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Abstract—A botnet in mobile networks is a collection of compromised nodes due to mobile malware, which are able to perform

coordinated attacks. Different from Internet botnets, mobile botnets do not need to propagate using centralized infrastructures, but can

keep compromising vulnerable nodes in close proximity and evolving organically via data forwarding. Such a distributed mechanism

relies heavily on node mobility as well as wireless links, therefore breaks down the underlying premise in existing epidemic modeling for

Internet botnets. In this paper, we adopt a stochastic approach to study the evolution and impact of mobile botnets. We find that node

mobility can be a trigger to botnet propagation storms: the average size (i.e., number of compromised nodes) of a botnet increases

quadratically over time if the mobility range that each node can reach exceeds a threshold; otherwise, the botnet can only contaminate

a limited number of nodes with average size always bounded above. This also reveals that mobile botnets can propagate at the fastest

rate of quadratic growth in size, which is substantially slower than the exponential growth of Internet botnets. To measure the denial-

of-service impact of a mobile botnet, we define a new metric, called last chipper time, which is the last time that service requests,

even partially, can still be processed on time as the botnet keeps propagating and launching attacks. The last chipper time is identified

to decrease at most on the order of 1/
√

B, where B is the network bandwidth. This result reveals that although increasing network

bandwidth can help mobile services, it can, at the same time, indeed escalate the risk of services being disrupted by mobile botnets.

Index Terms—Mobile botnet, malware, proximity propagation, wireless networks, denial-of-service, modeling and evaluation.
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1 INTRODUCTION

With the proliferation of smart handheld devices and
the exploded number of malware on mobile platforms,
a mobile botnet [1], [2], which is a collection of com-
promised (or infected) mobile nodes. that can perform
coordinated attacks, no longer occurs in theory, but
comes into practice. For example, Ikee.B [3] in 2009 was
found to include command and control logic to render a
number of infected iPhones under the control. In 2012,
Symantec found a large botnet Android.Bmaster [4] in
China that had infected an estimate of hundreds of thou-
sands of Android phones. As a result, mobile botnets
have already become one of the most serious security
threats to today’s mobile networks and applications.

A mobile botnet can compromise vulnerable nodes by
sending malware via centralized infrastructures (e.g., us-
ing short and multimedia message services [1], [4], [5]).
However, to eschew increasingly enhanced monitoring
of cellular infrastructures, a stealthy way for propagation
is to stay off the radar and spread to vulnerable nodes
nearby, which has been adopted in existing malware,
such as Mabir, Lansco and CPMC [6]. A challenging
question is how botnets propagate via such proximity in-
fection, especially how they behave in mobile networks
compared with their forerunners in the Internet.
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Extensive works have investigated Internet malware
propagation using epidemic modeling (e.g., [7], [8]),
which presumes a condition that an infected node can
compromise other vulnerable nodes with equal prob-
ability. A few studies [9], [10] have adapted epidemic
modeling to characterize mobile malware based on sim-
plistic random movements, where the equal-probability
assumption still holds. These prior efforts conclude that
using proximity infection, malware can continue infect-
ing more nodes without using infrastructures, thereby
leading to severe epidemics. This result is also observed
by a number of experiments [11]–[13]. Interestingly, how-
ever, a recent paper [14] draws an opposite conclusion
based on simulations that proximity infection only af-
fects a limited number of nodes and is far less concern-
ing in urban environments where node susceptibility is
relatively low. These somewhat discrepant results may
be due to different system setups, such as transmission
range and random mobility. Nonetheless, the primary
reason is still unclear. As a result, it is not yet fully
understood how proximity infection can cause a botnet
propagation storm and what the impact is in mobile networks.

In this paper, we are motivated to address this open
question by considering a practical scenario with het-
erogeneous mobility, in which nodes are more likely
to move around in certain areas. Such heterogeneity
inevitably breaks the premise of equal-probability infec-
tion used in existing epidemic modeling [9], [10]. Thus,
we take a stochastic approach to study how a mobile
botnet evolves. In particular, we denote by S(t) the set
of infected nodes in a mobile botnet at time t. The botnet
originates from an initially infected node that starts to
move around and compromise nearby vulnerable nodes
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at time 0. We are interested in how the botnet size |S(t)|
(defined as the number of infected nodes in the botnet)
increases over time t.

Our results reveal an interesting dichotomy of mobile
botnet propagation: the average size of a mobile botnet
E|S(t)| either grows quadratically over time t or is
always bounded above. In particular, given node density
λ, wireless transmission range r, and mobility radius α
that is the maximum range that a node can reach, we find
that as long as λ(2α + r)2 exceeds a threshold, E|S(t)|
is a quadratical function of t; otherwise, |S(t)| is finite
almost surely with eventual size |S(∞)| exponentially
distributed. This means that with fixed network setups λ
and r, sufficient mobility (i.e., mobility radius α becomes
large) can provoke mobile botnet propagation from lim-
ited infection to epidemics. Therefore, our findings not
only serve as a bridge to connect two discrepant results
in the literature, but also reveal that mobile botnets
via proximity infection can propagate at the fastest rate
of quadratic growth, which is much slower than the
exponential growth of Internet botnets.

In order to measure the denial-of-service impact of a
mobile botnet with quadratic growth in size, we define
last chipper time, the last time moment that a required
ratio σ of service requests from mobile nodes to a
service center can still be processed on time, while the
botnet keeps propagating and attacking. We find that
the last chipper time decreases at most on the order

of 1/
√

B log 1
1−σ

, where B is the network bandwidth.

Based on this, we can quantitatively assess how increasing
network bandwidth induces the risk of botnets to disrupt
mobile services. For example, the bandwidth of current
cellular networks is expected to increase 10 times from
LTE to LTE advanced, a mobile botnet, in the fastest case,
needs to propagate only one third (i.e., 1/

√
10) of the

time that it spends in LTE to disrupt the same service in
LTE advanced.

