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Abstract—Network inference is an effective mechanism to infer
end-to-end flow rates and has enabled a variety of applications
(e.g., network surveillance and diagnosis). The paper is focused
on the opposite side of network inference, i.e., how to make
inference inaccurate, which we call network anti-inference. As
most research efforts have been focused on developing efficient
inference methods, design of anti-inference is largely overlooked.
Anti-inference scenarios can rise when network inference is not
desirable, such as in clandestine communication and military
applications. Our objective is to explore network dynamics to
provide anti-inference. In particular, we consider two proactive
strategies that cause network dynamics: transmitting deception
traffic and changing routing to mislead the inference. We build an
analytical framework to quantify the induced inference errors
of the proactive strategies that maintain limited costs. We find
via analysis and simulations that for deception traffic, a simple
random transmission strategy can achieve inference errors on the
same order of the best coordinated transmission strategy; while
changing routing can cause inference errors of higher order than
any deception traffic strategy. Our results not only reveal the
fundamental perspective on proactive strategies, but also offer
the guidance into practical design of anti-inference.

I. INTRODUCTION

Network inference, also known as network tomography, is

an effective way to infer end-to-end flow or link rates from

network measurements [1]–[8]. The essential idea of network

inference is to formulate a relationship (determined by the

routing protocol) between end-to-end flow and link rates, then

infer via such a relationship. Network inference has enabled

a wide range of applications, such as network surveillance,

management and diagnosis [1], [2], [4], [8], [9].

In this paper, we focus on the opposite side of network

inference, i.e., how to make inference inaccurate, which we

name as network anti-inference. We aim to advance the anti-

inference strategies, which have not yet been fully studied.

Our work is motivated by scenarios where network inference

is not desirable or even malicious. For example, in clandestine

communication, a node that maintains several end-to-end

traffic flows does not want someone else to know whom it

is communicating with. Thus, it may deploy an anti-inference

strategy to make sure all the flow rates from it to other nodes

are inferred as zeros. In military applications, if a commanding

node keeps sending commands to others, an adversary can
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identify its commanding role via inferring that it has end-to-

end flows to others with the same data rate.

As network inference is based on inferring via the relation-

ship between flow and link rates, there are two immediate

strategies to offer anti-inference: (i) transmitting redundant

traffic called deception traffic into the network to cause

substantial inference errors, and (ii) keeping changing routing

such that the attacker cannot correctly acquire the relationship

that varies over time. Both strategies are proactive; i.e., they

must be deployed and executed to prevent inference, and can

potentially degrade the network performance.

As security usually comes with a cost, the key question for

a security measure is how much benefit can be obtained under

a reasonably limited cost. For example, it is highly desirable

if a commander’s communication flows to soldiers cannot be

accurately identified by transmitting an inconsiderable amount

of deception traffic to mislead the attacker. Therefore, our

objective in this paper is to understand the fundamental impact

of proactive strategies with a bounded cost for network anti-

inference. In particular, we consider a wireless network in

the presence of an attacker that attempts to infer all end-

to-end flow rates via eavesdropping on network links for its

malicious purpose. We focus on investigating the impact of

two proactive methods: deception traffic and routing changing.

We build an analytical framework to quantify what impacts (in

terms of inference errors) the two strategies can bring while

maintaining a limited cost, such as slight throughput or delay

degradation. We use simulations to evaluate the impacts of

proactive strategies in practical network inference setups. To

the best of our knowledge, we are the first to systematically

study the proactive strategies for network anti-inference. The

major findings and contributions are summarized as follows.

We found that for the deception traffic strategy that causes

a limited performance degradation, independently transmitting

random traffic at each node can cause the inference error on the

same order of the best coordinated transmission strategy in all

nodes. Further, the inference error will be increased by at least

a constant order of magnitude if the mean rate of the deception

traffic is kept a secret from attackers. We discovered that under

a constant delay degradation, proactively changing routing

paths in general leads to the inference error of higher order

of magnitude than any deception traffic strategy. We showed

that combining deception traffic and routing changing cannot

significantly boost the impact of anti-inference. Rather, the



induced inference error is dominated by whatever individual

strategy that leads to more error than the other. This means

that the combined strategy is not always desirable because of

its slight improvement of anti-inference at the double cost (i.e.,

redundant traffic and potentially non-optimal routing change).

Our results reveal the fundamental perspective of exploring

network dynamics to provide defense against network infer-

ence. The findings in this paper can not only show the impact

region of a proactive strategy for a network scenario, but also

provide the performance benchmark and guidance for design

of anti-inference protocols for practical use.

The rest of this paper is organized as follows. In Sec-

tion II, we introduce models and network inference. In Sec-

tions III and IV, we present our findings and prove the results,

respectively. Then, in Section V, we discuss the simulation

results. Finally, we summarize the conclusions in Section VI.

Notations: We write f(x) = O(g(x)) or g(n) = Ω(f(n)) if

∃ n0 > 0 and constant c0 such that f(n) ≤ c0g(n) ∀n ≥ n0.

We write f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(n) =
Ω(g(n)). We denote by AT the transpose of matrix A. The

L1 norm of vector a = [a1, a2, · · · , ak]T is defined as ‖a‖1 =
∑k

i=1 |ai|. Similarly, the L2 norm is ‖a‖2 =
∑k

i=1 a2
i . We

denote by tr{A} the trace of matrix A.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce models and assumptions, then

state the research problem of network anti-inference.

A. Network Models

We consider a wireless network with n nodes distributed

independently and uniformly on region Ω = [0,
√

n/λ]2 for

a large node density λ such that the network is connected

(asymptotically almost surely) [10]. We say two nodes have a

network link if they are in each other’s transmission range r.

