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Abstract—The backpressure algorithm is known to provide throughput optimality in routing and scheduling decisions for multi-hop

networks with dynamic traffic. The essential assumption in the backpressure algorithm is that all nodes are benign and obey the

algorithm rules governing the information exchange and underlying optimization needs. Nonetheless, such an assumption does not

always hold in realistic scenarios, especially in the presence of security attacks with intent to disrupt network operations. In this

paper, we propose a novel mechanism, called virtual trust queuing, to protect backpressure algorithm based routing and scheduling

protocols against various insider threats. Our objective is not to design yet another trust-based routing to heuristically bargain security

and performance, but to develop a generic solution with strong guarantees of attack resilience and throughput performance in the

backpressure algorithm. To this end, we quantify a node’s algorithm-compliance behavior over time and construct a virtual trust queue

that maintains deviations of a give node from expected algorithm outcomes. We show that by jointly stabilizing the virtual trust queue

and the real packet queue, the backpressure algorithm not only achieves resilience, but also sustains the throughput performance under

an extensive set of security attacks. Our proposed solution clears a major barrier for practical deployment of backpressure algorithm

for secure wireless applications.

Index Terms—Backpressure algorithm, routing and scheduling, attacks, security trust, virtual queue, insider threats, network

optimization.
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1 INTRODUCTION

The backpressure algorithm [1]–[4], in theory, achieves
the optimal network throughput by dynamically routing
and scheduling the network traffic. There have been
significant efforts focused on translating and adapting
the backpressure concept into a practical system for
wireless networks [5]–[9].

In essence, the backpressure algorithm coordinates
transmissions and maximizes the amount of total data
delivery by adapting scheduling and routing decisions
based on each node’s per-flow queue backlogs and
channel rates when applied to wireless networks. To
this end, it presumes that all nodes obey the algorithm
rules of information exchange, optimal link activation,
and flow selection. However, in practice, a node may
deliberately violate any rule to break the underlying
premise assumed by the backpressure algorithm. Re-
gardless of its selfish or malicious intent, there are two
basic ways for an attacker to pursue: (i) it can falsify
any information used in the backpressure algorithm; (ii)
it can violate backpressure algorithm based protocols by
offering no cooperation and/or not following decisions
in routing and scheduling optimization. These potential
attacks pose a major obstacle to practical deployment of
the backpressure algorithm in real (especially wireless)
systems.

As security emerges as a fundamental component of
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network design [10]–[15], it becomes vital to secure the
backpressure algorithm against various security attacks.
In the literature, integrating the backpressure algorithm
into practical network applications [5]–[7], [11], [16]–
[20] and securing routing protocols against various at-
tacks [13], [14], [21]–[23] have been investigated rather
orthogonally. Recently, a trust-based routing approach
was designed in [11] to help the backpressure algorithm
defend against attacks in wireless sensor networks. The
focus in [11] was on heuristically balancing trust and
throughput components in implementation, but not on
providing security guarantee of attack resilience.

In this paper, we aim at providing a generic framework to
secure the backpressure algorithm with guaranteed resilience
against information falsification and protocol-violation attacks.
To this end, we propose a novel mechanism, called
virtual trust queuing. There are three key components
supporting our mechanism: (i) when an attacker deviates
from legitimate behavior, nodes can collectively observe
and quantify such a deviation; (ii) each node individ-
ually manages all the deviations in a virtual queue for
every neighbor node in a distributed setting, and then
the virtual queue size can be limited (i.e., the deviation
or damage of an attacker can be bounded) by using
the queue-stabilizing technique jointly with a real packet
queue; (iii) the service rate in a virtual queue can be ade-
quately designed to mitigate imperfect observations (due
to wireless effects) or false accusations (e.g., a benign
node is mistakenly found to have abnormal behavior
due to observation errors). Therefore, we show that the
proposed virtual trust queue mechanism provides two
performance guarantees: 1) Zero penalty: there is zero
throughput performance penalty loss to use the virtual
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trust queue in the backpressure algorithm when there is
no attack; 2) Impact bounding: the damage of attacks to
the network can be bounded by a given tolerance level
for the virtual trust queue.

We use a comprehensive simulation study to show
the effectiveness of the proposed mechanism against an
extensive set of security attacks, including blackhole,
selective-forwarding, on-off, and opportunity-wasting
attacks, as well as selfish behavior to prioritize trans-
mission opportunities. Our contributions are as follows:
(i) we develop a new mechanism, called virtual trust
queuing, to secure the backpressure algorithm; (ii) we
show that the virtual trust queue mechanism, as a
generic solution to secure the backpressure algorithm,
offers guaranteed attack resilience as well as sustains the
throughput performance for the backpressure algorithm;
(iii) we demonstrate that the backpressure algorithm
with virtual trust queuing is a viable secure solution
for practical implementation of dynamic scheduling and
routing in wireless networks; (iv) we conduct extensive
simulations to show that the virtual trust queue mech-
anism can significantly improve the throughput per-
formance by securing backpressure scheduling against
a broad range of malicious attacks and selfish node
behaviors.

The rest of this paper is organized as follows. In
Section 2, we describe preliminaries and models for
the backpressure algorithm and its vulnerabilities. In
Sections 3 and 4, we design the virtual trust queue
based backpressure algorithm and analyze its security
properties, respectively. In Section 5, we present our
simulation results. In Section 6, we discuss related work.
Finally, we conclude the paper in Section 7.

2 PRELIMINARIES: BACKPRESSURE ALGO-
RITHM AND ITS VULNERABILITIES

In this section, we use an example to introduce the back-
pressure algorithm and its vulnerabilities, then formulate
the backpressure algorithm, and finally discuss attack
models.

2.1 Example of Backpressure Algorithm and Vulner-

abilities

The backpressure algorithm [1]–[4] is an optimal routing
and scheduling policy that stabilizes packet queues with
capability to achieve the maximum throughput. The
backpressure algorithm dynamically selects the set of
links to activate and flows to transmit on these links
depending on queue backlogs and channel rates. In the
following, we consider its application to a time-slotted
wireless network.

Fig. 1 shows an example of how the backpressure
algorithm works: nodes A, B, C, and D form a three-
hop wireless network with two flows. Each node has the
same transmission rate and cannot transmit and receive
at the same time slot. At a given time slot, the backlog
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Fig. 1. Example of the backpressure algorithm.

of each node for each flow is illustrated in Fig. 1. The
backpressure algorithm works as follows. First, compute
the maximum differential queue backlog between each
node pair as a link weight; i.e., A→B is 5 for flow 1,
C→B is 3 for flow 1, and D→C is 2 for flow 2, and select
these three links. Second, list all non-conflicting link sets,
i.e., {A→B for flow 1, D→C for flow 2} and {C→B for
flow 1}. Finally, choose the set that maximizes the sum of
all link weights, i.e., {A→B for flow 1, D→C for flow 2}.