The remainder of this paper is organized as follows.
In Section 2, we introduce preliminaries and models. In
Sections 3 and 4, we investigate how a mobile botnet
evolves and what its impact is. In Section 5, we present
related work. Finally, we conclude in Section 6.

2 PRELIMINARIES AND MODELS

In this section, we first present the models used in this
paper, then formulate the research problem.

2.1 Network and Mobile Users

We consider a hybrid mobile network with two distinct
types of nodes: mobile nodes that are common users
moving around in the network, and infrastructure nodes
that are base stations or access points to provide mobile
services to mobile nodes.

There are n mobile nodes distributed independently
and uniformly on a torus surface Ω = [0,

√

n
λ
]2 for some

node density λ. Infrastructure nodes form square cells

in the network, as shown in Fig. 1(a). They have the
wireless network interface that offers wireless access to
mobile nodes. In addition, they are interconnected with
each other via high-speed wireline networks and are also
connected to a data service center that processes service
requests from mobile nodes.
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Fig. 1. Network architecture: infrastructure nodes and

mobile nodes.

Mobile nodes are able to communicate directly with
each other, and can also communicate with their nearest
infrastructure nodes for mobile services. As shown in
Fig. 1(b), the transmission ranges of mobile and infras-
tructure nodes are the same and denoted by r. The
network bandwidth B is shared among all mobile and
infrastructure nodes. Mobile nodes consist of legitimate
nodes and malicious nodes that are compromised by
malware and attempt to infect other mobile nodes in
the network. Infrastructure nodes, on the other hand,
are invulnerable to malware infection.

2.2 Mobile Malware and Botnet

When a mobile node is infected by malware, it may not
behave legitimately. Generally speaking, mobile malware
is malicious software on mobile platforms that attempts
to take control of a device and copy itself to other
susceptible devices, which is called malware propagation
[1], [3]. More dangerously, if mobile nodes are infected
by the same malware, they can form a mobile botnet [2],
[3] that is a collection of compromised mobile devices
under the same control. Mobile botnets have already
been found in practice, such as Ikee.B in 2009 [3] and
Android.Bmaster in 2011 [4]. In essence, a mobile botnet
can be formed in the following two ways: (i) propaga-
tion through infrastructures (malware sending its copies
using short/multimedia message services or advertising
its applications (APPs) on mobile markets [1], [4], [5]),
(ii) proximity infection (a compromised node sending
malware to nearby nodes using peer-to-peer wireless
links [6], [14]).

Although botnet propagation is very fast through
infrastructures, it can be easily ceased by increasingly en-
hanced security systems at infrastructures (e.g., Google’s
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Android kill switch). Hence, a stealthy and safe way for
propagation is to infect vulnerable nodes nearby, because
such proximity infection can easily persist and remain
undetected due to the nature of decentralized infection
and the dynamic network topology. The proximity in-
fection mechanism has already been found in existing
malware, such as Mabir, Lansco and CPMC [6].
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Fig. 2. Mobile botnet evolution over time via proximity
infection.

Accordingly, we focus on the scenario in which mal-
ware intends to use proximity infection to form a botnet.
We consider the malware infection process starting from
one initially infected node that attempts to propagate
malware to other vulnerable nodes in the network. As
shown in Fig. 2, a compromised node propagates mal-
ware to the other node when (i) the two nodes must
move into each other’s wireless transmission range r; (ii)
the other node must be susceptible to malware (a vul-
nerability ratio κ∈(0, 1) is used to denote the probability
that a node is vulnerable); and (iii) the required infection
time (how long it takes to infect a node) is randomly
distributed in a range [δ1, δ2]. This is because the spread
of malware requires some time for user or application
interaction. If two nodes move out of each other’s range
and have no time to finish the interaction, a node cannot
be infected even if it is vulnerable. Thus, our model also
accommodates the case of limited contact or interaction
time.

2.2.1 Node Mobility

Mobility plays an essential role in the performance
of mobile applications, and accordingly has substantial
impacts on malware propagation [13]. We consider a
generic mobility model that accounts for a practical
scenario of spatial heterogeneity, in which mobile nodes
are more likely to stay in certain areas (e.g., their homes
or offices) and less likely to be in others. In particular,
similar to existing works [15], [16], we define the follow-
ing generic mobility mode.

Definition 1: For a mobile node mi, there exist a home
point hmi

, which is independently and uniformly dis-
tributed over region Ω. A mobility radius α for mi is
defined such that mi moves around hmi

with probability
density function Ψ(x), which is invariant in all directions
and satisfies

{

Ψ(x) > 0 when ‖x − hmi
‖ ≤ α,

Ψ(x) = 0 otherwise.

In addition, all mobile nodes move around their home
points according to independent stationary processes.

It is worth mentioning that a home point in this paper
is simply an anchor point for the mathematical model to
specify the mobile range of a user. It does not mean that
the user will be around this point more frequently. A
mobile node mi can frequently visit several places, such
as workplace, school, and mall, as long as they are in
the mobile range specified by the home point hmi

and
the radius α.

We assume that malware can only compromise the
software in a vulnerable node, but cannot decide the
node’s movement since mobility is usually determined
by human beings.

2.3 Problem Formulation

As the initially infected node moves around and intends
to spread malware to other vulnerable nodes starting
from time 0, it can be expected that more and more nodes
are infected and repeat the same infection process in the
network. Therefore, a large-scale mobile botnet might be
built from the scratch with sufficient time. Such a botnet
could be very detrimental to mobile users as well as
mobile service operations.

In order to understand the potential impact of a mobile
botnet, we first need to investigate how it evolves over
time; i.e., we are interested in how many nodes in total
have been infected at a particular time t. To proceed, we
define the size of a mobile botnet as follows.

Definition 2: A mobile botnet, denoted by S(t), is the
set of all malware-infected nodes at time t. The size of
the botnet |S(t)| is defined as the total number of nodes
in S(t).

With Definition 2, we further characterize how fast
a mobile botnet can spread malware in the network.
Specifically, we define the evolution speed of a botnet
in the following.