In the network with n nodes, there are at most n(n − 1)/2
end-to-end flows if links are undirected, or n(n − 1) flows

if links are directed. We assume that all links are undirected,

since the directed case is a straightforward extension to the

undirected one and the assumption does not affect the formu-

lation of the inference/anti-inference problem. We denote by

L the total number of undirected links in the network.

We assume that each node has at most a finite number of

end-to-end flows to other nodes in the network. In other words,

there are F = O(n) end-to-end flows in the network.

B. Attack Model and Network Inference

There exists an attacker attempting to use network inference

to infer all end-to-end flow rates. We assume that the attacker

has the strong capability of overhearing all the data transmis-

sions (e.g., by placing eavesdroppers all over the network).

The attacker is aware of the network topology; hence, given

a routing protocol used in the network (e.g., shortest path

routing), the attacker knows the routing path for any flow.

We assume that the attacker has a perfect observation on all

activities in the network. We do not consider node mobility

and link stability; thus the topology does not change over time.

Given the attacker’s capability, we describe how it infers

all flow rates. First, there are at most n(n− 1)/2 flows in the

network. All of them are associated with a flow rate vector

x ∈ R
(n(n−1)/2)×1, whose entry represents the rate of each

flow. The goal of the attacker is to obtain an estimate x̂ in

close value to x. However, the attacker cannot directly see

x, but can only observe the data transmission on each link.

This means that the attacker can obtain the observed link rate

vector as y ∈ R
L×1 (as there are L links in the network),

whose entry is the data transmission rate at each link.

It has been shown [1], [3], [5]–[7] that x and y have a linear

relationship, i.e.,

y = Ax, (1)

where A = {ai,j} is called the routing matrix in the network,

whose element ai,j has value 1 if the i-th link is on the routing

path of flow j, and value 0 otherwise.
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(A-B)   (A-C)    (A-D)    (B-C)   (B-D)    (C-D) 

(A-B) 1           0            0           0           0           0

(A-C) 0           1            1           0           0           0

(B-D) 0           0            0           1           1           0

(C-D) 0           0            1           1           0           1

link indexing: 1-4 flow indexing: 1-6

routing matrix A

1           2            3           4           5           6 
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Fig. 1. Example in a four-node network: how to build up the routing matrix.

In the following, we use a toy example to show how the

routing matrix A is determined. In Fig. 1, there are only 4

nodes A, B, C, D and 4 undirected links 1 (A-B), 2 (A-C), 3

(B-D), 4 (C-D) in the network. There can be 6 potential end-to-

end flows in the network: 1 (A-B), 2 (A-C), 3 (A-D), 4 (B-C),

5 (B-D), and 6 (C-D). Note that all links and potential end-to-

end flows are indexed (starting from 1) in network inference.

The routing matrix A is a 4-by-6 matrix representing how

point-to-point links form end-to-end flows. In particular, ai,j is

1 if the j-th flow is routed over the i-th link, and is 0 otherwise.

For example in Fig. 1, flow 3 (A-D) will be routed over link 2

(A-C) and link 4 (C-D). Therefore, we can see that a1,3 = 0,

a2,3 = 1, a3,3 = 0, and a4,3 = 1 in A. Now suppose that only

node A has a data flow with 100bps to D. Then, the attacker

can observe on links 2 and 4 that there are data transmissions

with rate 100bps. Therefore, the goal of the attacker is to infer

flow rate vector (with true value x = [0, 0, 100, 0, 0, 0, 0]T)

from link observation vector y = [0, 100, 0, 100]T .

It is obvious that things become complicated if there are

more nodes and flows. How can the attacker infer all end-

to-end flow rates from the observations on each link? It has

been shown that (1) is usually an under-determined system

(e.g., there are four links and six flows in Fig. 1), thus

the conventional least squares estimation cannot be directly

applied. There is a line of work (e.g., [1]–[5], [7], [11], [12])

that has already studied this problem. Under the condition that

x is usually sparse (as it is less likely that everyone is commu-

nicating with everyone in practice), effective algorithms, such

as L1-norm minimization based solutions [6], [7], [13], [14],

have been developed to solve the network inference problem

in many applications.



C. Anti-Inference Problem

As aforementioned, anti-inference is to make inference

inaccurate. To this end, we take a close look at the relationship

between flow rates and observations in (1), and find two major

factors that can affect inference: (i) The observation vector

y depends on what nodes transmit. It is evident that a node

must transmit the data that it should do. Thus, in order to

make an impact on inference, the node can transmit redundant

traffic for the deception purpose, causing observation errors

in y. We refer to such traffic as deception traffic. (ii) The

routing matrix A is determined by a routing protocol. If a node

deliberately selects a routing path that is not predictable to the

attacker, it will cause a routing matrix mismatch in (1) and

lead to inference error. This means that we can either transmit

deception traffic or change routing to offer anti-inference.

However, both methods come with penalty: transmitting

deception traffic makes the network more congested; and

changing routing can degrade the performance (e.g., end-to-

end delay). As enhancing security usually brings costs, a

fundamental and key question is how much benefit we can

get if we limit the costs of such proactive strategies. In the

next section, we aim to answer this question by quantifying

the benefit of network anti-inference under limited costs.

It is worth mentioning that deception traffic strategies have

been used for clandestine communication [15]–[17]. However,

the main scope of these methods is to make traffic transmis-

sions look like independent on a particular end-to-end path

without considering the global network traffic pattern. The

deception traffic strategy in this paper aims to lead to errors

in inference based on the global network view.