Now suppose node C is malicious and declares that
its queue backlog for flow 1 is 100. Then, the maximum
differential queue backlog between nodes B and C be-
comes 99, which makes backpressure scheduling choose
only one link {C→B for flow 1}, thereby giving all the
transmission opportunity to the malicious node C.

2.2 Backpressure Algorithm Formulation

More formally, we consider a network denoted by
(N ,F), where N and F are the sets of network nodes
and flows, respectively. At time slot t = 0, 1, 2, · · · , node
i ∈ N has a queue backlog Qf

i (t) for flow f ∈ F . The
backpressure algorithm makes routing and scheduling
decisions based on

u
∗(t) = argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

ui,j(t)wi,j(t), (1)

where ui,j(t) ∈ u(t) is the link rate from node i to j,
u(t) is a feasible rate vector in the set of all feasible rate
vectors R(t) in the network, and wi,j(t) is the maximum
differential queue backlog

wi,j(t) = max
f∈F

(Qf
i (t)−Qf

j (t)), (2)

where Qf
i (t) and Qf

j (t) are the backlogs for flow f at
nodes i and j, respectively.

t+1t-1 t time

... ...

backlog information exchange and 

channel measurement
scheduled transmissions

Fig. 2. Information exchange and transmission scheduling

in the backpressure algorithm.

The backpressure algorithm in (1) is the optimal solu-
tion that requires centralized coordination. In practice, a
centralized controller (e.g., [17]) will collect information
from all nodes then make the scheduling decision. There
also exist low-complexity, distributed solutions (e.g., [3],
[5]–[7], [16]) with performance close to the optimal so-
lution (1). As our focus is not to solve (1) optimally in a
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distributed way, but to develop a generic framework that
provides security guarantee integrated into the backpres-
sure framework, we choose to integrate security into the
optimal formulation (1). In other words, we consider a
centralized scenario (e.g., [17]) in which there exists a
centralized controller in a multi-hop wireless network.
Accordingly, our theoretical results are based on the
optimal backpressure scheduling formulation.

To this end, we adopt a generic implementation model
for the backpressure algorithm shown in Fig. 2: at the
beginning of each time slot, nodes send information to
the controller for centralized coordination (e.g., [17]).
The information includes queue backlogs for computing
the differential queue backlog wi,j(t) in (2) and channel
state information based on channel measurements for
obtaining the best channel rate ui,j(t) from any node i
to node j in (1). Then, scheduled transmissions occur at
the rest of the time slot.

Note that our security solution based on the global
optimization (1) does not require extra centralized or
global information, but introduces new local informa-
tion. Therefore, it can be readily extended to distributed
versions that rely on exchange of local information only.

2.3 Insider Threats and Assumptions

We consider insider attackers that are nodes also in-
volved in the routing and scheduling decisions in the
network. In general, the behavior of an insider attacker
can be classified to one or both of the following two
categories.

1) Information-falsification attack: this happens during
the information exchange phase at the beginning of
each time slot shown in Fig. 2, where the attacker
intentionally sends false information to others to
adversely affect backpressure routing. For exam-
ple, the attacker broadcasts false backlog informa-
tion or false channel state information to result
in wrong differential backlog computation in (2).
As the backpressure algorithm is reactive to node
queue backlogs and channel state information, its
routing decisions can be significantly affected by
information-falsification attacks.

2) Protocol-violation attack: this happens in the sched-
uled transmission phase shown in Fig. 2, where the
attacker does not obey backpressure routing deci-
sions. For example, an attacker does not transmit
although it is scheduled to transmit at that time
slot.

We assume that attackers can neither modify informa-
tion (e.g., queue backlog) inside other nodes nor change
the wireless channel characteristics (e.g., channel gain).

It is worth mentioning that the backpressure algorithm
is resilient in terms of throughput performance to im-
perfect queue backlog estimation, as long as the error is
bounded by a constant [24]. In this paper, we consider
a different scenario, where attackers can arbitrarily ma-
nipulate queue backlogs and channel state information,

and launch various attacks using falsified information to
degrade the network performance.

3 SECURING THE BACKPRESSURE ALGO-
RITHM

An attacker can launch either information-falsification
or protocol-violation attacks, or both. To clearly present
our solution, we first handle information-falsification
attacks. In particular, we discuss how a node can observe
information-falsification attacks, then we design our so-
lution to secure the backpressure algorithm. Finally, we
extend our solution to protocol-violation attacks.

3.1 Behavior of Attackers

We first address information-falsification attacks. Such
attacks can have at least one of two intents: (i) selfish
behavior: if the attacker is selfish, it is interested in its own
performance gain without care for others in the network;
(ii) malicious behavior: if the attacker is malicious, it aims
to degrade the throughput of others in the network as
much as possible.

large size

......

small size

backlog size

12345

Fig. 3. Low or high backlog broadcasting can be used to

affect backpressure routing.

As the backpressure algorithm requires nodes to
broadcast their queue backlogs and channel state infor-
mation, one effective way for an attacker to fulfill its
selfish or malicious intent is to falsify its queue backlogs
or channel state information.

1) Manipulating backlogs. If the attacker wants to send
its own packets immediately instead of receiv-
ing packets from others, it can broadcast falsified
higher backlogs than actual ones as shown in Fig. 3.
Then, it has a higher chance to be scheduled to
transmit as a result of backpressure algorithm com-
putation. If the attacker is malicious and tries to
destroy packet delivery as much as possible, it can
act like a blackhole and broadcast falsified, lower
or zero, backlogs. Thus, it will attract more packets
routed to itself under backpressure scheduling,
then drop some or all of them. In summary, an
attacker can manipulate its backlog information
arbitrarily to affect the optimization solution in the
backpressure algorithm.

2) Falsifying channel state information. If the attacker
wants to gain the transmission opportunity, it can
broadcast higher channel gains than the actual
ones (so its link rate ui,j(t) is considered large
in the backpressure optimization (1)). Then, it has
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a higher chance to be scheduled to transmit. Al-
though broadcasting false channel information is
one type of information falsification, we can cat-
egorize attacks that falsify channel state informa-
tion into protocol-violation attacks. This is because
when an attacker cannot transmit with a claimed
rate, it violates the scheduling decision. We will
show in Section 3.4 that channel state informa-
tion falsification can be solved jointly with other
protocol-violation attacks.

In summary, manipulation of queue backlogs belongs
to information-falsification attacks. An attacker can also
simply manipulate its backlog information arbitrarily
to affect the optimization solution in the backpressure
algorithm.

3.2 Identification of Attack Behavior

Backlog manipulation is an essential way to launch
various attacks against the backpressure algorithm. The
question is how to identify or deduce possible backlog
manipulation behavior of a node. To answer this, we first
need to understand how the backlog dynamics evolve
for benign nodes over time.

t+1t-1 t time

... ...

Qj (t)

f
transmit or receive Sj (t)new arrival Aj (t)

f

Qj (t+1)
f f

Fig. 4. Backlogs and activities of a node as time evolves.