Definition 3: The evolution speed of a mobile botnet,
denoted by V (t), is defined as V (t) = E|S(t)|/t, where
E|S(t)| is the average number of nodes in S(t) at time t.

Given Definitions 2 and 3, we formally state our
research problem: for a mobile botnet originated from
one initially infected node at time 0, what its size |S(t)|
and evolution speed V (t) are at time t > 0?

3 HOW DOES A MOBILE BOTNET EVOLVE

OVER TIME?

In this section, we first investigate the size of a mobile
botnet |S(t)| and its evolution speed V (t), then use
mobility traces to show botnet propagation in realistic
environments.

3.1 The Average Size and Evolution Speed

From Definition 3, we know that the evolution speed of
a botnet V (t) is based on the average size E|S(t)|. Thus,
it is essential to investigate the size of a mobile botnet
at time t. We first prove the following lemma that will
be used later.
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Lemma 1: For a mobile botnet evolving in the network,
its average size E|S(t)| = Ω(t2) for κλ(2α+r)2 larger than
some constant, i.e., κλ(2α + r)2 = Ω(1).1

Proof: As an infected node moves around in the net-
work, it is possible to infect another moving node whose
home point has a distance to the infected node no larger
than 2α + r since they always have a chance to move
within each other’s transmission range, as illustrated
in Fig. 3. Thus, two nodes whose home points have a
distance (2a + r) always have a chance to meet each
other in the network. It has already been shown in [17]
that the inter-meeting time between two mobile nodes
is exponentially distributed. Thus, our network with the
generic mobility model is mathematically equivalent to a
new network with node transmission range r′ = (2a+r),
in which each link between two nodes that are located
at their home points is an on-off process with on and off
durations exponentially distributed. We differentiate the
two networks as the original and new networks. Because
of the mathematical equivalence, in what follows, we
consider malware infection in the new network.

ra a

infected 

node

vulnerable 

node

Fig. 3. The maximum possible range that a node can
infect the other.

We discretize the new network into squares with side
length cr′ (where c is a constant) as shown on the left-
hand side of Fig. 4. We say that a square is open if there
exists at least a vulnerable node in the square and say it
is closed otherwise. Then, the probability that a square
is open can be written as

p = 1 − e−κλr′2c2

. (1)

We then map the new network into a discrete edge-
percolation model on the right-hand side of Fig. 4. It has
been shown that when p is sufficiently large (which is
equivalent to say κλr′2 sufficiently large or κλ(2a+r)2 =
Ω(1)), there are a large number of horizontal and vertical
highways in the network [18]. A highway is a connected
path between the two edges of the network, as shown
on the left-hand side of Fig. 5. This means that as the
number of total nodes n goes to infinity, each highway
in our scenario is a path connected by infinity number
of vulnerable nodes. In addition, the distance between
two adjacent highways is O(1). More details about the
edge-percolation model and highway phenomena can be
found in [18].

1. We say f(x) = O(g(x)) if ∃ x0 and c > 0 such that f(x)≤ cg(x)
∀x > x0. Similarly, f(x) = Ω(g(x)) if f(x) ≥ cg(x). Finally, we say
f(x)=Θ(g(x)) if f(x)=O(g(x)) and f(x)=Ω(g(x)) at the same time.

  2cr’

Fig. 4. Discretization of the new network.
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Fig. 5. Horizontal and vertical highways in the network.

We design a particular malware infection process to
derive the lower bound of the size of botnet |S(t)|
under proximity infection. As shown on the right-hand
side of Fig. 5, the initially infected node a first sends
the malware to node b that is on a particular highway
(called backbone). Then, node b continues to infect more
vulnerable nodes along the backbone in one direction
only (e.g., the north direction in Fig. 5). When it crosses
the first horizontal highway (called branch) connected
with infinite number of vulnerable nodes, the infection
continues along both the backbone and the branch. As
the time passes, we can expect that more branches start
the infection process. We also assume that a branch only
infects nodes in one direction (e.g., the east direction
in Fig. 5) and cannot create more branches. Therefore,
the infection process contains one backbone and an
increasing number of branches over time.

Let S′(t) be the set of the infected nodes on the
backbone and branches at time t, and it is obvious that
|S′(t)| ≤ |S(t)|. In what follows, we are interested in
finding out |S′(t)|.

Without loss of generality, assume that the first node
on the backbone (e.g., node b in Fig. 5) is infected at
time 0, and starts to infect other nodes since then. Recall
that in our new network, each link is on and off with
duration exponentially distributed. This indicates that
the i-th infection takes time duration Xi exponentially
distributed. Thus, the number of infected nodes on the
backbone N(t) is a Poisson process.

Denote by N ′(t) the number of branches up to time
t, N ′(t) is also a Poisson process because the distance
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between two adjacent highways is O(1) and accordingly
the time duration of an infection is exponentially dis-
tributed.

Denote by X ′
i(t) the number of infected nodes on

branch i. Using a similar argument, we can show that
X ′

i(t) is a delayed Poisson process satisfying

X ′
i(t) =

{

0 t ≤∑i
j=1 Yj

Xi(τ) otherwise,
(2)

where Xi(τ) is a Poisson process with τ = t−∑i
j=1 Yj ≥

0, and Yj is the time duration between the starting times
of branches i − 1 and i, and E(Yj) = ∆.