III. MAIN RESULTS ON PROACTIVE STRATEGIES AGAINST

NETWORK INFERENCE

As the attacker can choose any method (e.g., L1-norm based

[7], [18]) to infer the network flows, the error induced by

a proactive strategy hinges on the inference method that the

attacker uses. To provide a fundamental view on proactive

strategy based anti-inference, we aim at modeling the impact

of proactive strategies on the genie bound of network infer-

ence, which represents the inference error achieved by the

theoretically best inference method. Our goal is to see how

much proactive strategies can increase such a genie bound

(thereby causing more error for any inference method).

In this section, we first define the genie bound of network

inference, then present the main results on the impacts of

the proactive strategies against inference. We provide detailed

proofs for the main results in Section IV.

A. Approach and Modeling for Anti-Inference

The genie bound is a lower bound [11], [12] of errors

to solve (1). It denotes the optimal performance among all

possible methods and is derived in two steps: first, assume

that there is a genie that tells us who is actually having an

end-to-end flow to whom in the network; then, based on such

information and given observations, the least squares estimate

is derived to minimize the mean square error of flow rate

estimation. The genie bound is defined as follows.

Definition 1: Conditioned on a proactive strategy S, the

genie bound is the minimum mean square error of traffic

rate estimation for all end-to-end flows in the network, i.e.,

G(xg|S) = E
(

‖x̂g − xg‖2
2|S
)

, where xg ∈ R
F×1 is the flow

rate vector for node pairs that indeed have end-to-end flows

and x̂g is the minimum mean square error estimate of xg .

Given Definition 1, we are ready to analyze how proactive

strategies affect the genie bound of network inference. We

first investigate how transmitting deception traffic helps pre-

vent end-to-end flows from being inferred. We consider the

proactive strategy that each node transmits deception traffic

to its one-hop neighbor. Let J = [J1, J2, · · · , JL]T be the

deception traffic rate vector, where Ji is the deception traffic

rate for the i-th link (i ∈ [1, L]) in the network. All nodes can

transmit deception traffic either independently or coordinately.

Then, we investigate how the routing changing strategy affects

network inference. Finally, we evaluate the impact of the

strategy that combines deception traffic and routing changing.

As a key component in (1), the routing matrix A is a

random matrix because nodes are randomly distributed over

the network region. Moreover, matrix A depends on the

routing protocol used in the network. Hence, it is non-trivial to

characterize matrix A under any (class of) routing protocol(s),

or under any routing changing strategy. In the following, we

propose an important technical model for the routing changing

strategy to serve as a mathematically tractable yet generic

model to tackle the anti-inference problem.

Model 1: Under any routing strategy considered in this

paper, the average number of hops between any source-

destination pair is denoted by a function g(n) satisfying

g(n) = O(n), where n is the number of nodes in the network.

D

S

any path is 

good here

excluded

Fig. 2. Node selections in routing protocols from source S to destination D.

Remark 1: Model 1 technically limits our scope into a set of

certain routing protocols. In essence, it states that a reasonable

routing protocol should on average give a path with a limited

number (no higher order of n) of forwarding nodes. It can be

verified that a wide range of practical routing models, such as

the K-shortest path routing, belong to Model 1. For example in

Fig. 2, under Model 1, we only consider routing protocols that

find any path illustrated in solid lines, and exclude protocols

that give a much longer path (e.g., the one in dotted line).

B. Main Results

After defining the genie bound and the routing model, we

summarize our main results on network anti-inference.



Theorem 1: Under the deterministic deception traffic strat-

egy J
D

that all nodes transmit deception traffic with determin-

istic rate vector J = {Ji}i∈[1,L] unknown to the attacker, and

satisfying average rate constraint ‖J‖1/n = mc and individual

rate constraint Ji ≤ σc for some positive constants mc and σc,

the genie bound of network inference is given by

Θ

(

mcn
2

g(n)(n + Fg(n))

)

≤G(xg|JD
)≤Θ

(

σ2
cn

g(n)

)

, (2)

where n is the number of nodes, F is the number of end-to-end

flows, and g(n) is defined in Model 1.

Theorem 2: Under the random deception traffic strategy J
R

that each node independently transmits deception traffic at a

random rate with bounded mean m
J

and variance σ2
J

, if the

attacker is unaware of the value of m
J

, the genie bound of

network inference satisfies

Θ
(

σ2
J
F/g(n)

)

≤ G(xg |JR
) ≤ Θ

(

(m2
J

+ σ2
J
)n/g(n)

)

. (3)

If the attacker knows m
J

, the genie bound becomes

G(xg |JR
) = Θ

(

σ2
J
F/g(n)

)

. (4)

Remark 2: Theorems 1 and 2 show that if we are allowed

to transmit a limited amount of deception traffic (that leads to

limited throughput degradation) to affect network inference,

the genie bound (i.e., the error under the theoretically optimal

inference method) is at most on the order of n/g(n) for either

the random or any coordinated transmission strategies (see the

upper bounds in (2) and (3)). In practice, compared with the

simple random strategy, the very best coordinated strategy may

require much cooperation among nodes, yet still causing the

inference error on the same order of magnitude. Consequently,

the random transmission strategy can be desirable for simple

and efficient deployment of network anti-inference.

Remark 3: Theorem 2 states that if the mean rate of the

random transmission strategy is known to the attacker, the

induced error (4) is only the lower bound in (3). This means

that the practical design of a random transmission strategy

should always attempt to hide the mean rate from the attacker.

Remark 4: It is also observed that the genie bounds in

Theorems 1 and 2 increase under routing protocols that yield

shorter paths (i.e., g(n) becomes smaller), indicating that

a shorter routing path helps cause more inference errors.

Intuitively, if a network flow is routed over a longer path, it

provides more statistics for observation, and therefore can be

better inferred by the attacker. Thus, the shortest-path routing

in fact helps anti-inference under the deception traffic strategy.