Suppose node j is benign and obeys the backpressure
scheduling. Fig. 4 shows the behavior of node j over
time. Node j’s backlogs for flow f are denoted by Qf

j (t)

and Qf
j (t + 1) at times t and t + 1, respectively. The

number of new arrivals at node j for flow f is Af
j (t)

during time slot t, whose value is only known to node j
and is never broadcast to others. In addition, node j may
transmit or receive at time t. Let Sf

j (t) be the amount
of data that node j sends or receives during time t for
flow f (Sf

j (t) > 0 or Sf
j (t) < 0 when node j transmits or

receives for flow f , respectively). Then, it must hold that
node j’s next-slot backlog Qf

j (t+1) equals to its current-

slot backlog Qf
j (t) with its new arrivals Af

j (t) added and

its transmitted data Sf
j (t) removed; i.e.,

Qf
j (t+ 1) = Qf

j (t) +Af
j (t)− Sf

j (t) (3)

for each flow f ∈ F . Note that an implicit assumption
in the backpressure algorithm is that all nodes know the
source and destination of a particular flow. Therefore, a
destination node is known to consume the transmitted
data on flows with destination to it. As a result, any
consumed data at a destination is not reflected in (3).

From (3), we can get the arrival rate Af
j (t) as

Af
j (t) = Qf

j (t+ 1)−Qf
j (t) + Sf

j (t) ∈ [0, Amax], (4)

where Amax is the upper limit of the packet arrival rate
in the network, depending on a particular application.
The value of Amax can be set according to application-
layer specifications or a wireless node’s link capability.
For example, when a network uses G.729 [25] (that is a
voice over IP protocol), the packet arrival rate can be 50
or 33.3 packets/second and Amax can be set to be 50 plus
a margin (e.g., 5 packets) to tolerant observation errors;
when a network uses ZigBee with date rate of 250 kbit/s
and the data packet size is 1500 bytes, Amax can be set to
be 250000/(1500 ∗ 8) ≈ 21 also plus a margin of a small
number of packets.

The purpose of obtaining the arrival rate is that we
will show that any potential backlog manipulation at
node j can be identified by a neighbor node i that
examines whether node i’s estimate of node j’s arrival
rate estimate is within [0, Amax].

In particular, node j may not be benign and can
broadcast false backlogs Q̂f

j (t + 1) and Q̂f
j (t), instead

of its true backlogs Qf
j (t + 1) and Qf

j (t), respectively.

The transmitted/received data Sf
j (t) can be observed as

Ŝf
i,j(t) by node i.
Due to the coordinated nature of the backpressure

algorithm, if node j is scheduled to transmit, a neighbor
of node j will know the amount of data Sf

j (t) that
node j transmits. Thus, node i’s perfect observation
is Ŝf

i,j(t) = Sf
j (t) if the attacker obeys the scheduling

decision to transmit. However, due to wireless channel
fading and collision, node i’s observation Ŝf

i,j(t) may not

be exactly equal to Sf
j (t) or and the difference may be

large. Moreover, protocol-violation attacks do not need
to obey scheduling decisions, which can also lead to
Ŝf
i,j(t) 6= Sf

j (t). We will handle the imperfect observation
case in Section 3.3.2 and protocol-violation attacks in
Section 3.4.

For better presentation of our idea, we assume that
Ŝf
i,j(t) = Sf

j (t) in the following. Thus, given Q̂f
j (t + 1),

Q̂f
j (t) and Ŝf

i,j(t), node i (observing node j’s trans-
mit/receive behavior) can estimate node j’s arrival rate
as

Âf
i,j(t)=Q̂f

j (t+ 1)−Q̂f
j (t)+Ŝf

i,j(t). (5)

We show via examples how node j’s selfish or mali-
cious behavior results in node i’s arrival rate estimate
Âf

i,j(t) going outside of the normal region [0, Amax].

• Negative arrival rate: consider that node j is a black-
hole attacker who intends to attract packets to
be routed to itself and drop all these packets. To
achieve this goal efficiently, node j keeps broadcast-
ing zero backlogs (i.e., Q̂f

j (t) = 0 for all t). Obvi-
ously, because of its zero backlog, it should always
receive data from another node, and this effect is
observed by its neighbor node i as Ŝf

i,j(t) < 0.
It follows that the arrival rate estimate at node i
satisfies

Âf
i,j(t) = Q̂f

j (t+1)−Q̂f
j (t)+Ŝf

i,j(t) = 0−0+Ŝf
i,j(t) < 0.
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Fig. 5. Negative and high arrival rates indicate attacking

behavior.

Accordingly, we see that if a node is deliberately
attracting packets, it can exhibit a negative arrival
rate.

• High arrival rate: consider that node j does not get
the chance to transmit at time t (i.e., Ŝf

i,j(t) = 0
observed by node i), but wants to capture the trans-
mission opportunity at time t+1. Thus, it broadcasts
a much higher backlog at the start of time t+1 (i.e.,
Q̂f

j (t+ 1) > Q̂f
j (t) +Amax). Consequently, its arrival

rate estimate can be written as

Âf
i,j(t) = Q̂f

j (t+1)−Q̂f
j (t)+Ŝf

i,j(t) > Amax+0 > Amax,

indicating the arrival rate estimate exhibits a very
large value that exceeds its limit Amax.

It is easy to verify that either negative or high arrival
rate indicates attacking behavior as shown in Fig. 5.
Therefore, we say that node i’s arrival rate estimate
Âf

i,j(t) of node j for flow f is within the normal region

if 0 ≤ Âf
i,j(t) ≤ Amax.

3.3 Virtual Trust Queue to Defend Backpressure Al-

gorithm

We have already identified that estimating packet arrival
rate of a node can help us find out whether the node
exhibits backlog manipulation behavior or not. Our next
goal is to design a strategy based on estimating packet
arrival rates to defend the backpressure algorithm. We
first introduce an augmented optimization approach to
protect the backpressure algorithm, then present how to
build a comprehensive virtual trust queue solution to
provide the security guarantee.

3.3.1 Augmented Optimization Approach

As we have already mentioned, the arrival rate estimate
Âf

i,j(t) is critical to determine whether a node is an

attacker or not at time t. Either Âf
i,j(t) < 0 or Âf

i,j(t) >
Amax indicates attacking behavior. As shown in Fig. 5,
the farther the estimate of node j’s arrival rate is from
the actual one, the more aggressive the attack behavior
becomes, and accordingly there is less trust that another
node should put in node j.

Thus, we define the deviation in arrival of node j for
flow f observed at node i as the distance of arrival rate
estimate Âf

i,j(t) to the normal arrival rate region [0, Amax];

namely,

dfi,j(t) =











|Âf
i,j(t)| for Âf

i,j(t) < 0,

0 for 0 ≤ Âf
i,j(t) ≤ Amax,

Âf
i,j(t)−Amax for Âf

i,j(t) > Amax.
(6)

It is easy to see that dfi,j(t) is always non-negative. Larger

dfi,j(t) means more deviation from a node’s normal be-
havior. Then, we define the deviation in arrival (for all
flows) as

Di,j(t) =
∑

f∈F

dfi,j(t) + ǫ, (7)

where ǫ > 0 is a small number serving only as a uniform
offset such that all behaviors exhibit strictly positive
deviations, i.e., Di,j(t) ≥ ǫ for all t > 0.