Thus, |S′(t)| is the sum of the number of infected
nodes on the backbone N(t) and the numbers of infected
nodes on all branches from 1 to N ′(t); i.e.,

|S′(t)| = N(t) +

N ′(t)
∑

i=1

X ′
i(t)

= N(t) +

N ′(t)
∑

i=1

Xi(t − Σi
j=1Yj). (3)

Because N ′(t) is a Poisson process, we know from the
strong law of large numbers for renewal processes that
limt→∞ N ′(t)/t = 1/∆. This indicates that N ′(t) ≥ ⌊βt⌋
for any β < 1/∆ and t sufficiently large. Inserting it into
(3) yields

|S′(t)| ≥ N(t) +

⌊βt⌋
∑

i=1

Xi(t − Σi
j=1Yj). (4)

Since
∑⌊βt⌋

i=1 Xi(t−Σi
j=1Yj) is an increasing sequence, we

further obtain from the monotone convergence theorem
that

E|S′(t)| ≥ E(N(t)) + E





⌊βt⌋
∑

i=1

Xi(t − Σi
j=1Yj)





= E(N(t)) +

⌊βt⌋
∑

i=1

E(Xi(t − Σi
j=1Yj))

= σt +

⌊βt⌋
∑

i=1

δ(t − i∆)

= σt + δ⌊βt⌋
(

t − ∆
⌊βt⌋

2

)

= Θ(t2). (5)

Note that (5) is obtained under the new network model.
Since we have shown that the original network model
is mathematically equivalent to the new network, we
conclude that when κλ(2a + r)2 = Ω(1),

E|S(t)| ≥ E(|S′(t)|) ≥ Θ(t2); (6)

i.e., E|S(t)| = Ω(t2), under the original network model.
�

Given Lemma 1, we are ready to prove the following
main results.

Theorem 1 (Size of a mobile botnet): For a mobile bot-
net, its average size E|S(t)| at time t can be written as

E|S(t)| =

{

Θ(1) if κλ(2α + r)2 = O(1),
Θ(t2) if κλ(2α + r)2 = Ω(1),

where κ is the vulnerability ratio, λ is the node density, α
is the mobility radius, and r is the wireless transmission
range.

Proof: This theorem consists of two parts. We first
consider the E|S(t)| = Θ(1) part, then the E|S(t)| = Θ(t2)
part.

Part I: Without loss of generality, assume that mobile
node m1 is the initially infect node that moves around
in the network and attempts to infect vulnerable nodes
as many as possible. Once a node is infected by node
m1, it will also start to infect others. This means that
this node can be considered as an offspring of node
m1. Thus, proximity infection can be modeled based
on a branching process [19] that characterizes how a
population evolves from generations to generations.

We consider node m1 as the only node in the 1st
generation, the nodes directly infected by node m1 as the
2nd generation, and so on. Now construct a branching
process {Zi} satisfying

Zi+1 =

Zi
∑

j=1

Yi,j , (7)

where Yi,j is the number of nodes infected directly by
the j-th infected node of generation i.

First take a look at node m1 (i.e., the 1st infected node
of generation 1). As shown in Fig. 3, it is impossible
for node m1 to infect a node whose home point has a
distance to m1’s larger than 2α+ r since there is no way
for the node to move into m1’s contact region. Let Y ′

1,1

be the total number of vulnerable nodes that are able to
move into the contact region of node m1. Then, it always
holds that Y1,1 ≤ Y ′

1,1 at any time. Similarly, we have i.i.d.
random variables {Y ′

i,j} that satisfy

Yi,j ≤ Y ′
i,j for any i, j > 0. (8)

Note that Y ′
i,j denotes the total number of vulnerable

nodes that can move into the contact region of the i-th
infected node of generation j with radius 2α + r. This
indicates that the mean of Y ′

i,j satisfies

µ = E(Y ′
i,j) = γκλπ(2α + r)2 (9)

by the thinning theorem [20], where γ > 0 is the
probability that an infected node has no enough time to
infect a vulnerable node when they meet each other (i.e.,
their contact time is smaller than the required infection
time randomly distributed in [δ1, δ2]).

Construct a Galton-Watson process {Z ′
i} satisfying

Z ′
i+1 =

Z′

i
∑

j=1

Y ′
i,j . (10)
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It follows from (8) that Zi ≤ Z ′
i for i > 0. From the

branching property, it holds for generations i+1 and i
that E(Z ′

i+1)=µE(Z ′
i), and the average total number of

nodes
∑∞

i=1 Z ′
i = 1

1−µ
when µ < 1. Thus, if µ < 1 (i.e.,

γκλπ(2α+r)2 <1), the average botnet size can be written
as

E|S(t)| ≤
∞
∑

i=1

E(Z ′
i) =

1

1 − µ
= Θ(1), (11)

which completes the E|S(t)| = Θ(1) part after we rewrite
the condition γκλπ(2α + r)2 < 1 as

κλ(2α + r)2 = O(1). (12)

Part II: Next, we move on to the E|S(t)| = Θ(t2) part.
First, it follows from Lemma 1 that the average size of
the botnet satisfies

E|S(t)| = Ω(t2) (13)

for κλ(2α + r)2 = Ω(1).
Thus, it suffices to show that E|S(t)| is upper bounded

by a quadratic function of t at the same time, i.e.,
E|S(t)| = O(t2). Note that it takes at least a time period
δ1 to propagate the malware from one node to the
other. At time t, the farthest distance the malware can
propagate is (2α+r)t

δ1

. In this range, the average number

of vulnerable nodes is κλπ
(

(2α+r)t
δ1

)2

, showing that

E|S(t)| = O(t2). (14)

Combining this upper bound (14) with the lower bound
(13), we obtain that E|S(t)| = Θ(t2) when

κλ(2α + r)2 = Ω(1). (15)

�

Remark 1: Theorem 1 reveals interesting phenomena
of mobile botnet propagation: a mobile botnet can either
exhibit quadratic growth in its size over time, or have
a limited size without persistent propagation. The key
factor that determines which type of propagation the
botnet has is the value of κλ(2α+ r)2. When the value is
larger than some constant, the average total number of
infected nodes keeps increasing quadratically; when the
value is less than some constant, only a limited number
of nodes can be infected in the network.

Given fixed network setups (i.e., node density λ and
wireless transmission rage r), Theorem 1 indicates that
sufficient mobility (i.e., mobility radius α is sufficiently
large) always guarantees the quadratic growth in size
for a mobile botnet. In this case, more and more nodes
become infected as time goes, which has been observed
in [9]–[13]. On the other hand, given fixed mobility
models, sufficiently small vulnerability ratio κ ensures
the limited propagation of a mobile botnet, which well
explains the opposite results in [14]. We also note that
there may exist a unique threshold of κλ(2α + r)2 to
trigger the Θ(t2) propagation. However, its exact value
could be mathematically intractable to find.

