomy of
a Large-Scale Hypertextual Web Search Engine,”
Computer networks, vol. 56, no. 18, pp. 3825–
3833, 2012.

[20] “PDFs in Google Search Results.” https:

//webmasters.googleblog.com/2011/09/

pdfs-in-google-search-results.html,
2011.

[21] G. Williams, “FontForge.” https://fontforge.

github.io/, 2017.

[22] J. Berkenbilt, “QPDF.” http://qpdf.

sourceforge.net/, 2015.

[23] J. Zhao, “Custom Fonts in Latex.” http://math.

stanford.edu/~jyzhao/latexfonts.php,
2012.

[24] E. L. Bird, Steven and E. Klein, Natural Language
Processing with Python. OReilly Media Incorpo-
rated, 2009.

[25] Google, “Custom Search Engine.” https://cse.

google.com/cse/, 2016.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=pdf
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=pdf
https://guides.turnitin.com/01_Manuals_and_Guides/Student/Classic_Student_User_Guide/09_Submitting_a_Paper
https://guides.turnitin.com/01_Manuals_and_Guides/Student/Classic_Student_User_Guide/09_Submitting_a_Paper
https://guides.turnitin.com/01_Manuals_and_Guides/Student/Classic_Student_User_Guide/09_Submitting_a_Paper
https://guides.turnitin.com/01_Manuals_and_Guides/Student/Classic_Student_User_Guide/09_Submitting_a_Paper
https://euske.github.io/pdfminer/
https://euske.github.io/pdfminer/
https://guides.turnitin.com/01_Manuals_and_Guides/Administrator/Administrator_User_Guide/22_Student_Paper_Migrations
https://guides.turnitin.com/01_Manuals_and_Guides/Administrator/Administrator_User_Guide/22_Student_Paper_Migrations
https://guides.turnitin.com/01_Manuals_and_Guides/Administrator/Administrator_User_Guide/22_Student_Paper_Migrations
https://guides.turnitin.com/01_Manuals_and_Guides/Administrator/Administrator_User_Guide/22_Student_Paper_Migrations
https://www.google.com/insidesearch/howsearchworks/algorithms.html
https://www.google.com/insidesearch/howsearchworks/algorithms.html
https://webmasters.googleblog.com/2011/09/pdfs-in-google-search-results.html
https://webmasters.googleblog.com/2011/09/pdfs-in-google-search-results.html
https://webmasters.googleblog.com/2011/09/pdfs-in-google-search-results.html
https://fontforge.github.io/
https://fontforge.github.io/
http://qpdf.sourceforge.net/
http://qpdf.sourceforge.net/
http://math.stanford.edu/~jyzhao/../latexfonts/
http://math.stanford.edu/~jyzhao/../latexfonts/
https://cse.google.com/cse/
https://cse.google.com/cse/

[26] Yahoo!, “BOSS Hosted Search.” https://boss.

yahoo.com/hosted-web-search, 2016.

[27] Microsoft, “Bing Search API.” https:

//datamarket.azure.com/dataset/

5BA839F1-12CE-4CCE-BF57-A49D98D29A44,
2016.

[28] R. Smith and Z. Podobny, “Tesseract OCR.”
https://github.com/tesseract-ocr, 2017.

[29] K. J. Ward and V. Costan, “PDF-Extract.” https:

//github.com/CrossRef/pdfextract, 2015.

[30] D. Malmgren, “textract.” https://textract.

readthedocs.io/en/stable/, 2014.

[31] S. Hoffstaetter, J. Bochi, and M. Lee, “pytesser-
act.” https://pypi.python.org/pypi/

pytesseract/0.1, 2014.

[32] D. Stevens, “PDF, Let Me Count the Ways
.” https://blog.didierstevens.com/2008/

04/29/pdf-let-me-count-the-ways/, 2008.

[33] G. Endignoux, O. Levillain, and J. Y. Migeon,
“Caradoc: A Pragmatic Approach to PDF Parsing
and Validation,” in 2016 IEEE Security and Privacy
Workshops (SPW), pp. 126–139, May 2016.

[34] J. Wolf, “Omg wtf pdf,” 2010.

[35] N. Leontiadis, T. Moore, and N. Christin, “A nearly
four-year longitudinal study of search-engine poi-
soning,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Se-
curity, pp. 930–941, ACM, 2014.

[36] D. Y. Wang, S. Savage, and G. M. Voelker, “Juice:
A longitudinal study of an seo botnet.,” in NDSS,
2013.

[37] K. Du, H. Yang, Z. Li, H. Duan, and K. Zhang,
“The ever-changing labyrinth: A large-scale anal-
ysis of wildcard dns powered blackhat seo,” in
25th USENIX Security Symposium (USENIX Secu-
rity 16), USENIX Association.

https://boss.yahoo.com/hosted-web-search
https://boss.yahoo.com/hosted-web-search
https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
https://github.com/tesseract-ocr
https://github.com/CrossRef/pdfextract
https://github.com/CrossRef/pdfextract
https://textract.readthedocs.io/en/stable/
https://textract.readthedocs.io/en/stable/
https://pypi.python.org/pypi/pytesseract/0.1
https://pypi.python.org/pypi/pytesseract/0.1
https://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/
https://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/

	Introduction
	Background Information
	Masking Font Creation
	Content Masking Attack Against Conference Reviewer Assignment Systems
	Construct Word and Character Maps
	Matching One or More Papers to One Reviewer
	Matching One Paper to Multiple Reviewers
	Experiment

	Content Masking Attack Against Plagiarism Detection
	Targeting a Specific Plagiarism Score
	Experiment

	Document Indexing Subversion
	Method
	Experiment

	Defense Against Content Masking
	Related Work
	Conclusion