Accordingly, increasing Di,j(t) decreases node i’s trust
in node j. If node j is associated with a high value of
Di,j(t), it should be attacking other nodes or misbehav-
ing in the network, and thus should be punished during
the backpressure scheduling. Thus, the augmented opti-
mization approach adds a penalty term to the backpres-
sure algorithm in (1) as

u
∗(t) = argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(ui,j(t)wi,j(t)− vDi,j(t)) , (8)

where −vDi,j(t) (v > 0) is the penalty term. If a node
is an attacker with a large value of Di,j , the penalty
term −vDi,j(t) is then a large negative value, indicating
that the link (i, j) is less likely to be scheduled by the
maximization in (8). Here, v > 0 is a weighted factor
for the deviation in arrival, meaning the optimization
allows for a flexible tradeoff between the throughput
performance and the trust level by adjusting the value
of v.

3.3.2 Virtual Trust Queue

There are three major drawbacks of the approach in (8):
(i) if an attacker causes a very large value of Di,j(t) at
time t (e.g., deliberately dropping all packets) and then
returns to legitimate behavior after time t, the penalty
in (8) only happens and lasts during time t (i.e., there
is no memory in tracking the trust), and therefore may
not mitigate the total damage of the attack; (ii) there is
no systematic way to determine the value of v; and (iii)
there is no systematic way to know, control, or limit
the damage that an attacker can cause to the network
performance.

To address the first issue, we can define a sliding
window to record the history and keep applying the
penalty. However, the sliding window method requires
careful adjustment of window size and still cannot solve
the second and third issues. Another way to remember
and use history is to represent it in a queue structure.
Mathematical tools in the queuing theory can then pro-
vide a theoretical understanding of how we can use a
queue to limit an attack’s behavior.



6

As a consequence, we use a queue to manage the de-
viations of arrival. Motivated by [18] that uses a virtual
energy queue to limit the power consumption while at
the same time sustaining the throughput performance,
our objective is to construct a virtual queue, called virtual
trust queue, to limit the damage of an attacker while
at the same time sustain the throughput performance.
We call it virtual because the queue only stores a single
trust value. In particular, node i maintains a virtual trust
queue for node j and enqueues the deviation in arrival
Di,j(t) with constant service rate δ > ǫ > 0. In other
words, the queue size (or the value stored in the queue)
Xi,j(t) can be written as

Xi,j(t+ 1) = max (Xi,j(t)− δ, 0) +Di,j(t). (9)

It is easy to see that if Xi,j(t) becomes larger, node j is
less trustable. We then integrate the virtual trust queue
into (1) in the backpressure algorithm as

u
∗(t)= argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(ui,j(t)wi,j(t)−Xi,j(t)Di,j(t)) . (10)

We next show that (10) provides two essential guar-
antees, called zero penalty and attack bounding.

• Zero penalty: if there is no attack, there is no through-
put performance penalty loss to use the virtual trust
queue.

• Impact bounding: if there is an attack, the virtual
trust queue based optimization (10) guarantees the
attack’s damage to the network is always bounded
from above.

In what follows, the two guarantees of the virtual trust
queue are presented in Theorems 1 and 2, respectively.

Theorem 1 (Zero Penalty of the Virtual Trust Queue): In
a network without any attack, the virtual trust queue
based optimization (10) is equivalent to the original
backpressure optimization in (1).

Proof: If there is no attack, Di,j(t) = ǫ for all t > 0.
Thus, the virtual trust queue size in (9) satisfies Xi,j(1) =
max (0− δ, 0) + ǫ = ǫ, Xi,j(2) = max (ǫ− δ, 0) + ǫ = ǫ,
Xi,j(3) = max (ǫ − δ, 0)+ǫ = ǫ, and so on. Then, Xi,j(t) =
ǫ for all t > 0.

Inserting Di,j(t) = Xi,j(t) = ǫ into (10) yields

u
∗(t) = argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(

ui,j(t)wi,j(t)− ǫ2
)

= argmax
u(t)∈R(t)

∑

ui,j(t)∈u(t)

ui,j(t)wi,j(t), (11)

which completes the proof, since (20) is equivalent to (1).
�

Remark 1: Theorem 1 ensures that we can always use
this virtual trust queue mechanism under any circum-
stance with and without attacks. It incurs no cost in
terms of performance loss when there is no attack in the
network. Note that Theorem (1) does not consider the
cost induced by communication overhead. The virtual
trust queue requires transmissions of information of
virtual queue sizes in addition to other communication

overhead induced by the original backpressure algo-
rithm. Therefore, it indeed incurs some extra commu-
nication overhead in a practical system.

Theorem 2 (Impact Bounding of the Virtual Trust Queue):
If a virtual trust queue established in (9) is stable, it is
guaranteed that the deviation in arrival Di,j(t) satisfies

lim sup
t→∞

1

t

t
∑

τ=1

E(Di,j(τ)) ≤ δ. (12)

Otherwise, (10) degenerates to an optimization over a
subset that excludes from stable rate region R(t) all links
with nodes showing unstable queues as t → ∞.

Proof: The proof consists of two parts: (i) when the
virtual queue is stable, and (ii) when the virtual queue
is not stable.
Part I: when the virtual queue is stable, it satisfies

lim sup
t→∞

1

t

t
∑

τ=1

E(Xi,j(τ)) ≤ ∞. (13)

Then, given the relation between queue size and devi-
ation of arrival in (9), it follows from Lemma 3 in [18]
that

lim sup
t→∞

1

t

t
∑

τ=1

E(Di,j(τ)) ≤ δ, (14)

which completes the first part.
Part II: when a particular virtual queue Xi0,j0(t) is
unstable, we have

lim inf
t→∞

Xi0,j0(t) = ∞. (15)

If link (i0, j0) is selected, it follows from (15) that

−Xi0,j0(t)Di0,j0(t) = −∞ (16)

as t → ∞. This means if link (i0, j0) is selected, the
term

∑

ui,j(t)∈u(t) (ui,j(t)wi,j(t)−Xi,j(t)Di,j(t)) in (10)
becomes −∞. Therefore, an optimal solution to (10) is to
find the best link rates in all feasible link sets excluding
link (i0, j0). �

Remark 2: The virtual trust queue Xi,j(t) saved at
node i is not a real queue, but a single value whose
operation in (9) works similar to a queue. Therefore,
maintaining a virtual trust queue only incurs negligible
amount of memory at each node. Similarly, broadcast-
ing the trust queue information also incurs negligible
amount of additional transmission overhead.