With Theorem 1, the results on the evolution speed of
a mobile botnet are presented in the following.

Corollary 1 (Botnet evolution speed): Given the condi-
tions in Theorem 1, it holds for the evolution speed of a
mobile botnet V (t) that V (t) = Θ (1/t) or V (t) = Θ(t).
Proof: According to Definition 3, we obtain the evo-
lution speed V (t) = E|S(t)|/t . Then, the results of
V (t) = Θ (1/t) or V (t) = Θ(t) follow immediately from
Theorem 1. �

Remark 2: It is well known that the malware prop-
agation speed on the Internet increases exponentially
over time. Our results quantitatively show that mobile
malware via proximity infection propagates with at most
linearly increasing speed, which is significantly less than
its counterpart on the Internet. The intuitive reason in
the difference is that malware can use TCP/UDP to
reach almost any computer connected to the Internet
(therefore resulting in a much faster propagation speed);
however, under proximity infection, malware can only
reach wireless neighbors because of limited wireless
transmission range.

In addition, the following corollary follows immedi-
ately.

Corollary 2 (Parallel Infection): If there are a constant
number of initially infected nodes that start a parallel
infection process, the results in Theorem 1 still hold.
Proof: Suppose that there are n0 initially infected nodes
in the network. Recall that the set of all infected nodes
is denoted as S(t) at time t.

Now consider the case that only the j-th (j ∈ [1, n0]
) node in all initially infected nodes starts the infection
process. In this case, the set of infected nodes is denoted
as Sj(t). Then, it is obvious that

|S1(t)| ≤ |S(t)| ≤
n0
∑

j=1

|Sj(t)|.

This in turn yields

E|S1(t)| ≤ E|S(t)| ≤
n0
∑

j=1

E|Sj(t)|,

and thus

E|S1(t)| ≤ E|S(t)| ≤ n0E|Sj(t)| = Θ(1)E|S1(t)|,

which means that the number of infected nodes under
parallel infection is on the same order of that under
single infection process. This completes the proof. �

Remark 3: Corollary 2 shows that making multiple
attackers propagate the malware at the same time cannot
significantly improve the propagation speed by order of
magnitude.

3.2 Stochastic Bound

According to Theorem 1, we know that the average
size of a mobile botnet with Θ(1) propagation is always
bounded above even if the time goes to infinity. In this
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case, we are also interested in what the distribution of
its eventual size is, which is given in the following.

Theorem 2: The tail distribution of the eventual size of
a botnet P(|S(∞)| > L) decays at least exponentially fast
when κλ(2α + r)2 = O(1).

Proof: Recall that we have already constructed a pro-
cess in (10) that satisfies

P(|S(∞)| > L) ≤ P

(

∞
∑

i=1

Z ′
i > L

)

. (16)

Then, it suffices to show that the distribution of
∑∞

i=1 Z ′
i

decays exponentially fast.
First, according to the total progeny theorem (Propo-

sition 3.4 in [19]), we obtain

P

(

∞
∑

i=1

Z ′
i = l

)

=
P

(

∑l
i=1 Y ′

l,i = l − 1
)

l
, (17)

where Y ′
l,i is the number of vulnerable nodes whose

home points fall into a circle with radius 2α + r. With
the network size scaling, node distribution can be rep-
resented as a Poisson point process [21], [22]. Thus, it
holds for Y ′

l,i that

P

(

l
∑

i=1

Y ′
l,i = l − 1

)

=
(lµ)l−1e−lµ

(l − 1)!
, (18)

where µ is given in (9). Inserting (18) into (17) yields

P

(

∞
∑

i=1

Z ′
i = l

)

=
(lµ)l−1e−lµ

l!
. (19)

Applying Stirling’s formula

l! = Θ(1)ll+
1

2 e−l

to (19), we obtain

P

(

∞
∑

i=1

Z ′
i = l

)

= Θ(1)l−
3

2 µl−1e−l(µ−1). (20)

Therefore, it follows from (20) that

lim
l→∞

log P(
∑∞

i=1Z
′
i = l)

l

= lim
l→∞

Θ(1) − 3
2 log l + (l − 1) log µ − (µ − 1)

l

= log µ − lim
l→∞

1.5 log l

l
= Θ(1), (21)

showing that P(
∑∞

i=1 Z ′
i) decays exponentially, which

completes the proof. �

Remark 4: Theorem 2 shows that if κλ(2α + r)2 is
sufficiently small, the distribution of the size of a mobile
botnet exhibits at least exponential decay; i.e., its tail
distribution is bounded from above by an exponential
distribution. In this case, it is quite unlikely that a botnet
can infect a large number of nodes in the network and
cause severe impacts on mobile services.

3.3 Experimental Evaluation

In addition to theoretical analysis, we use experiments
based on mobility traces to investigate mobile botnet
propagation in realistic environments. In our experi-
ments, we generate mobile nodes on a fixed-size map.
Each node moves around according to realistic mobility
traces. We randomly choose one node as the initially
infected node that attempts to propagate malware to
other vulnerable nodes. If a node moves into the wireless
transmission range of an infected node and at the same
time it is vulnerable, it will become an infected node that
starts to infect others.
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Fig. 6. Size of the botnet over time for two starting nodes:
node “abmuyawm” – solid line, node “oafhynu” – dotted

line.

In the first experiment, we use the EPFL data set [23],
which contains mobility traces of taxi cabs in San Fran-
cisco. We generate 300 mobile nodes based on the 300
cab traces during a 12-day time period. The experiment
starts at time 0 and we are interested in how many nodes
are infected as time goes.