Theorem 3: Under the routing changing strategy R in which

(i) the original routing matrix A is changed to an independent

matrix B unknown to the attacker, and (ii) the number of hops

g(n) is changed to h(n) = Ω(g(n)) that satisfies Model 1, the

genie bound of network anti-inference satisfies

Θ

(

(m2
L
+σ2

L
)F 2h(n)2

(n+Fg(n))g(n)

)

≤G(xg |R)≤Θ

(

(m2
L
+σ2

L
)F 2h(n)

g(n)

)

,

(5)

where m
L

and σ2
L

are the mean and variance of each legitimate

flow’s rate.

Remark 5: Theorem 3 provides a general impact region for

any routing changing strategy. We note that in order to limit the

cost of such a strategy, the new routing path h(n) should be on

the same order of g(n), i.e., h(n)/g(n) = Θ(1). This means

that a message should be routed over the new path longer

than the original one by only a constant order of magnitude,

leading to (roughly speaking) a constant increase in the end-

to-end delay. If the cost is allowed to be of higher order than

Θ(1), we conclude by looking at the lower bound in (5) that

increasing the new routing path length h(n) can incur much

more inference errors.

Theorem 4: If each node proactively transmits random

deception traffic and changes its routing path, the induced

genie bound is on the highest order between the individual

bounds of the two strategies.

Remark 6: From Theorem 4, we know that when the decep-

tion traffic and routing changing strategies are combined, the

impact will not be doubled, but mainly depends on whichever

strategy that can lead to more impact. However, the cost of

the combined strategy is indeed doubled in the sense that

it requires both transmitting deception traffic and changing

routing. Hence, the combined strategy can be avoided to limit

the cost when one proactive strategy (deception traffic or

routing changing) is known to be better than the other.

C. Examples and Discussions

We have analyzed the impact of each proactive strategy with

a bounded cost on network inference. As we observe, errors

of network inference caused by proactive strategies mainly

depend on the number of flows F , the number of nodes n,

and the routing paths g(n), h(n). It is not intuitive to directly

compare their impacts to see which one is better than the other.

We use examples to compare the impacts of proactive

strategies. In particular, we consider the scenario in which each

node is communicating with a limited number of other nodes

(i.e., F = Θ(n)), and operates under the best routing. It can

be verified that g(n) ≥ Θ(
√

n) under any routing protocol

and we choose g(n) = Θ(
√

n) as an example of the best

routing. If the routing changing strategy is used, each node

chooses a different path but on the same order of g(n) (i.e.,

h(n) = Θ(
√

n)) such that the delay degradation is bounded.

Number of nodes

routing-changing and random 

deception traffic (at least)

Impact of anti-

inference under 

limited cost routing-changing 

(at least)

random with known mean

optimally coordinated

random with unknown mean deception 

traffic

Fig. 3. The impact (estimation error caused by anti-inference) for different
proactive strategies with bounded costs.

Fig. 3 illustrates the impacts (i.e., genie bounds) of different

strategies (according to the theoretical predictions). We can



observe that all three deception traffic strategies are on the

same order of
√

n, Therefore, hiding the mean value of the

deception traffic rate from the attacker or coordinating all

nodes in the optimal way only leads to constant improvement

over the simplest strategy that transmits deception traffic

independently at each node.

We also see from Fig. 3 that the routing changing strategy

at least leads to inference errors on the order of n, which in-

dicates that in this typical network scenario, changing routing

is a substantially better strategy than transmitting deception

traffic (both under limited costs). In addition, the combined

strategy is better than others, but is still on the order of n.

D. Applications

The objective of this paper is not focused on designing

a detailed deception protocol to fool network inference, but

on the fundamental perspective on the impacts of exploring

network dynamics (in terms of transmitting deception traffic

or changing routing) with limited costs to offer more security

for network nodes. Therefore, the applications of our results

include (i) showing the impact region of a proactive strategy

with a limited cost for a given network scenario, (ii) providing

the performance benchmark and guidance for anti-inference

protocol design, (iii) offering a counterpart strategy that can

further advance network inference methods.

IV. NETWORK ANTI-INFERENCE ANALYSIS

In this section, we prove all the theorems.

A. Impact of Transmitting Deception Traffic

We first prove Theorem 1 that reveals the impact of deter-

ministic deception traffic, then prove Theorem 2 that shows

the impact of random deception traffic.

Proof of Theorem 1: Given deception traffic rate vector J,

the under-determined system for network inference becomes

y = Ax + J, (6)

where x ∈ R
(n(n−1)/2)×1 is the rate vector for all possible

end-to-end flows, y ∈ R
L×1 is the observation vector for all

links, and A ∈ R
L×(n(n−1)/2) is the routing matrix. By only

considering the genie bound, we can re-write (6) as

y = Agxg + J, (7)

where xg ∈ R
F×1 is the flow rate vector for all existing

end-to-end flows and Ag ∈ R
L×F is the routing matrix for

existing end-to-end flows. The minimum mean squared error

estimate of xg can be obtained by performing the least squares

estimation as

x̂g = arg min
xg∈RL×1

‖y − Agxg‖2
2 = (AT

g Ag)
−1AT

g y. (8)

It follows from (7) and (8) that the genie bound is1

E‖x̂g − xg‖2
2 = E

(

‖(AT
g Ag)

−1AT
g J‖2

2

)

= ‖GJ‖2
2, (9)

1In all proofs, we slightly abuse the notation and write the genie bound
under a strategy S as G(xg|S) = E‖x̂g−xg‖2

2
instead of E(‖x̂g −xg‖2

2
|S)

for the sake of simplicity.

where G = (AT
g Ag)