3.3.3 Choosing the Service Rate in Trust Queue

Theorem 2 states that the designed virtual trust queue
produces two outcomes for an attacker: 1) if the at-
tacker exhibits mild behavior (e.g., alternating legitimate
and selfish behaviors over time) such that the virtual
trust queue is still stable (i.e., queue size is small and
bounded), we guarantee that the attacker’s average
deviation in arrival is below the service rate δ. That
is, δ serves as a tolerance level to the attacker. 2) if
the attacker’s behavior is too aggressive (e.g., keeps
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attacking all the time) such that the virtual trust queue
becomes unstable (i.e., queue size is very large and keeps
increasing), we guarantee that the attacker is eliminated
from any routing decision.

It is emphasized that our goal is not to detect any
possible attack against the backpressure algorithm, but
to sustain performance for all legitimate nodes under
attacks that can significantly degrade the performance.
Given our virtual trust queue mechanism with a tol-
erance level, there will be some greedy attackers that
achieve slight gains without being detected. However,
they will be immediately penalized once they go beyond
the tolerance level.

We can specify any positive value of the service rate
δ in the virtual trust queue, which reflects our tolerance
level or bound for attackers as indicated in (14). The vir-
tual trust queue mechanism guarantees that it involves
any potential attackers in scheduling under the given
tolerance level δ, and at the same time eliminates any
potential attackers that go beyond δ.

As we have mentioned, the virtual trust queue mecha-
nism is based on the observations on other nodes, which
may have errors in the real world. Such errors may also
lead to false accusation to some benign nodes. Therefore,
the value of δ can be set proportional to the expected
level of observation errors in a practical network sce-
nario to mitigate observation errors. For example, due
to possible channel collision, a node may not be able to
observe a transmission. Therefore, δ can be set as the
amount of data for a single transmission such that the
observation error due to channel collision is mitigated
by the virtual queue service.

3.4 Handling Protocol-Violation Attacks

To defend against backlog information falsification at-
tacks, we have so far built a virtual trust queue mecha-
nism, in which we assume that an attacker only falsifies
backlog information to affect scheduling decisions, but
it obeys any scheduling decision. In practice, an attacker
has the freedom to both falsify information and violate
any scheduling decision. We next show our solution
can be directly integrated to combat protocol-violation
attacks at the same time.

A protocol-violation attacker is the one that does not
obey the backpressure scheduling decision, such as (i)
a selective-forwarding attacker that does not transmit
packets for a particular flow even when it is scheduled to
transmit, (ii) an attacker that claims to have a very good
channel rate but uses a much lower rate to transmit, or
(iii) an attacker that transmits data to another node that
is not scheduled to receive.

To defend against protocol-violation attacks, we adopt
a similar neighborhood watch strategy that we used
previously for queue backlogs. As shown in Fig. 6,
node j is scheduled to transmit data with amount Sf

j (t),
which is known to its neighbor node i during the infor-
mation exchange in backpressure scheduling. If node j

j i

Sj (t) is supposed to be 

transmitted by node j

f

node i observes Si,j (t)
f

Fig. 6. Node j’s scheduled transmission vs. node i’s
observation.

obeys the scheduling decision, then node i’s observa-
tion on the transmission is Ŝf

i,j(t) = Sf
j (t). Otherwise,

Ŝf
i,j(t) 6= Sf

j (t). For example, if node j does not transmit

or transmits to a wrong destination, Ŝf
i,j(t) = 0. If node j

uses a lower rate to transmit, Ŝf
i,j(t) < Sf

j (t). Note that in
this case, imperfect observation or false accusation may
also happen, which can also be mitigated by choosing
the value of service rate equal to the data amount for a
single transmission.

As a result, we define the deviation in scheduling as the
absolute difference between node i’s observation Ŝf

i,j(t)

and node j’s scheduling Sf
j (t), i.e.,

Ei,j(t) =
∑

f∈F

|Ŝf
i,j(t)− Sf

j (t)|+ η, (17)

where η > 0 is a small offset similar to previously
defined ǫ in (7). It is obvious that if a node exhibits
large deviations of scheduling in (17), the node may
misbehave and should be penalized in the backpressure
algorithm.

In a similar way, we construct another virtual trust
queue: node i maintains a second virtual trust queue for
node j with size Yi,j(t) that enqueues the deviation in
scheduling Ei,j(t) with constant service rate σ > η > 0;
i.e.,

Yi,j(t+ 1) = max (Yi,j(t)− σ, 0) + Ei,j(t). (18)

Finally, in order to handle both information-
falsification and protocol-violation attacks, we
integrate the two virtual trust queues together into
the backpressure optimization as

u
∗(t)=argmax

u(t)∈R(t)

∑

u
i,j

(t)∈u(t)

(u
i,j
(t)w

i,j
(t)−X

i,j
(t)D

i,j
(t)−Y

i,j
(t)E

i,j
(t)),

(19)
where Xi,j(t) are Yi,j(t) are the virtual trust queues for
deviation in arrival Di,j(t) and deviation in scheduling
Ei,j(t), respectively.

In the following, we show that Theorems 1 and 2 still
hold when we integrate two virtual trust queues in (19).

Corollary 1: In a network without any attack, the virtual
trust queue based optimization (19) is equivalent to the
original backpressure optimization in (1).
Proof: If there is no attack, Ei,j(t) = ǫ for all t > 0.
Thus, the virtual trust queue size in (9) satisfies Yi,j(1) =
max (0− σ, 0) + η = ǫ, Yi,j(2) = max (η − σ, 0) + η = η,
and so on. Then, Yi,j(t) = η for all t > 0.
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Inserting Di,j(t) = Xi,j(t) = ǫ (already shown in the
proof of Theorem 1) and Ei,j(t) = Yi,j(t) = η into (19)
yields

u
∗(t) = argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(

ui,j(t)wi,j(t)− ǫ2 − η2
)

= argmax
u(t)∈R(t)

∑

ui,j(t)∈u(t)

ui,j(t)wi,j(t), (20)

which completes the proof. �

Corollary 2: If the two virtual trust queues
in (19) are stable, then Di,j(t) and Ei,j(t)
satisfies lim supt→∞

1
t

∑t

τ=1 E(Di,j(τ)) ≤ δ, and

lim supt→∞
1
t

∑t

τ=1 E(Ei,j(τ)) ≤ σ. Otherwise, (19)
degenerates to an optimization over a subset that
excludes from stable rate region R(t) all links with
nodes showing unstable queues as t → ∞.
Proof: Similar to the proof of Theorem 2, the virtual
queue being stable indicates

lim sup
t→∞

1

t

t
∑

τ=1

E(Yi,j(τ)) ≤ ∞. (21)

Then, it follows from Lemma 3 in [18] that
lim supt→∞

1
t

∑t

τ=1 E(Ei,j(τ)) ≤ σ. If any virtual queue
in not stable, either −Xi,j(t)Di,j(t) or −Yi,j(t)Ei,j(t)
will be negative infinity as t → ∞, and therefore they
are excluded in the argmax optimization in (19). �

According to the two corollaries, the designed vir-
tual trust queue mechanism provides a guaranteed
(rather than heuristic) solution to defend the backpres-
sure algorithm against both information-falsification and
protocol-violation attacks. Moreover, the proposed vir-
tual trust queue mechanism is generic and flexible to
accommodate more queues for the quantification of any
other attack behavior, and at the same time guarantees
attack resilience.