Fig. 6 shows the botnet size (i.e., the number of
total infected nodes) versus elapsed time with different
initially infected nodes (cabs “abmuyawm” in solid line
and “oafhynu” in dotted line), different transmission
ranges (100m WiFi and 10m bluetooth) and a constant
vulnerability ratio κ=0.8 (i.e. 240 out of 300 nodes are
vulnerable). It is noted from Fig. 6 that malware propa-
gation with WiFi is substantially faster than that with
bluetooth since WiFi has a much larger transmission
range than bluetooth. Moreover, we observe in Fig. 6
that the botnet size as a function of elapsed time exhibits
approximately parabolic curves especially for the two
bluetooth cases, meaning that the botnet size is on the
same order of a quadratic function of time t, i.e., Θ(t2).

In order to further evaluate the WiFi cases, we perform
a set of experiments. Fig. 7 shows the botnet size versus
elapsed time for distinct vulnerability ratios (κ=0.1, 0.4,
0.6, and 0.8). The initially infected node is set to be
cab “abmuyawm” in the traces, and all nodes use WiFi
to propagate malware. We use a quadratic function to
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curve-fit the experimental data in Fig. 7 and find that
the data shows the good trend of quadratic increase
(even for the κ=0.1 case with sufficient time, which is not
depicted in Fig. 7 due to the X-axis limit). In addition,
Fig. 8 depicts the evolution speed as a function of time
with vulnerability ratio κ=0.4, 0.6, and 0.8. It is observed
from Fig. 8 that the evolution speed shows the trend of
linear increase (not strictly linear, but in the order sense)
for different vulnerability ratios.

Fig. 9 shows the botnet size with different numbers
of initially infected nodes. We can observe in Fig. 9
that more initially infected nodes lead to faster infec-
tion in the network: as the number of initially infected
nodes goes from 2 to 4, the infection process exhibits
approximately a sharper quadratic curve. This indicates
that more initially infected nodes speeds up proximity
infection by a constant order of magnitude.

It is worth mentioning that during our experiments,
we find that malware can always infect all vulnerable
nodes eventually. The reason is that the mobility traces
in the EPFL data set are based on taxi cabs, which move
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Fig. 9. Size of the botnet over time with different numbers
of initially infected nodes.

Fig. 10. 2km×2km map in downtown Chicago used in

experiments (Courtesy of [24]).

around sufficiently on the map of San Francisco. In other
words, the mobility radius α is large enough so that
mobility has already triggered the Θ(t2) propagation in
Theorem 1.

In order to show how malware can propagate without
sufficient mobility, we use the UDelModels [24] to gener-
ate mobility traces. UDelModels is a tool that can gener-
ate realistic human mobility for downtown metropolitan
areas with configurable parameters. The map used in our
experiments is a 2km×2km map in downtown Chicago
as shown in Fig. 10. Detailed setups are shown in Table 1.

Fig. 11 illustrates the botnet size as a function of the
elapsed time with vulnerability ratio κ=60% and mobil-
ity radius α=10m, 100m, 500m, and 1km. We note from
Fig. 11 that when the mobility radius α is 100m, 500m,
or 1km, the botnet size also exhibits quadratic growth
over time, similar to Fig. 7. However, when α=10m, the
botnet size does not increase as time increases, indicating
the malware propagation will stop eventually due to
insufficient mobility.

Fig. 12 shows the tail distribution of the eventual
botnet size when α=10m on linear-log scales. We can
observe from Fig. 12 that the tail distribution of the
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exhibits an exponential decay when mobility radius α =
10m.

botnet size exhibits approximately a straight line. As any
exponential function exhibits a straight line on linear-
log scales, Fig. 12 demonstrates that without sufficient
mobility, the botnet propagation can eventually stop
with final size exponentially distributed, which validates
the theoretical prediction in Theorem 2. Due to the
exponential decay of the size of such a botnet, we can
expect that it is not likely to infect a very large number
of vulnerable nodes and make significant impacts.

4 WHAT IS THE IMPACT OF A MOBILE BOT-
NET?

By compromising mobile nodes, a mobile botnet can
lead to either individual impacts (e.g., blocking the use
of mobile devices [1]), or global impacts (e.g., denial-
of-service attacks [2]). From the perspective of reliable
network operations, the denial-of-service impact is much
more severe than the individual impacts. Therefore, in
the following, we focus on the denial-of-service impact

TABLE 1
UDelModels-based Experiment Setup.

Number of walking nodes: 2000
Moving speed [1, 4]
Pause time distribution Exponential
Wireless transmission Bluetooth (10m)
Vulnerability ratio 60%
Running time 24 hours
Mobility radius1 10m, 100m, 500m, 1km

1. Each node’s mobility trace is generated based on a partial
map with a given mobility radius in UDelModels.

of a mobile botnet. Our objective is to investigate what is
the impact of a botnet, in which all compromised nodes
flood service requests to a service provider to launch
denial-of-service attacks. We first model how service
requests from mobile nodes are processed, then propose
the metric of last chipper time to measure the impact.

4.1 Modeling Mobile Service Processing

When mobile nodes move around in the network, they
connect to a service provider via infrastructure nodes
for service requesting and processing, as shown in Fig. 1.
When a service request is delivered to a service provider,
it will be immediately processed by the service process-
ing center. Nowadays, many service processing centers
feature a cloud computing paradigm [25], [26]: the data
processing will be partitioned into different tasks, which
are assigned to distinct computing units; then outputs of
all tasks are combined. In this paper, we also consider
such a cloud processing model as our mobile service
application. In what follows, we will use the cloud and
the service processing center interchangeably to denote
the entity that processes service requests from mobile
nodes.

At first glance, it appears that performance modeling
for cloud processing is similar to a conventional waiting
queue, in which one or few users can be served and
the others are waiting in the queue. Nonetheless, cloud
processing can be quite different in that the cloud sup-
ports concurrent processing (similar to the CPU shar-
ing model) [25], [27]: when a service request arrives,
the cloud directly allocates the shared computational
resources (e.g., CPU time) for it instead of making the
user waiting. Such a concurrent processing mechanism
is widely used in current cloud processing frameworks
[28], [29]. Therefore, a large amount of concurrent service
requests can be processed in the cloud at the same time.
The more the concurrent users (the heavier the cloud
load), the longer the processing delay. To find out the
relation between the cloud processing delay and the
number of concurrent users, we adopt an experimental
approach in a small-scale cloud based on the two pop-
ular Hadoop [28] and Storm [29] platforms.

• Hadoop [28] is an open-source cloud computing
framework that allows for the processing of large
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Fig. 13. The processing delay versus constant cloud

load L in Hadoop and Storm with different numbers of
computers M used in the cloud.

data sets across clusters of computers. Hadoop is
now widely used in Google, Yahoo and Facebook.

• Storm [29] is another open-source distributed com-
putation framework, aimed at offering real-time
data processing capabilities. Storm has been de-
ployed in Twitter and Groupon.

We set up a small-scale cloud consisting of up to
8 computers with Intel Core i5 2.67GHz. The cloud is
installed with Hadoop 1.0.2 and Storm 0.7.4. Fig. 13
shows the processing delay Dp as a function of constant
cloud load L (which is the number of concurrent service
requests being processed in the cloud at the same time)
for different numbers of computers M . We can observe
that for both Hadoop-based and Storm-based systems,
there is approximately a linear relation between Dp and
L, i.e., Dp ≈ kL, where the slope k is a decreasing
function of M , showing that the more the computing
resources in the cloud, the less the processing delay.
Accordingly, we assume in this paper that Dp = kL for
any constant load L, and define C = 1/k as the cloud
capability, which can be considered as an indicator to
represent the maximum number of service requests that
can be finished in the cloud per second.

With parameter C, we can obtain Dp = L/C for any
constant load L. In practice, however, the cloud load L
is a stochastic process due to network traffic dynamics,
making the processing delay Dp a random variable. It
has been shown that the cloud processing delay exhibits
a heavy tail property [26]. Combining the constant load
observation in Fig. 13 and the heavy tail property, we
define the following stochastic cloud processing model.

Definition 4 (Service Processing): Let C be the cloud ca-
pability and L(t) be the average cloud load at time t.
The cloud processing delay Dp has a heavy tail, i.e.,

P(Dp > d) = θ(d)d−β(t)

with mean L(t)
C

, where β(t) is some positive power-law
parameter at time t, and θ(d) is a slowly-varying function

satisfying limd→∞
θ(cd)
θ(d) = 1 for constant c.

4.2 Impact of A Botnet on Mobile Services

After we formulate the service processing model in Defi-
nition 4, we can investigate the impact of a mobile botnet
on mobile services. We consider the scenario where all
compromised nodes in a botnet flood service requests to
the cloud. In particular, the botnet, by keeping infecting
more nodes and flooding more requests, can gradually
increase the cloud load and reduce service availability
for legitimate services. This means that for any real-time
mobile service, the probability that a legitimate service
request is processed on time is gradually decreased. We
are interested in how fast such a botnet attack process
can take down the service. As a result, we define the
metric of last chipper time as follows.

Definition 5 (Last Chipper Time): If a mobile botnet
starts propagation at time 0, the last chipper time Tl is the
last time that a required ratio (σ < 1) of mobile service
requests can still be processed on time under the botnet
attack, i.e.,

Tl = sup{t ≥ 0 : P(Dp < d) > σ}. (22)

With the metric of last chipper time in (22), we state
our main result on the impact of a mobile botnet.

Theorem 3: If a mobile botnet can keep evolving in the
network, the last chipper time Tl of a mobile service with
requirement σ satisfies

Tl = O

(

1/

√

B log
1

1 − σ

)

, (23)

where B is the network bandwidth.
Proof: According to Definitions 4 and 5, we have

Tl = sup{t ≥ 0 : θ(d)d−β(t) > 1 − σ}
≤ sup{t ≥ 0 : sup{θ(d)}d−β(t) > 1 − σ}, (24)

where sup{θ(d)} = Θ(1) (property of slowly-varying
functions) and β(t) is the power-law parameter at time t.
From the power-law property, the average processing de-

lay can be represented as Θ(1)β(t)−1
β(t)−2 . From Definition 4,

the average load can be written as

L = CΘ(1)
β(t) − 1

β(t) − 2
. (25)

On the other hand, the average load L is the sum of the
average load of legitimate requests Ll and the average
load induced by attacks La, i.e.,

L = Ll + La. (26)

To calculate La, we first obtain from Theorem 1 that the
average botnet size E|S(t)| is at most Θ(t2).

In addition, compromised nodes can flood service
requests to the service processing center. How many
service requests they can exactly send to the center
depends on the network access schemes and network
bandwidth B. There are two major wireless access
schemes: collision-free scheme (e.g., TDMA and FDMA),
and collision-avoidance scheme (e.g., IEEE 802.11 DCF).
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In the former, network bandwidth B is partitioned into
orthogonal channels, each of which is used by only one
node. In the latter, B is shared among all nodes, which
use a random backoff algorithm (e.g., binary exponen-
tial backoff) to access the wireless channel. No matter
what access scheme the network has, the maximum
bandwidth available for a node is always no greater
than network bandwidth B, which indicates the rate of
flooded requests at each compromised node is always
upper bounded by O(B).

Therefore, the average load induced by attacks La at
the service processing center is at most

La = CE(|S(t)|O(B)) = Ct2O(B). (27)

Then, It follows from (25), (26), and (27) that

β(t) = 2 +
1

t2O(B)
. (28)

Inserting (28) into (24) completes the proof. �

Theorem 3 shows that if a botnet can keep evolving
in the network, the last chipper time decreases at most
on the order of 1/

√
B. It has already been predicted

in existing work [1] that the risk of mobile malware
attack increases with the improved bandwidth in future
wireless networks. Theorem 3 gives an interesting as-
sessment on how such a risk is boosted. For example,
LTE advanced is planned to improve the LTE uplink
speed 10 times (from 50 Mbps to 500 Mbps). It follows
from Theorem 3 that for the same mobile service, its last
chipper time in LTE advanced will become around one
third of the time in LTE (1/

√
10 ≈ 1/3). This means that

in order to make some impact in LTE advanced, a botnet
only needs to propagate one third of the time that it
spends in LTE.

Remark 5: It is worthy of note that the decrease on
the order of 1/

√
B of the last chipper time relies on the

condition that all infected nodes attempt to saturate the
network channel to launch attacks. If they attack at a
constant rate that does not depend on B, the last chipper
time should not be affected by B. Therefore, practical
networks must always deploy attack detection and rate-
limiting schemes to prevent infected nodes from flooding
service requests at the saturated rate. However, we do
believe that the decrease on the order of 1/

√
B represents

the worst-case scenario that should be considered for any
risk assessment of mobile botnets.

4.3 Experimental Evaluation

We also use experiments to measure the last chipper
time. We first present the setups, then discuss the results.

4.3.1 System Setups

We set up a small-scale cloud that consists of 8 comput-
ers running over the Storm framework [29]. As shown
in Fig. 14, the cloud is connected to a simulation server
that simulates a wireless network environment.

...

...

...

the cloud the network

service

processed 

simulation 
server

requests

results
...

Fig. 14. A small-scale cloud is connected to a network
simulation server.

Fig. 15. 25 access points are placed with equal space on
the map.

Network Setup: We place 25 access points with equal
space on the 2km×2km map shown in Fig. 15 to provide
full wireless coverage with 802.11 DCF. The transmission
range of access points and mobile nodes is 300 m. The
network bandwidth varies from 1 to 54 Mbps. Mobile
nodes move around based on UDelModels traces in
Section 3.3. They send service requests to their nearest
access points. These service requests are delivered from
the simulation server to the cloud for real-time process-
ing. Then, the processed results in the cloud are sent
back to mobile nodes in the simulation environment.

Service Setup: Mobile nodes use a location-aware ser-
vice [30], [31]: they send their location/mobile sensing
data via access points to the cloud, and obtain processed
results from the cloud every 5 s. The size of service
requests is 800 bytes, the size of processed results is
1200 bytes, and the processing delay requirement for
each request is 2 s at the cloud.

Botnet Setup: The vulnerability ratio κ = 60%, We
randomly choose one node in the network as the initially
infected node that propagates malware to others at time
0. To launch denial-of-service attacks, all infected nodes
attempt to saturate the network channel by keep sending
service requests to the cloud.

4.3.2 Experimental Results and Discussions

Fig. 16 shows the last chipper time as a function of
network bandwidth B for service requirement σ= 70%,
80%, 90%, and 95%. The mobility radius of each node
is 100m. We can observe from Fig. 16 that the last
chipper time does decrease as B increases. For example,
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Fig. 16. Last chipper time versus network bandwidth with
different service requirements.
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Fig. 17. Last chipper time versus network bandwidth with
different mobility radii.

for requirement σ=95%, when B goes from 10MHz to
40MHz (4 times), the last chipper time decreases from
14.6 hours to 7.5 hours (almost halved). This can be well
predicated in Theorem 3: the last chipper time Tl can be
written as O(1/

√
B), and if B increases 4 times, Tl will

be reduced to one half of the original value.

Fig. 17 illustrates the last chipper time as a function of
network bandwidth B for mobility radius α=10m, 500m,
and 1km. The service requirement is set to be σ=90%.
First, we see from Fig. 17 that regardless of different
mobility radii, the last chipper time always decreases as
network bandwidth B increases. Second, Fig. 17 shows
that more node movement does help the propagation of
malware infection, and the last chipper time decreases
accordingly with α becoming larger.

We conclude from Figs. 16 and 17 that the last chipper
time is O(1/

√
B), as predicted in Theorem 3, and the

more the mobility radius, the smaller the last chipper
time.

5 RELATED WORK

Many papers (e.g., [7], [8]) have studied the spreading
of computer viruses/worms on the Internet using de-
terministic epidemic modeling. Recently, the epidemic
modeling has been adopted in [9], [10] to study how
mobile malware can spread via proximity infection.
However, the pre-condition in deterministic epidemic
modeling that a node can infect any other node with
equal probability must always hold, which is not guar-
anteed in a practical mobile scenario with spatial het-
erogeneity. Experiments on mobile malware propagation
have yielded opposite conclusions with distinct setups.
For example, based on various mobility models and
network setups, the works in [11]–[13], [32] showed
that mobile malware via proximity infection can keep
compromising vulnerable nodes as time goes, thereby
leading to epidemics. In contrast, it is concluded in [14]
that proximity infection only affects a limited number of
nodes in realistic urban environments with relatively low
node vulnerability ratios. Our findings of the dichotomy
of mobile malware propagation have well explained the
discrepancy in existing results. In addition, to the best of
our knowledge, we are the first to show that proximity
infection yields the fastest propagation rate of quadratic
growth for mobile botnets.

The potential denial-of-service impact of mobile bot-
nets has been considered in few recent papers. In [2], the
authors showed that a mobile botnet with 11750 com-
promised phones can cause a reduction of throughput
of more than 90% to area-code sized regions supported
by current cellular infrastructures. Whether or how a
botnet can achieve such a large size is not detailed
in the paper. The work of [1] predicted that mobile
malware that aims to launch denial-of-service attacks
will eventually be found in practice with the increasingly
improved bandwidth and power of mobile devices. The
last chipper time used is our work quantitatively offers
estimation on how mobile malware can benefit from the
increased bandwidth in future wireless systems.

6 CONCLUSIONS

In this paper, we investigated how mobile botnets evolve
via proximity infection and their impacts. We found
that the size of a mobile botnet can either increase
quadratically over time or be exponentially distributed
with finite mean. In addition, we also defined the metric
of last chipper time to measure the last time that a
mobile service is still feasible under botnet attacks. Our
findings in this paper not only provide a theoretical
foundation to explain discrepant experimental results of
mobile malware propagation in the literature, but also
offer quantitative risk assessment on potential denial-of-
service impacts of botnet attacks in mobile networks.
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