−1AT
g . It follows from Lemma A1 in

Appendix that

λmin

(

GTG
)

‖J‖2
2≤‖GJ‖2

2≤λmax

(

GT G
)

‖J‖2
2, (10)

Then, according to Lemmas A2 and A3 in Appendix, from

(10), we can have that with high probability,

λmin

(

GT G
)

Θ(mcn)≤‖GJ‖2
2≤λmax

(

GTG
)

Θ(σ2
cn), (11)

To derive the maximum and minimum eigenvalues of GTG,

we look at the singular value decomposition of Ag , which is

written as Ag = UΣVT , where Σ is a rectangular diagonal

matrix with non-zero values {
√

λi(AT
g Ag)}i∈[1,F ], U and

V are unitary matrices. We obtain G = (AT
g Ag)

−1AT
g =

VΣ−1UT , where Σ−1 is obtained by taking the reciprocal

of each non-zero element on the diagonal, leaving the zeros

in place in Σ. Accordingly, GTG = U(Σ−1)2UT , which

means that λmax

(

GT G
)

= λ−1
min

(

AT
g Ag

)

and λmin

(

GTG
)

=
λ−1

max

(

AT
g Ag

)

. Thus,

λ−1
max

(

AT
g Ag

)

Θ(mcn)≤‖GJ‖2
2≤λ−1

min

(

AT
g Ag

)

Θ(σ2
cn). (12)

Finally, it follows from Lemma A4 and (12) that

Θ

(

mcn
2

g(n)(n + Fg(n))

)

≤‖GJ‖2
2≤Θ

(

σ2
cn

g(n)

)

, (13)

which completes the proof. �

Proof of Theorem 2 (Part I): We first consider the case that

the attacker knows the value of m
J

. In this case, y is the link

observation vector affected by the deception traffic with mean

rate m
J

. This indicates that the least squares estimate of xg

can be obtained by first subtracting each observed rate by m
J

then performing the least squares estimation as

x̂g = argmin
xg∈RL×1

‖y − m
J
− Agxg‖2

2

= (AT
g Ag)

−1AT
g (y − m) = G(y − m), (14)

where G = (AT
g Ag)

−1AT
g , and m

J
= [m

J
, m

J
, · · · , m

J
]T ∈

R
L×1. It follows from (7) and (14) that the genie bound is

E‖x̂g − xg‖2
2 = E‖G(J − m)‖2

2 (15)

=E
(

tr
{

GC(J−m)GT
}

|Ag

)

,

where C(J − m) = E((J − m)(J − m)T ) is the covariance

matrix of J−m. Because each node transmits deception traffic

independently, C(J−m) = σ2
J
IL, where IL denotes the L×L

identity matrix. Accordingly, we have

E‖x̂g − xg‖2
2 = E

(

tr
{

σ2
J
(AT

g Ag)
−1
})

= σ2
J

E

(

F
∑

i=1

λ−1
i (AT

g Ag)

)

, (16)

where λi(A
T
g Ag) is the i-th eigenvalue of matrix AT

g Ag .

According to Lemma A5 in Appendix, it can be verified

that there exists a constant

c = Θ(
√

n/g(n)) (17)



such that each element in cAg has finite mean and variance

1. We then re-write (16) as

E‖x̂g−xg‖2
2 =σ2

J
c2

E

(

F
∑

i=1

λ−1
i

(

L−1(cAg)
T (cAg)

)

/L

)

(18)

≥σ2
J
c2

E

(

F 2/L
∑F

i=1 λi (L−1(cAg)T (cAg))

)

(19)

≥σ2
J
c2 F/L

E

(

∑F
i=1 λi(L−1(cAg)T (cAg))/F

) ,(20)

where (19) follows from the Cauchy-Schwarz inequality, and

(20) follows from the property of expectation.

According to Theorem of Universality for Bulk Conver-

gence [19]–[21], as L → ∞, the probability measure for
1
F

∑F
i=1 λi

(

L−1(cAg)
T (cAg)

)

converges in distribution to

the Marchenko-Pastur law, indicating that

E(

F
∑

i=1

λi

(

L−1(cAg)
T (cAg)

)

/F ) = Θ (1) . (21)

Inserting (21) into (20) and using the fact that L = Θ(n) with

high probability in Lemma A2 lead to

E‖x̂g − xg‖2
2 ≥ σ2

J
c2Θ (F/n) . (22)

Inserting (17) into (22) yields

E‖x̂g − xg‖2
2 ≥ Θ

(

σ2
J
F/g(n)

)

. (23)

On the other hand, starting from (18), we have E‖x̂g −
xg‖2

2 ≤ σ2
J

E

(

∑F
i=1 λ−1

min

(

AT
g Ag

)

)

. Then, it follows from

Lemma A4 that E‖x̂g −xg‖2
2 ≤ Θ

(

σ2
J
F/g(n)

)

, which is

combined with (23) to finish the first part. �

Proof of Theorem 2 (Part II): We then consider the case

that the attacker does not know the value of m
J

. In this case,

the attacker cannot subtract m
J

from each observed rate. Thus,

E‖x̂g − xg‖2
2 = E‖GJ‖2

2 = E‖G(J − m) + Gm‖2
2

≥ E‖G(J − m)‖2
2 = Θ

(

σ2
J
F/g(n)

)

, (24)

in which the last equality follows from (23). On the other

hand, we have

E‖x̂g − xg‖2
2 = E‖GJ‖2

2 ≤ E(λmax(G
T G))E‖J‖2

2

=E(1/λmin(A
T
g Ag))E‖J‖2

2 = Θ
(

(m2
J

+ σ2
J
)n/g(n)

)

, (25)

where the last inequality follows from Lemma A1, and the last

equality follows from Lemmas A2 and A4. Combining (24)

and (25) finishes the second part of the proof. �

B. Impact of Changing Routing

In this subsection, we prove Theorem 3 to show the impact

of routing changing on network inference.