3.5 Discussions

It is possible for an attacker to perform low-rate attacks
to bypass the virtual trust queue mechanism without
penalty. Consider an attacker in Fig. 7: attacker e wants
to degrade the performance. It creates a junk flow to
destination d with flow arrival rate smaller than Amax.
Then, it broadcasts an increased backlog for this flow to
neighboring nodes a and b. Because the flow arrival rate
is smaller than Amax, the deviation of arrival is always
0 according to (6). In this way, as long as attacker e
also transmits the same amount of (junk) data for such
a flow under backpressure scheduling to avoid protocol
violation, it will not be detected and punished under the
virtual trust queue mechanism.

It is worth noting that from the view at the network
level, such a low-rate attacker exhibits no difference from
a normal node maintaining a legitimate flow to another
node: the attacker indeed has legitimate behavior be-
cause it drops no packets, obeys the scheduling proto-
col, and maintains network traffic flows with legitimate

a e

neighbor attacker

b

neighbor

Broadcast an increased backlog to 

destination d such that the deviation 

of arrival is ZERO!

d

destination

a junk flow

Fig. 7. Low rate attack scenario: attacker e is broadcasting
an increased backlog. The backlog is carefully manipu-

lated such that the deviation of arrival is still calculated as

zero at neighboring nodes a and b.

rates. Therefore, it cannot be detected by any defense
methods deployed at the network layer or below, in-
cluding our virtual trust queue mechanism that is used
at the network layer to defend against attacks. The only
difference between low-rate attack and legitimate flows
is that the application layer at the destination will find
data from the attacker does not have suitable content
(i.e., detecting junk data).

Hence, our virtual trust queue mechanism never de-
tects low-rate attacks, not due to design flaws, but
because of the deployment nature of all network layer
defense. It has to work with existing attack detection
methods at the application layer (e.g., [26], [27]) to
completely eliminate such low-rate attacks.

In this paper, we focus on insider attacks. There may
exist some outsider attackers in the network. Usually
an outsider attacker, like a jammer, attempts to disrupt
communications in a network. This apparently will cause
packet transmission disruptions. Therefore, nodes cannot
correctly receive packets or observe their neighbors.
The proposed secure backpressure framework cannot
defend against such an outsider attack. Therefore our
secure backpressure framework should work with de-
fense mechanisms against outsider attacks to fully secure
a wireless network.

4 FALSIFYING VIRTUAL TRUST QUEUE IN-
FORMATION AND COLLUSION ATTACKS

The virtual trust queue mechanism uses (19) to coor-
dinate node transmissions. On one hand, virtual trust
queues provide attack resilience; on the other hand,
they may introduce another line of vulnerability in
the backpressure algorithm. In particular, nodes need
to broadcast additional virtual trust queue information
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Xi,j(t), Di,j(t), Yi,j(t), and Ei,j(t) for either distributed
or centralized coordination at time t. Nonetheless, it is
possible that an attacker can also falsify virtual trust
queue information to blame a legitimate node for misbe-
havior. Or even worse, two or more attackers can collude
with each other to make an undetectable scenario, in
which one attacker is attacking the network by manip-
ulating information or violating the protocol, and at the
same time other attackers obey the schedule but send
falsified trust queue information to cover for the attacker.
See the example in Fig. 8 for such a case.

f e

neighbor/attacker attacker

Say: node e’s virtual 

queue is normal!

manipulating information or 

violating the protocol

Fig. 8. Two nodes can collude with each other. Node e is

attacking the network and at the same time, its partner
node f declares that node e’s virtual trust queue is

normal.

These attacks can be all realized via the same strategy
of falsifying virtual trust queue information. Therefore,
it is necessary to address such attacks with an effective
countermeasure.

4.1 Countermeasure Design

Our countermeasure is based on the idea of comparing
different virtual trust queue information received from
different nodes. To illustrate our idea, let us focus on the
metric of deviation in arrival Di,j(t) and its virtual trust
queue Yi,j .

First, notice that Di,j(t) reflects node i’s observation
on node j. This indicates that if node i is an attacker,
it can only falsify its own Di,j(t) on node j. However,
node i is not the only one providing such information.
There are other neighbors that provide their observations
on node j at the same time. Denote by Nj the set of
node j’s neighbors. Then, there are |Nj | observations on
node j. For any pair of benign nodes k, l ∈ Nj , they
receive the same backlog information from node j and
can observe the transmission behavior of node j. Thus,
their quantified deviations in arrival Dk,j(t) and Dl,j(t)
should be in close value (due to some observation errors
in practice). Accordingly, Xk,j(t) and Xl,j(t) should also
be in close value (since the queue size is solely based
on the deviation in arrival as shown in (9)). Therefore,
any significant difference among all reported virtual
trust queue sizes indicates the behavior of queue size
falsification.

For a centralized implementation (e.g., [17]), a virtual
trust queue does not need to be maintained at each node.
The centralized controller can establish the queue for
each node. At each time slot, node k reports its computed
deviation Dk,j(t) to the controller. Then, the controller

chooses the most uniformly agreed value using (22) for
its trust queue maintained for node j, i.e., the controller
adopts a nearest-to-average rule to correct any isolated
values in all reported virtual trust queue information
using

Dk,j(t) = argmin
d∈Dj(t)

|d−Dj(t)| (22)

for all k ∈ Nj , where Dj(t) is the set of all deviations of
arrival reported by node j’s neighbors, and Dj(t) is the
average of all these deviations. Similar corrections will
also be applied to Xi,j , Ei,j , and Yi,j .

The nearest-to-average rule in (22) is essentially a ma-
jority rule. In other words, the rule will choose the virtual
queue size that is reported by a majority of a node’s
neighbors (without considering observation errors).

Fig. 9 shows an example how the correction to falsified
virtual trust queue information works. Suppose that
node i sends false information (Di,j(t) = 9, Xi,j(t) =
2). At the same time, node i’s other benign neigh-
bors, nodes a, b, c and d, also send (Da,j(t), Xa,j(t)),
(Db,j(t), Xb,j(t)), (Dc,j(t), Xc,j(t)), and (Dd,j(t), Xd,j(t)),
respectively, which satisfy Di,j(t) 6= Da,j(t) = Da,j(t) =
Db,j(t) = Dc,j(t) = Dd,j(t) = 5 and Xi,j(t) 6= Da,j(t) =
Xa,j(t) = Xb,j(t) = Xc,j(t) = Xd,j(t) = 20. Using (22),
the corrections are Di,j(t) = 5 and Xi,j(t) = 20.

j i

b

c

d

a

Dd, j (t), Xd, j (t)

Dc, j (t) Xc, j (t)

Db, j (t) Xb, j (t)

Da, j (t) Xa, j (t)

Di, j (t), Xi, j (t)

different values here!

Fig. 9. Node j has neighbor nodes i, a, b, c, and d. Node i
falsifies virtual trust queue information. Nodes a, b, c, and

d are benign and send correct information.

4.2 Performance Analysis

The nearest-to-average rule may choose a wrong value
if a node has more colluding neighbors than benign
neighbors. Intuitively, in a scenario where nodes are
mobile or randomly distributed, this may be less likely to
happen under the typical assumption that there are more
benign nodes than attackers in the network. But if the
case indeed happens, we are interested in determining
the potential effect of attack, namely the probability of a
wrong detection decision. By adopting the widely-used
random geometric graph network model [28], we state
our result in the following proposition.

Theorem 3: Consider a network modeled as a random
geometric graph with n nodes and node density λ.
Assume that there are (1 − c)n legitimate nodes and
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cn colluding attackers (c ∈ (0, 1)). The probability that
the nearest-to-average rule fails to detect a colluding

attack is bounded from above by e−a(
√
c−

√
1−c)

2

, where
a = πλr2 is the average number of legitimate neighbors
for each node in the network.

Proof: The nearest-to-average rule fails to detect an
attacker when the number of its colluding neighbors na

is greater than that of its legitimate neighbors nn. There-
fore, the probability that the nearest-to-average rule fails
is equal to the probability P(nn ≤ na). Under the random
geometric graph model, the node distribution on the
network follows a Poisson point process [28]. Thus,
both nn and na follow the Poisson distribution with
parameters cπλr2 and (1 − c)πλr2, respectively. We can
then obtain

P(nearest-to-average fails) = P(nn ≤ na), (23)

which is called a Poisson race. From a Chernoff bound
[29], we have

P(nn ≤ na) ≤ e
−
(√

cπλr2−
√

(1−c)πλr2
)

2

,

= e−πλr2(
√
c−

√
1−c)

2

= e−a(
√
c−

√
1−c)2

= e
−a

(

1−2
√

c(1−c)
)

. (24)

�

Theorem 3 shows that the failure probability of the
nearest-to-average rule can be bounded by an expo-
nential function of a and c. We show an example of
such an upper bound as a function of c (percentage)
in Fig. 10. It is noted from Fig 10 that the failure
probability is very small when c is small. For example,
when c = 6% (indicating 6% of the network nodes are
colluding attackers), the failure probability is smaller
than 0.52%. When c = 20%, the upper bound of the
failure probability becomes 13.5%. However, in practice,
the value of c should be very small because most of the
nodes in the network should be legitimate.

4.3 Discussions

For a centralized backpressure implementation, it is easy
to let the controller to decide which nodes are falsi-
fying virtual queue information according to (22). The
proposed trust mechanism can also be used in a fully
distributed scenario. However, a key issue is then who
will collect such information and decide which nodes are
falsifying the virtual queue information. A natural way is
to let every neighbor communicate with each other then
decide individually who is falsifying the information.
A malicious neighbor may try to send or forward the
falsified information to other neighbors to affect their
decision. The problem is essentially a Byzantine generals
problem [30]. It is known from [30] that if one third
or more of the neighbors are malicious, there exists no
solution to remove the falsified information injected by
malicious nodes. Comparing this with the majority rule
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Fig. 10. The failure probability of the nearest-to-average
rule as a function of c when a = 10.

(22) in the centralized design, we can conclude that the
trust mechanism is less tolerant of the number of mali-
cious nodes in the distributed backpressure framework
than it is in the centralized one.

5 PERFORMANCE EVALUATION

In this section, we conduct an extensive simulation study
to evaluate the performance of the designed secure
backpressure algorithm with virtual trust queues.

We set up a wireless network with 50 nodes with
transmission range 100m uniformly distributed over a
200m-by-200m area. Each node is half-duplex thus can-
not transmit and receive at the same time. We adopt the
protocol interference model; i.e., if two nodes are within
each other’s transmission range, their link rate is set to
be 100 packets/s; otherwise, the rate is 0. In addition, if
a node is receiving from a neighbor at a time slot, none
of its other neighbors will be scheduled to transmit.

There are in total 10 end-to-end flows with randomly
selected source-destination pairs in the network. Per-
flow packet arrival at each node per time slot follows the
uniform distribution over time [0, Amax], where Amax = 5
packets/s. The simulation starts at time 0 with queue
backlogs of all nodes equal to zero. Each benign node
uses two virtual trust queues with ǫ = η = 0.5 for each
of its neighbors along with the data packet queues.

We consider a comprehensive set of attack scenarios
in the simulations:

1) Blackhole attacks, which always broadcast zero
queue backlogs and high channel rates to attract
packets to be routed to them, then drop all received
packets.

2) Selective-forwarding attacks, which keep relatively
low profile compared with blackhole attacks. They
do not falsify any information and obey the back-
pressure scheduling, but only drop packets routed
to them for particular flows.
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3) On-off attacks, which act as blackholes or legitimate
nodes during on and off periods.

4) Transmission-opportunity-wasting attacks, which
never falsify information, but simply abandon its
scheduled transmission opportunity to degrade
the network throughput.

5) Selfish nodes, which always attempt to empty its
queues by broadcasting high queue backlogs to
capture the transmission opportunity.

6) Heterogeneous attacks, which include all above at-
tackers at different nodes in the same network.

In our performance evaluation, we define the metric
of (normalized) throughput as the average amount of
delivered data per time slot normalized by the link rate.

5.1 Blackhole Attacks

We randomly select one node in the network acting
as a blackhole. Fig. 11 shows the throughput in the
network under the blackhole attack. It is noted from
Fig. 11 that initially, the network throughput increases
as run time passes. This is because the network is lightly
loaded in the initial state. As more packets arrive at each
node, the network throughput increases gradually and
becomes stable. When there is no attack, the throughput
approaches near 1 over time. However, when there is
an attacker, we can see over 80% degradation for the
throughput in the network due to the blackhole that
keeps dropping packets.
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Fig. 11. Throughput over run time for different scenarios.

We deploy the two virtual trust queues with two
service rates: (i) δ = σ = 1 and (ii) δ = σ = 50. As
we have discussed, a smaller value of service rate δ or
σ mean a smaller tolerance level for attack behavior. If
an attacker operates beyond the given tolerance level,
which results in an unstable queue, the attacker will
be excluded from the routing decision as indicated in
Theorem 2. Consequently, it is observed from Fig. 11
that the throughput is substantially improved under the
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Fig. 12. Packet drop ratio over run time for different

scenarios.

virtual trust queue strategy, in particular for the low
tolerance case with δ = σ = 1.

Fig. 12 shows the packet drop ratio in network under
the same attacks. We observe from Fig. 12 that the
packet drop ratio is zero without the attack and becomes
around 80% under the attack. However, the trust queue
mechanism is able to drag the dropping ratio close to
zero. For example, when the low-tolerance virtual trust
queue is deployed, the packet drop ratio is reduced to
0.087% at run time slot t = 400, which indicates that the
neighbors of the two blackholes rarely forward packets
to them due to lack of trust.

Figs. 11 and 12 demonstrate that a low tolerance
virtual trust queue (i.e., small values of δ and σ) exhibits
better performance than a high tolerance queue. As the
virtual trust queue mechanism is based on the observa-
tions on other nodes, which may have errors in the real
world, it is desirable to choose reasonably small values
of δ and σ to account for observation errors in practical
applications.

We also measure the throughput performance under
different numbers of blackholes in Table 1, which shows
that when the number of blackholes increases to three,
the network exhibits zero throughput. However, when
two virtual trust queues are deployed, the throughput is
almost not affected by the number of blackholes.

TABLE 1

Throughput at time slot t = 400.

Number of Blackholes: 0 1 2 3 4
w/o. virtual queues 0.96 0.17 0.0 0.0 0.0
w. virtual queues 0.96 0.96 0.95 0.95 0.95

5.2 Selective-Forwarding Attacks

Next, we consider selective-forwarding attacks. We ran-
domly select two nodes in the network acting as
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selective-forwarding attacks with forwarding ratio ρ ∈
[0%, 100%], which means that an attacker only forwards
packets for a percentage ρ of all flows in the network.
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Fig. 13. Throughput under selective-forwarding attacks for
forwarding ratio ρ from 0% to 100%.
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with and without virtual trust queue.

Fig. 13 depicts the throughput performance under
selective-forwarding attacks for forwarding ratio ρ = 0%,
20%, 40%, 60%, 80%, and 100%, where ρ = 100% means
no attack. The performance is measured without any
defense in Fig. 13. We can see that the performance is
substantially degraded as ρ decreases. For example, as
run time goes, we find that the throughput is stabilized
at around 0.9622 and 0.1821 for the ρ = 100% and ρ = 0%
cases, respectively.

Then, we show in Fig. 14 the throughput at time
slot t = 400 with and without our virtual trust queue
mechanism that is set with δ = σ = 2. If there is
no defense, the throughput increases gradually as the
forwarding ratio of attackers ρ increases, and finally

reaches the no-attack throughput. If the virtual trust
queues are used, we can see that regardless of the value
of ρ, the throughput is always close to the non-attack
throughput. For example, when ρ = 0%, the virtual trust
queue strategy achieves throughput of 0.9417 compared
with the non-attack throughput of 0.9622.

5.3 On-Off Attacks

We also consider the on-off attacks, which act as black-
holes and legitimate nodes during on and off periods,
respectively. We randomly choose one node in the net-
work as an on-off attacker, whose on and off periods are
both equal to 50 time slots.

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Run Time [Slot]

P
a

c
k
e

t 
D

ro
p

 R
a

ti
o

 O
v
e

r 
S

lo
t)

Trust
Queue

On Periods without Defense

Fig. 15. Packet drop ratio in the network under on-off

attacks: virtual trust queue vs. no defense.

To capture how the network reacts in transient states
under the on-off attacker, we use packet drop ratio as
the performance metric, which is defined as the ratio
between the number of dropped packets (by the attacker)
and the number of transmitted packets. Fig. 15 illustrates
the packet drop ratio in the network under the on-
off attack. It is noted from Fig. 15 that if there is no
defense in the network, the packet drop ratio increases
and decreases sharply, and these trends alternate. This is
due to the fact that attackers only attack during the on-
periods. In contrast, if the virtual trust queue mechanism
with δ = σ = 1 is used in the network, we observe
in Fig. 15 that the packet drop ratio is always zero,
indicating that our mechanisms can immediately find
and exclude the attackers when they are on.

5.4 Multiple Heterogonous Attacks

We have shown that the virtual trust queue mecha-
nism is effective to combat (1) blackhole, (2) selective-
forwarding, and (3) on-off attacks. We next evaluate
its effectiveness against (4) transmission-opportunity-
wasting attacks and (5) selfish nodes as part of heteroge-
neous attacks. We combine the (4) and (5) attacks with
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the (1), (2), and (3) attacks to form a more complicated
scenario. In the experiments, the forwarding ratio of the
selective-forwarding attack is set to be ρ = 60%, and the
on and off periods of the on-off attacker are equally set
to be 50 time slots.

TABLE 2

Throughput at time slot t = 400 under different attacks.

Combination: 4 5 4,5 3,4,5 2,3,4,5 all
w/o. virtual queues 0.23 0.85 0.21 0.15 0.09 0.0
w. virtual queues 0.96 0.96 0.96 0.96 0.95 0.95

We measure the throughput under different attacks
shown in Table 2. We can conclude that the virtual trust
queue mechanism always achieves near-optimal perfor-
mance regardless of different combinations of attacks
present in the network.

6 RELATED WORK

The backpressure algorithm was originally introduced
by Tassiulas and Ephremides in [1]. Since then, signifi-
cant efforts have been devoted to adapting the backpres-
sure algorithm with realistic network constraints (e.g.,
[2]–[4], [16], [19], [20], [24]), and developing backpressure
based system prototypes for wireless networks (e.g., [5]–
[7], [17]) and emerging network systems such as smart
grids [31]–[33]. The state-of-the-art greatly enhanced our
understanding of the backpressure algorithm, and sup-
ported the feasibility of real-system implementation of
backpressure-based routing and scheduling solutions in
multi-hop wireless networks. However, the backpressure
algorithm and its variants remain vulnerable to insider
threats with a variety of attacking behaviors. This ap-
pears as one major obstacle to practical deployment of
the backpressure algorithm.

Another line of work related to this paper has in-
vestigated the design of trust-based routing to combat
selfish or malicious nodes in the network (e.g., [13], [14],
[21]–[23]). However, they are designed for other different
routing mechanisms and cannot be readily adapted to
the backpressure algorithm due to its specific informa-
tion exchange and optimization characteristics.

It is worth noting that a recent paper [11] proposed
a trust-based backpressure algorithm for wireless sensor
networks. But there is no means to track trust over time.
In addition, it is still not clear to what extent the ap-
proach can limit or control various attack behaviors. The
proposed virtual trust queue based mechanism can be re-
garded as a generic solution to secure any backpressure
based routing and scheduling protocols against a variety
of attacks with a guarantee of sustaining resilience and
throughput.

7 CONCLUSIONS

In this paper, we provided a systematic study on secur-
ing the backpressure algorithm. We proposed a novel
virtual trust queuing mechanism to defend the backpres-
sure algorithm against both information-falsification and

protocol-violation attacks. We showed that by jointly sta-
bilizing the virtual trust queue and the real packet queue,
the backpressure algorithm achieves guarantees of attack
resilience as well as throughput performance. Finally, we
conducted extensive simulations to validate the effective-
ness of the virtual trust queue mechanism. Our results
showed that the virtual trust queue mechanism secures
the backpressure algorithm against a variety of attacks.
Therefore, our proposed solution clears a major barrier
for practical deployment of backpressure algorithm for
secure wireless applications.
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