Proof of Theorem 3: Under the proactive routing changing

strategy, the attacker will have a mismatched routing matrix

Ag (compared to the full routing matrix A) for inference

instead of the true matrix Bg (compared to the full routing

matrix B). Thus, the genie-assisted least squares solution for

the attacker becomes x̂g = (AT
g Ag)

−1AT
g y. Then, the genie

bound due to using a mismatched routing matrix Ag to solve

the true linear system y = Bgxg can be written as

E‖x̂g − xg‖2
2 = E‖(AT

g Ag)
−1AT

g y − xg‖2
2

= E‖G(Bg−Ag)xg‖2
2, (26)

where G = (AT
g Ag)

−1AT
g . It follows from Lemma A1

in Appendix that λmin(GTG)‖(Bg − Ag)xg‖2
2 ≤

‖G(Bg − Ag)xg‖2
2 ≤ λmax(G

TG)‖(Bg − Ag)xg‖2
2.

Since λmax

(

GTG
)

= λ−1
min

(

AT
g Ag

)

and λmin

(

GTG
)

=
λ−1

max

(

AT
g Ag

)

, we have

‖(Bg−Ag)xg‖2
2

λmax

(

AT
g Ag

) ≤‖G(Bg−Ag)xg‖2
2≤

‖(Bg−Ag)xg‖2
2

λmin

(

AT
g Ag

) .

According to Lemma A4 in Appendix, we can further have

E‖(Bg−Ag)xg‖2
2

g(n) + Fg(n)2/n
≤E‖G(Bg−Ag)xg‖2

2≤
E‖(Bg−Ag)xg‖2

2

Θ(g(n))
.

(27)

Next, we proceed to derive E‖(Bg−Ag)xg‖2
2 in (27). Denote

entries in (Bg−Ag) as {sl,f}l∈[1,L],f∈[1,F ] and entries in xg

as {xf}f∈[1,F ]. According to Lemma A5, sl,f satisfies

sl,f =







1 with probability Θ(h(n)
n )(1 − Θ(g(n)

n )))

−1 with probability Θ(g(n)
n )(1 − Θ(h(n)

n )))
0 otherwise,

and E‖(Bg−Ag)xg‖2
2 can be represented as

E‖(Bg−Ag)xg‖2
2 = E(

L
∑

l=1

(

F
∑

f=1

sl,fxf )2)

= Θ(n)E((

F
∑

f=1

sl,fxf )2) ≥ Θ(n)(E(

F
∑

f=1

sl,fxf ))2

= Θ(n)F 2Θ
(

h(n)2/n2
)

E(xf )2

= Θ
(

F 2(m2
L

+ σ2
L
)h(n)2/n

)

. (28)

On the other hand, it follows from the Cauchy-Schwarz

inequality that

E‖(Bg−Ag)xg‖2
2 = Θ(n)E(

F
∑

f=1

sl,fxf )2

≤Θ(n)E(
F
∑

f=1

s2
l,f )E(

F
∑

f=1

x2
f ) = F 2Θ(h(n))(m2

L
+σ2

L
). (29)

Combining (27), (28), and (29) completes the proof. �

C. Impact of Combination of Transmitting Deception Traffic

and Changing Routing

After obtaining Theorems 2 and 3, we are ready to investi-

gate the impact of the combined strategy on network inference.

Proof of Theorem 4: Under both routing changing and

deception traffic strategies, the attacker will have a mismatched

routing matrix Ag (compared to the full routing matrix A)

for inference instead of the true matrix Bg (compared to the



full routing matrix B). At the same time, all nodes transmit

deception traffic with rate vector J. Thus, the genie bound is

E‖x̂g − xg‖2
2 = E‖Gy − xg‖2

2 = E‖G(Bg − Ag)x + GJ‖2
2

=E‖G(Bg−Ag)x‖2
2+E‖G(J)‖2

2+2E
(

JT GTG(Bg−Ag)x
)

,

where G = (AT
g Ag)

−1AT
g . It is straightforward to observe

that E‖G(Bg −Ag)x‖2
2 is the genie bound of routing chang-

ing, E‖GJ‖2
2 is the genie bound of transmitting random

traffic, and E
(

JT GTG(Bg−Ag)x
)

is of no higher order than

them. Consequently, we conclude that the genie bound of the

combined strategy is on the highest order between the bounds

of two individual strategies. �

V. SIMULATION RESULTS

In this section, we use numerical simulations to measure

the impacts of proactive strategies. Our objective is to see

whether the inference errors predicted by the theoretical results

match the numerical results. We first introduce the network and

strategy setups, then present the results.

A. Setups

1) Network Setups: We randomly distribute n ∈ [50, 1200]
nodes over network region [0,

√

n/λ]2 where node density

λ = 4, and the communication range of each node is r = 1.

2) Deception Traffic Strategy: Each end-to-end flow has a

random rate uniformly distributed in [0, 0.2]. When the decep-

tion traffic strategy is enabled, each node will independently

transmit deception traffic on each link with a random rate

uniformly distributed in [0, 0.1]. We choose a deception traffic

rate comparable to the flow rate to make the results evident.

3) Routing Changing Strategy: We set that the routing

protocol yields g(n) = Θ(
√

n). When the routing changing

strategy is enabled, we use an alternative routing protocol

unknown to the attacker and we set that it yields a path length

h(n) = 1.3g(n). Note that g(n) and h(n) should be carefully

evaluated or measured for practical routing changing systems.

4) Network Inference Scenarios: As we can see in the

theoretical results, the genie bound is affected by the number

of flows F in the network. Thus, we consider two different

network inference scenarios based on the number of flows: (i)

the F = ⌊√n⌋ scenario in which there are limited (i.e., ⌊√n⌋)

flows between randomly chosen nodes in the network, and (ii)

the F = n scenario in which every node has a flow associated

with another randomly chosen node.

B. The F = ⌊√n⌋ Scenario

We compute from (3) and (4) that the genie bounds for

deception traffic is Θ(1) ≤ G(xg|JR
) ≤ Θ(

√
n) and Θ(1)

if the attacker knows and does not know the mean deception

traffic rate, respectively. We also obtain from (5) that the genie

bound of routing changing is Θ(
√

n) ≤ G(xg |R) ≤ Θ(n).
Fig. 4 shows the measured genie bounds under different

proactive strategies as a function of the number of nodes n.

We can observe from Fig. 4 that all the measured genie bounds

are sub-linear. For the deception traffic strategy, if the mean

deception traffic rate is known to the attacker, the measured
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Fig. 4. Measured genie bounds under different strategies when F = ⌊√n⌋.

genie bound becomes independent of n and remains as a small

constant; otherwise, it is increasing approximately on the order

of
√

n. It is worth noting that routing changing induces higher

genie bounds (i.e., more errors) for network inference, which

also increase approximately on the order of
√

n as observed in

Fig. 4. We can also see from Fig. 4 that the combined strategy

leads to the highest genie bound, yet still on the order of
√

n.

C. The F = n Scenario

When F = n, we compute from the theoretical results that

the genie bound for deception traffic is always Θ(
√

n), and

that of routing changing satisfies Θ(n) ≤ G(xg|R) ≤ Θ(n2).
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Fig. 5. Measured genie bounds under deception traffic when F = n.

Fig. 5 shows the measured genie bounds under the deception

traffic strategy versus the number of nodes n. We can see that

although the genie bound is still higher when the attacker does

not know the mean deception traffic rate, the two bounds are

both on the order of
√

n, which differs from Fig. 4.

Fig. 6 shows the measured genie bounds under the routing

changing and combined strategies versus the number of nodes

n. We can see that all the genie bounds increase linearly, and

the gaps between the three strategies are small.

By comparing with simulation results in Figs. 4, 5, and 6

with theoretical predictions, we conclude that the simulations

validate the theoretical results on proactive strategies with

bounded costs. In addition, we see that changing routing is

overall a better strategy than transmitting deception traffic.
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D. Impacts of Proactive Strategies on A Practical Algorithm

Our previous simulations are based on measuring the genie

bound that represents the theoretically optimal performance

for flow rate estimators. In the literature, network inference is

generally solved as a basis pursuit denoising problem. Thus,

in the following, we use the in-crowd algorithm [18], which is

a fast and efficient method for solving basis pursuit denoising,

to estimate flow rates in the network.

To make sure network inference is well-conditioned in the

in-crowd algorithm, we evaluate the impact of anti-inference

on the more sparse F = ⌊√n⌋ case.
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Fig. 7. Mean square error of the in-crowd algorithm under different strategies.

Fig. 7 shows the mean squared errors (in solid lines) of flow

estimation based on the in-crowd algorithm under different

proactive strategies. The genie bounds for these strategies are

also drawn in dashed lines in Fig. 7. By comparing the solid

and dash lines, we conclude that proactive strategies cause

much more errors to practical algorithms (that are non-optimal

and lead to performance penalties compared with the genie

bound) for network inference. Thus, the theoretical analysis

can serve as the at-least disruption benchmark for the impacts

of proactive strategies on network inference in practice.

VI. CONCLUSIONS

In this paper, we provided a fundamental view on network

anti-inference against end-to-end flow estimation. We used the

genie bounds to analyze the impacts of proactive strategies.

We found that the random transmission strategy of deception

traffic can achieve the impact on the same order of the best

coordinated transmission strategy and the routing changing

strategy is generally better than the deception traffic strategy.

Our results revealed the theoretical perspective of exploring

network dynamics to offer defense against network inference.

Our future work includes comprehensive evaluation of realistic

routing changing protocols (e.g., measuring g(n) and h(n))
and the design of practical anti-inference systems.
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APPENDIX

In this appendix, we briefly prove lemmas used in analysis.

Lemma A1: For a matrix X, it always holds that

λmin

(

XT X
)

‖a‖2
2 ≤ ‖Xa‖2

2 ≤ λmax

(

XTX
)

‖a‖2
2 for any

arbitrary vector a.

Proof: We can observe ‖Xa‖2
2 = aT (XTX)a =

a
T (XT

X)a
aT a

aT a = a
T (XT

X)a
aT a

||a||22, where
a

T (XT
X)a

aT a
is called

the Rayleigh quotient [22] with maximum λmax

(

XTX
)

and

minimum λmin

(

XT X
)

. This finishes the proof. �

Lemma A2: In the network with n nodes and density λ over

region [0,
√

n
λ ]2, the number of link L is on the order of n

with high probability, i.e., P(L = Θ(n)) = 1 − Θ(e−Θ(1)n).
Proof: The area of the region [0,

√

n
λ ]2 is n

λ . For node

i ∈ [1, n], its number of neighbors li follows the Poisson

distribution with parameter πr2λ− 1, where r is the wireless

transmission range. The total number of links in the network L
can be written as L =

∑n
i=1 li ∼ Poisson(n(πr2λ − 1)/2).

Thus, for some small positive constant c1 < πr2λ − 1, it

follows from a Chernoff bound argument in [23] that

P(L ≥ c1n) ≥ 1 − e−n(πr2λ−1)/2(en(πr2−1)λ/2)c1n

(c1n)c1n

= 1−e−n(πr2λ−1)/2e
c1n log

„

e(πr2
−1)λ

2c1

«

= 1 − Θ(e−Θ(1)n).

For some large positive constant c2 > πr2λ− 1, we obtain

by using a similar argument that

P(L ≤ c2n) ≥ 1−e−n(πr2
−1)λ/2e

c2n log

„

e(πr2
−1)λ

2c2

«

= 1−Θ(e−Θ(1)n).

Consequently, P(L = Θ(n)) = 1 − Θ(e−Θ(1)n). �

Lemma A3: Given a vector J ∈ R
1×L and L = Θ(n) such

that ‖J‖1 = nk for some constant k > 0, it satisfies that

‖J‖2
2 ≥ Θ(kn).

Proof: The constraint ‖J‖1/n = k indicates that at least

h(n) ≤ Θ(kn) elements in J have values on the order of

Θ (kn/h(n)). Thus, ‖J‖2
2 at least has value

‖J‖2
2 =

h(n)
∑

i=1

Θ
(

k2n2/h(n)2
)

= Θ
(

k2n2/h(n)
)

≥ Θ(kn),

which finishes the proof. �

Lemma A4: For a random matrix X ∈ R
L×F with entry

Xi,j (1 ≤ i ≤ L and 1 ≤ j ≤ F ) having value 0 or 1 and

satisfying E(Xi,j) = g(n)/n for some function g(n) = O(n)
and L = Θ(n), if F → ∞ with limL→∞ F/L < ∞, then (i)

the minimum eigenvalue λmin(X
T X) = Θ(g(n)) and (ii) the

maximum eigenvalue λmax(X
TX) ≤ Θ

(

g(n) + Fg(n)2/n
)

asymptotically almost surely.

Proof: (i) It can be verified based on Lemma A5 that there

exists a constant c = Θ(
√

n/g(n)) such that the variance

of each entry in cX is 1. Thus, we write λmin(X
T X) =

L
c2 λmin(L−1(cX)T (cX)). According to [19], the eigenvalue

λmin

(

L−1(cAg)
T (cAg)

)

converges to a positive constant

asymptotically almost surely. Thus, we have λmin(XTX) =
L
c2 Θ(1) = Θ(g(n)) with high probability.

(ii) Denote X as X = Y + g(n)
n Z, where Z is an all-

one matrix and E(Y) is an all-zero matrix. Then, we have

XTX = YT Y + g(n)
n YT Z + g(n)

n ZT Y + g(n)2

n2 ZTZ, thus

λmax

(

XT X
)

≤ λmax

(

YTY
)

+ 2g(n)λmax

(

YT Z
)

/n

+g(n)2λmax

(

ZT Z
)

/n2. (A1)

It follows from [19] that

λmax

(

YT Y
)

= Θ(g(n)) (A2)

with high probability.

Then, we take a look at λmax

(

ZT Y
)

in (A1). As Z is

an all-one matrix, the rank
(

ZTY
)

is 1, and λmax

(

ZT Y
)

=

tr{ZTY} =
∑L

l=1

∑F
f=1 yl,f , where yl,f is the (l, f)-th entry

in Y. It follows from the Marcinkiewicz-Zygmund strong

law of large numbers [24] that, asymptotically almost surely,

λmax

(

ZTY
)

= o((nF )1/p) for any 1 ≤ p < 2. Since

F ≤ L = Θ(n), we have

g(n)

n
λmax

(

ZT Y
)

=o

(

F 1/pg(n)

n1− 1
p

)

≤ o
(

n
2
p
−1g(n)

)

. (A3)

Next, we consider λmax

(

ZT Z
)

in (A1). Similar to
(

ZT Y
)

,

ZTZ is also of rank 1. Hence, we obtain

λmax

(

ZTZ
)

= tr{ZTZ} =

L
∑

l=1

F
∑

f=1

1 = Θ(Fn). (A4)

Inserting (A2), (A3), and (A4) into (A1) and letting

ξ = 2/p − 1 yield λmax(X
T X) ≤ Θ

(

nξg(n) + Fg(n)2/n
)

asymptotically almost surely for any arbitrarily small ξ > 0,

which means that λmax(X
TX) ≤ Θ

(

g(n) + Fg(n)2/n
)

. �

Lemma A5: Under Model 1, the probability that element

ai,j in routing matrix Ag is 1 is P(ai,j = 1) = Θ(g(n)/n).
Proof: First, P(ai,j = 1) denotes the probability

that link i is on routing path j, i.e., P(ai,j =
1) = P(link i is on routing path j). If there are l fixed

links in the network and routing path j consists of

f fixed links, P(ai,j = 1|l, f) =
(

l−1
f−1

)

/
(

l
f

)

=
(l − 1)!f !(l − f + 1)!/(l!(f − 1)!(l − f + 1)!) = f/l.

Then, P(ai,j = 1) is the expectation of P(ai,j = 1|l, f)
and can be written as P(ai,j = 1) = E(ai,j = 1|l, f) =
E(E(ai,j = 1|f)).

To proceed, write E(ai,j = 1|f) as

E(a
i,j

=1|f)=E(f/l|f)=f(1/E(l|f)+O(Var(l|f)/E(l|f)3))

= f/a(n) + O(1/n2)

where Var(l|f) is the variance of l conditioned on f , and a(n)
is some function satisfying a(n) = Θ(n). The last equality

holds due to the fact that Var(l|f) = Θ(n) as l follows the

Poisson distribution as shown in Lemma A2.

Hence, we obtain

E(E(ai,j = 1|f)) = E(f/a(n)) = Θ(g(n)/n), (A5)

which finishes the proof. �


