
Queuing the Trust: Secure Backpressure Algorithm

against Insider Threats in Wireless Networks

Zhuo Lu Yalin E. Sagduyu and Jason H. Li

Department of Computer Science Intelligent Automation Inc.

University of Memphis TN 38152 Rockville MD 20855

Email: zhuo.lu@memphis.edu Emails: {ysagduyu, jli}@i-a-i.com

Abstract—The backpressure algorithm is known to provide
throughput optimality in routing and scheduling decisions for
multi-hop networks with dynamic traffic. The essential assump-
tion in the backpressure algorithm is that all nodes are benign
and obey the algorithm rules governing the information exchange
and underlying optimization needs. Nonetheless, such an assump-
tion does not always hold in realistic scenarios, especially in
the presence of security attacks with intent to disrupt network
operations. In this paper, we propose a novel mechanism, called
virtual trust queuing, to protect backpressure algorithm based
routing and scheduling protocols from various insider threats.
Our objective is not to design yet another trust-based routing to
heuristically bargain security and performance, but to develop
a generic solution with strong guarantees of attack resilience
and throughput performance in the backpressure algorithm. To
this end, we quantify a node’s algorithm-compliance behavior
over time and construct a virtual trust queue that maintains

deviations from expected algorithm outcomes. We show that by
jointly stabilizing the virtual trust queue and the real packet
queue, the backpressure algorithm not only achieves resilience,
but also sustains the throughput performance under an extensive
set of security attacks.

I. INTRODUCTION

The backpressure algorithm [1]–[4], in theory, achieves

the optimal network throughput by dynamically routing and

scheduling network traffic. There have been significant efforts

focused on translating and adapting the backpressure concept

into a practical system for wireless networks [5]–[7].

In essence, the backpressure algorithm coordinates trans-

missions and maximizes the amount of total data delivery

by adapting scheduling and routing decisions based on each

node’s per-flow queue backlogs and channel states in wireless

networks. To this end, it presumes that all nodes obey the

algorithm rules of information exchange, optimal link activa-

tion, and flow selection. However, in practice, a node may

deliberately violate any rule to break the underlying premise

assumed by the backpressure algorithm. Regardless of its

selfish or malicious intent, there are two basic ways for an

attacker to pursue: (i) it can falsify any information used in the

backpressure algorithm; (ii) it can violate backpressure based

protocols by offering no cooperation and not following deci-

sions in routing and scheduling optimization. These potential

This material is based upon work supported by the Air Force Office of
Scientific Research (AFOSR) under grant FA9550-12-C-0037. Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the AFOSR.

attacks pose a major obstacle to practical deployment of the

backpressure algorithm in real (especially wireless) systems.

As security emerges as a fundamental component of net-

work design [5]–[16], it becomes vital to secure the back-

pressure algorithm against various security attacks. In the

literature, integrating the backpressure algorithm into practical

network applications [5]–[8], [11]–[13] and securing routing

protocols against various attacks [15]–[19] have been investi-

gated rather orthogonally. Recently, a trust-based routing ap-

proach was designed in [13] to help the backpressure algorithm

defend against attacks in wireless sensor networks. The focus

in [13] was on heuristically balancing trust and throughput

components in implementation, but not on providing security

guarantee of attack resilience.

In this paper, we aim at providing a generic framework to

secure the backpressure algorithm with guaranteed resilience

against information falsification and protocol-violation at-

tacks. To this end, we propose a novel mechanism, called

virtual trust queuing. There are three key components sup-

porting our mechanism: (i) when an attacker deviates from

legitimate behavior, nodes can collectively observe and quan-

tify such a deviation; (ii) each node individually manages all

the deviations in a virtual queue for every neighbor node in a

distributed setting, and then the queue size can be limited (i.e.,

the deviation or damage of an attacker can be bounded) by

using the queue-stabilizing technique jointly with a real packet

queue; (iii) the service rate in a virtual queue can be adequately

designed to mitigate imperfect observations (due to wireless

effects) or false accusations (e.g., a benign node is mistakenly

found to have abnormal behavior due to observation errors).

Therefore, we show that the proposed virtual trust queue

mechanism provides two performance guarantees: 1) Zero

penalty: there is zero throughput performance penalty to use

the virtual trust queue in the backpressure algorithm in the

presence of no attack; 2) Impact bounding: the damage of

attacks to the network can be bounded by a given tolerance

level for the virtual trust queue.

We use a comprehensive simulation study to show the effec-

tiveness of the proposed mechanism against an extensive set

of security attacks, including blackhole, selective-forwarding,

on-off, and opportunity-wasting attacks, as well as selfish

behavior to prioritize transmission opportunities. Our contribu-

tions are as follows: (i) We develop a new mechanism, called

virtual trust queuing, to secure the backpressure algorithm.

(ii) We show that the virtual trust queue mechanism, as a

generic solution to secure the backpressure algorithm, offers

guaranteed attack resilience as well as sustains the throughput

performance for the backpressure algorithm. (iii) We demon-

strate that the backpressure algorithm with virtual trust queu-

ing is a viable secure solution for practical implementation of

dynamic scheduling and routing in wireless networks. (iv) We

conduct extensive simulations to show that the virtual trust

queue mechanism can significantly improve the throughput

performance by securing backpressure scheduling against a

broad range of malicious attacks and selfish node behaviors.

The rest of this paper is organized as follows. In Section II,

we describe preliminaries and models for the backpressure

algorithm and its vulnerabilities. In Sections III and IV, we

design and evaluate the virtual trust queue based backpressure

algorithm, respectively. In Section V, we discuss related work.

Finally, we conclude the paper in Section VI.

II. PRELIMINARIES: BACKPRESSURE AND

VULNERABILITIES

In this section, we use an example to introduce the back-

pressure algorithm and its vulnerabilities, then formulate the

backpressure algorithm, and finally discuss attack models.

A. Example of Backpressure Algorithm and Vulnerabilities

The backpressure algorithm [1]–[4] is an optimal routing

and scheduling policy that stabilizes packet queues with capa-

bility to achieve the maximum throughput. The backpressure

algorithm dynamically selects the set of links to activate and

flows to transmit on these links depending on queue backlogs

and channel rates. In the following, we consider its application

to a time-slotted wireless network.

6 1 4

2 3 5

BA C

5

7

D

flow1

flow2

5 3

2

Fig. 1. Example of the backpressure algorithm.

Fig. 1 shows an example of how the backpressure algorithm

works: nodes A, B, C, and D form a three-hop wireless

network with two flows. Each node has the same transmission

rate and cannot transmit and receive at the same time slot. At a

time slot, the backlog of each node for each flow is illustrated

in Fig. 1. The backpressure algorithm works as follows. First,

compute the maximum differential queue backlog between

each node pair as a link weight; i.e., A→B is 5 for flow 1,

C→B is 3 for flow 1, and D→C is 2 for flow 2, and select

these three links. Second, list all non-conflicting link sets, i.e.,

{A→B for flow 1, D→C for flow 2} and {C→B for flow 1}.

Finally, choose the set that maximizes the sum of all link

weights, i.e., {A→B for flow 1, D→C for flow 2}.

Now suppose node C is malicious and declares its queue

backlog for flow 1 is 100. Then, the maximum differential

queue backlog between nodes B and C becomes 99, which

makes backpressure scheduling choose only one link {C→B

for flow 1}, thereby giving all the transmission opportunity to

the malicious node C.

B. Backpressure Algorithm Formulation

More formally, we consider a network denoted by (N ,F),
where N and F are the sets of network nodes and flows,

respectively. At time slot t = 0, 1, 2, · · · , node i ∈ N has a

queue backlog Q
f
i for flow f ∈ F . The backpressure algorithm

makes routing and scheduling decisions based on

u
∗(t) = argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

ui,j(t)wi,j(t), (1)

where ui,j(t) ∈ u(t) is the link rate from nodes i to j, u(t)
is a feasible rate vector in the set of all feasible rate vectors

R(t) in the network, and wi,j(t) is the maximum differential

queue backlog

wi,j(t) = max
f∈F

(Qf
i (t) − Q

f
j (t)), (2)

where Q
f
i (t) and Q

f
j (t) are the backlogs for flow f at nodes i

and j, respectively.

t+1t-1 t time

... ...

backlog information exchange and

channel measurement
scheduled transmissions

Fig. 2. Information exchange and transmission scheduling in the backpressure
algorithm.

In this paper, our focus is not solving the particular op-

timization in (1), which has been extensively discussed in

the literature regarding low-complexity, heuristic or distributed

solutions and implementations [5]–[8], [11]. Rather, we aim

to develop a generic framework to provide security guarantee

integrated into any backpressure based routing protocols.

To this end, we adopt a generic implementation model for

the backpressure algorithm shown in Fig. 2: at the beginning of

each time slot, nodes broadcast information to their neighbors

for distributed scheduling implementation (e.g., [3]) or to a

controller for centralized coordination (e.g., [11]). The infor-

mation includes queue backlogs for computing the differential

queue backlog wi,j(t) in (2) and channel state information

based on channel measurements for obtaining the best channel

rate ui,j(t) for any node i to node j in (1). Then, scheduled

transmissions happen at the rest of the time slot.

C. Insider Threats and Assumptions

We consider insider attackers that are nodes also involved

in the routing and scheduling decisions in the network. In

general, the behavior of an insider attacker can be classified

to one or both of the following two categories.

1) Information-falsification attack: this happens during the

information exchange phase at the beginning of each

time slot shown in Fig. 2, where the attacker intention-

ally sends false information to others to affect backpres-

sure routing. For example, the attacker broadcasts false

backlog information or false channel state information

to result in wrong differential backlog computation in

(2). As the backpressure algorithm is reactive to node

queue backlogs and channel state information, its routing

decisions can be significantly affected by information-

falsification attacks.

2) Protocol-violation attack: this happens in the scheduled

transmission phase shown in Fig. 2, where the attacker

does not obey backpressure routing decisions. For exam-

ple, an attacker does not transmit although it is scheduled

to transmit at that time slot.

We assume that attackers can neither modify information

(e.g., queue backlog) inside other nodes nor change the

wireless channel characteristics (e.g., channel gain).

It is worth mentioning that the backpressure algorithm is

resilient in terms of throughput performance to imperfect

queue backlog estimation, as long as the error is bounded by

a constant [20]. In this paper, we consider a different scenario,

where attackers can arbitrarily manipulate queue backlogs and

channel state information, and launch various attacks using

falsified information to degrade the network performance.

III. SECURING THE BACKPRESSURE ALGORITHM

An attacker can launch either information-falsification or

protocol-violation attacks, or both. To clearly present our

solution, we first handle information-falsification attacks. In

particular, we discuss how a node can observe information-

falsification attacks, then we design our solution to secure

the backpressure algorithm. Finally, we extend our solution

to protocol-violation attacks.

A. Behavior of Attackers

We first address information-falsification attacks. Such at-

tacks can have at least one of two intents: (i) selfish behavior:

if the attacker is selfish, it is interested in performance gain for

its own without care for others in the network; (ii) malicious

behavior: if the attacker is malicious, it aims to degrade the

throughput of others in the network as much as possible.

As the backpressure algorithm requires nodes broadcasting

their queue backlogs and channel state information, one effec-

tive way for an attacker to fulfill its selfish or malicious intent

is to falsify its queue backlogs or channel state information.

1) Manipulating backlogs. If the attacker wants to send its

own packets immediately instead of receiving packets from

others, it can broadcast falsified higher backlogs than actual

ones. Then, it has a higher chance to be scheduled to transmit

as a result of backpressure algorithm computation. If the

attacker is malicious and tries to destroy packet delivery as

much as possible, it can act like a blackhole and broadcast

falsified lower or zero backlogs. Thus, it will attract more

packets routed to itself under backpressure scheduling, then

drop some or all of them. In summary, an attacker can

manipulate its backlog information arbitrarily to affect the

optimization solution in the backpressure algorithm.

2) Falsifying channel state information. If the attacker wants

to gain the transmission opportunity, it can broadcast higher

channel gains than the actual ones (so its link rate ui,j(t)

is considered large in the backpressure optimization (1)).

Then, it has a higher chance to be scheduled to transmit.

Although broadcasting false channel information is one type of

information falsification, we can categorize attacks that falsify

channel state information into protocol-violation ones. This

is because when an attacker cannot transmit with a claimed

rate, it violates the scheduling decision. We will show in

Section III-D that channel state information falsification can

be solved jointly with other protocol-violation attacks.

B. Identification of Attack Behavior

Backlog manipulation is an essential way to launch various

attacks against the backpressure algorithm. The question is

how to identify or deduce possible backlog manipulation

behavior of a node. To answer this, we first need to understand

how the backlog dynamics evolve for benign nodes over time.

t+1t-1 t time

... ...

Qj (t)

f
transmit or receive Sj (t)new arrival Aj (t)

f

Qj (t+1)
f f

Fig. 3. Backlogs and activities of a node as time evolves.

Suppose node j is benign and obeys the backpressure

scheduling. Fig. 3 shows the behavior of node j over time.

Node j’s backlogs for flow f are denoted by Q
f
j (t) and

Q
f
j (t + 1) at times t and t + 1, respectively. The number of

new arrivals at node j for flow f is A
f
j (t) during time slot t,

whose value is only known to node j and is never broadcasted

to others. In addition, node j may transmit or receive at time t.

Let S
f
j (t) be the amount of data that node j sends or receives

during time t for flow f (S
f
j (t) > 0 or S

f
j (t) < 0 when node j

transmits or receives for flow f , respectively). Then, it must

hold that node j’s next-slot backlog Q
f
j (t + 1) equals to its

current-slot backlog Q
f
j (t) with its new arrivals A

f
j (t) added

and its transmitted data S
f
j (t) removed; i.e.,

Q
f
j (t + 1) = Q

f
j (t) + A

f
j (t) − S

f
j (t) (3)

for each flow f ∈ F .

From (3), we can get the arrival rate A
f
j (t) as

A
f
j (t) = Q

f
j (t + 1) − Q

f
j (t) + S

f
j (t) ∈ [0, Amax], (4)

where Amax is the upper limit of the packet arrival rate in the

network, depending on a particular application. The purpose of

obtaining the arrival rate is that we will show potential backlog

manipulation at node j can be identified by a neighbor node i

that examines whether node i’s estimate of node j’s arrival

rate estimate is within [0, Amax].
In particular, node j may not be benign and can broadcast its

true backlogs Q
f
j (t+1) and Q

f
j (t) as false backlogs Q̂

f
j (t+1)

and Q̂
f
j (t), respectively. The transmitted/received data S

f
j (t)

can be observed as Ŝ
f
i,j(t) by node i.

0 Amax

negative value high value

arrival rate

normal area
potentially

Fig. 4. Negative and high arrival rates indicate attacking behavior.

Due to the coordinated nature of the backpressure algorithm,

if node j is scheduled to transmit, a neighbor of node j will

know the amount of data S
f
j (t) that node j transmits. Thus,

node i’s perfect observation is Ŝ
f
i,j(t) = S

f
j (t) if the attacker

obeys the scheduling decision to transmit. However, due to

wireless channel fading and collision, node i’s observation

Ŝ
f
i,j(t) may not be exactly equal to S

f
j (t) or may be even

completely wrong. Moreover, protocol-violation attacks do not

need to obey scheduling decisions, which can also lead to

Ŝ
f
i,j(t) 6= S

f
j (t). We will handle the imperfect observation

case in Section III-C2 and protocol-violation attacks in Sec-

tion III-D.

For better presentation of our idea, we assume that Ŝ
f
i,j(t) =

S
f
j (t) in the following. Thus, given Q̂

f
j (t + 1), Q̂

f
j (t) and

Ŝ
f
i,j(t), node i (observing node j’s transmit/receive behavior)

can estimate node j’s arrival rate as

Â
f
i,j(t)=Q̂

f
j (t + 1)−Q̂

f
j (t)+Ŝ

f
i,j(t). (5)

Then, we will show via examples how node j’s selfish or

malicious behavior results in node i’s arrival rate estimate

Â
f
i,j(t) going outside of the normal region [0, Amax].

• Negative arrival rate: consider that node j is a blackhole

attacker who intends to attract packets to be routed to

itself and drop all packets. To achieve this goal efficiently,

node j keeps broadcasting zero backlogs (i.e., Q̂
f
j (t) = 0

for all t). Obviously, because of its zero backlog, it should

always receive data from other node, and this effect is

observed by its neighbor node i as Ŝ
f
i,j(t) < 0. It follows

that the arrival rate estimate at node i satisfies

Â
f
i,j(t) = Q̂

f
j (t+1)−Q̂

f
j (t)+Ŝ

f
i,j(t) = 0−0+Ŝ

f
i,j(t) < 0.

Accordingly, we see that if a node is deliberately attract-

ing packets, it can exhibit a negative arrival rate.

• High arrival rate: consider that node j does not get the

chance to transmit at time t (i.e., Ŝ
f
i,j(t) = 0 observed by

node i), but wants to capture the transmission opportunity

at time t + 1. Thus, it broadcasts a much higher backlog

at the start of time t+1 (i.e., Q̂
f
j (t+1) > Q̂

f
j (t)+Amax).

Consequently, its arrival rate estimate can be written as

Â
f
i,j(t) = Q̂

f
j (t+1)−Q̂

f
j (t)+Ŝ

f
i,j(t) > Amax+0 > Amax,

indicating the arrival rate estimate exhibits a very large

value that exceeds its limit Amax.

It is easy to verify that either negative or high arrival rate

indicates attacking behavior as shown in Fig. 4. We say that

node i’s arrival rate estimate Â
f
i,j(t) of node j for flow f is

within the normal area if 0 ≤ Â
f
i,j(t) ≤ Amax.

C. Virtual Trust Queue to Defend Backpressure Algorithm

We have already identified that estimating packet arrival

rate of a node can help us find out whether the node exhibits

backlog manipulation behavior or not. Our next goal is to

design a strategy based on estimating packet arrival rates

to defend the backpressure algorithm. We first introduce an

augmented optimization approach to protect the backpressure

algorithm, then present how to build a comprehensive virtual

trust queue solution to provide security guarantee.

1) Augmented Optimization Approach: As we have already

mentioned, the arrival rate estimate Â
f
i,j(t) is critical to

determine whether a node is an attacker or not at time t. Either

Â
f
i,j(t) < 0 or Â

f
i,j(t) > Amax indicates attacking behavior. As

shown in Fig. 4, the farther the estimate of node j’s arrival rate

is from the actual one, the more aggressive the attack behavior

becomes, and accordingly there is less trust that another node

should put in node j.

Thus, we define the deviation in arrival of node j for flow f

observed at node i as the distance of arrival rate estimate

Â
f
i,j(t) to the normal arrival rate region [0, Amax]; namely,

d
f
i,j(t) =











|Âf
i,j(t)| for Â

f
i,j(t) < 0,

0 for 0 ≤ Â
f
i,j(t) ≤ Amax,

Â
f
i,j(t) − Amax for Â

f
i,j(t) > Amax.

(6)

It is easy to see that d
f
i,j(t) is always non-negative. Larger

d
f
i,j(t) means more deviation from a node’s normal behavior.

Then, we define the deviation in arrival (for all flows) as

Di,j(t) =
∑

f∈F

d
f
i,j(t) + ǫ, (7)

where ǫ > 0 is a small number serving only as a uniform

offset such that all behaviors exhibit positive deviations, i.e.,

Di,j(t) ≥ ǫ for all t > 0.

Accordingly, increasing Di,j(t) decreases node i’s trust in

node j. If node j is associated with a high value of Di,j(t), it

should be attacking other nodes or misbehaving in the network,

and should be punished during the backpressure scheduling.

Thus, the augmented optimization approach is to add a penalty

term to the backpressure algorithm in (1) as

u
∗(t) = arg max

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(ui,j(t)wi,j(t) − vDi,j(t)) , (8)

where −vDi,j(t) (v > 0) is the penalty term. If a node

is an attacker with a large value of Di,j , the penalty term

−vDi,j(t) is then a large negative value, indicating that the

link (i, j) is less likely to be scheduled by the maximization

in (8). Here, v > 0 is a weighted factor for the deviation

in arrival, meaning the optimization allows for a flexible

tradeoff between throughput performance and the trust level

by adjusting the value of v.

2) Virtual Trust Queue: There are three major drawbacks of

the approach in (8): (i) If an attacker causes a very large value

of Di,j(t) at time t (e.g., deliberately dropping all packets) and

then returns to legitimate behavior after time t, the penalty

in (8) only happens and lasts during time t (i.e., there is no

memory in tracking the trust); (ii) there is no systematic way

to determine the value of v; and (iii) there is no systematic

way to know, control, or limit the damage that an attacker can

cause to the network performance.

To address the first issue, we can define a sliding window to

record the history and keep applying the penalty. However, the

sliding window method requires careful adjustment of window

size and still cannot solve the second and third issues. Another

way to remember and use history is to represent it in a queue

structure. Mathematical tools in the queuing theory can then

provide a theoretical understanding of how we can use a queue

to limit an attack’s behavior.

As a consequence, we use a queue to manage the deviations

of arrival. Motivated by [12] that uses a virtual energy queue to

limit the power consumption while at the same time sustaining

the throughput performance, our objective is to construct a

virtual queue, called virtual trust queue, to limit the damage

of an attacker while at the same time sustain the throughput

performance. We call it virtual because the queue only stores

a single trust value. In particular, node i maintains a virtual

trust queue for node j and enqueues the deviation in arrival

Di,j(t) with constant service rate δ > ǫ > 0. In other words,

the queue size (or the value stored in the queue) Xi,j(t) can

be written as

Xi,j(t + 1) = max (Xi,j(t) − δ, 0) + Di,j(t). (9)

It is easy to see that if Xi,j(t) becomes larger, node j is less

trustable. We then integrate the virtual trust queue into (1) in

the backpressure algorithm as

u
∗(t)= argmax

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(ui,j(t)wi,j(t)−Xi,j(t)Di,j(t)) . (10)

We next show that (10) provides two essential guarantees,

called zero penalty and attack bounding.

• Zero penalty: if there is no attack, there is no throughput

performance penalty to use the virtual trust queue.

• Impact bounding: if there are attacks, the virtual trust

queue based optimization (10) guarantees the attack’s

damage to the network is always bounded from above.

In what follows, the two guarantees of the virtual trust queue

are presented in Theorems 1 and 2, respectively.

Theorem 1 (Zero Penalty of the Virtual Trust Queue):

In a network without presence of attacks, the virtual trust

queue based optimization (10) is equivalent to the original

backpressure optimization in (1).

Proof: If there is no attack, Di,j(t) = ǫ for all t > 0.

Thus, the virtual trust queue size in (9) satisfies Xi,j(1) =
max (0 − δ, 0) + ǫ = ǫ, Xi,j(2) = max (ǫ − δ, 0) + ǫ = ǫ,

Xi,j(3) = max (ǫ − δ, 0)+ǫ = ǫ, and so on. Then, Xi,j(t) = ǫ

for all t > 0.

Inserting Di,j(t) = Xi,j(t) = ǫ into (10) yields

u
∗(t) = arg max

u(t)∈R(t)

∑

ui,j(t)∈u(t)

(

ui,j(t)wi,j(t) − ǫ2
)

= arg max
u(t)∈R(t)

∑

ui,j(t)∈u(t)

(ui,j(t)wi,j(t))) , (11)

which completes the proof. �

Remark 1: Theorem 1 ensures that we can always use this

virtual trust queue mechanism under any circumstance with

and without attacks. It incurs no cost in terms of performance

loss when there is no attack in the network.

Theorem 2 (Impact Bounding of the Virtual Trust Queue): If

a virtual trust queue established in (9) is stable, it is guaranteed

that the deviation in arrival Di,j(t) satisfies

lim sup
t→∞

1

t

t
∑

τ=1

E(Di,j(τ)) ≤ δ. (12)

Otherwise, (10) degenerates to an optimization over a subset

that excludes from R(t) all links with nodes showing unstable

queues as t → ∞.

Proof: The proof consists of two parts: (i) virtual queue

is stable, and (ii) virtual queue is not stable. The first part

follows the similar strategy to stabilize two queues in [12]. The

second part is straightforward: suppose a virtual trust queue

Xi,j(t) is unstable, i.e., lim inft→∞ Xi,j(t) = ∞. Then, the

term −Xi,j(t)Di,j(t) becomes negative infinity as Di,j(t) >

ǫ > 0, which offers no effect on the argmax in (10). �

Remark 2: The virtual trust queue Xi,j(t) saved at node i

is not a real queue, but a single value whose operation in (9)

works similar to a queue. Therefore, maintaining a virtual trust

queue only incurs negligible amount of memory at each node.

Similarly, broadcasting the trust queue information also incurs

negligible amount of additional transmission overhead.

3) Choosing the Service Rate in Trust Queue: Theorem 2

states that the designed virtual trust queue produces two

outcomes for an attacker: 1) if the attacker exhibits mild

behavior (e.g., alternating legitimate and selfish behaviors over

time) such that the virtual trust queue is still stable (i.e., queue

size is small and bounded), we guarantee that the attacker’s

average deviation in arrival is below the service rate δ. That is,

δ serves as a tolerance level to the attacker. 2) if the attacker’s

behavior is too aggressive (e.g., keeps attacking all the time)

such that the virtual trust queue becomes unstable (i.e., queue

size is very large and keeps increasing), we guarantee that the

attacker is eliminated from any routing decision.

It is emphasized that our goal is not to detect any possi-

ble attack against the backpressure algorithm, but to sustain

performance for all legitimate nodes under attacks that can

significantly degrade the performance. Given our virtual trust

queue mechanism with a tolerance level, there will be some

greedy attackers that achieve slight gains without being de-

tected. However, they will be immediately penalized once they

go beyond the tolerance level.

We can specify any positive value of the service rate δ in

the virtual trust queue, which reflects our tolerance level or

bound for attackers as indicated in (12). The virtual trust queue

mechanism guarantees that it involves any potential attackers

in scheduling under the given tolerance level δ, and at the

same time eliminates any potential attackers that go beyond δ.

As we have mentioned, the virtual trust queue mechanism

is based on the observations on other nodes, which may have

errors in the real world. Such errors may also lead to false

accusation to some benign nodes. Therefore, the value of δ

can be set proportional to the expected level of observation

errors in a practical network scenario to mitigate observation

errors. For example, due to possible channel collision, a node

may not be able to observe a transmission. Therefore, δ can be

set to be the data amount value for a single transmission such

that the observation error due to channel collision is mitigated

by the virtual queue service.

D. Handling Protocol-Violation Attacks

To defend against backlog information falsification attacks,

we have so far built a virtual trust queue mechanism, in which

we assume that an attacker only falsifies backlog information

to affect scheduling decisions, but it obeys any scheduling

decision. In practice, an attacker has the freedom to both

falsify information and violate any scheduling decision. We

next show our solution can be directly integrated to combat

protocol-violation attacks at the same time.

A protocol-violation attacker is the one that does not obey

the backpressure scheduling decision, such as (i) a selective-

forwarding attacker that does not transmit packets for a

particular flow even when it is scheduled to transmit, (ii) an

attacker that claims to have a very good channel rate but uses

a much lower rate to transmit, or (iii) an attacker that transmits

data to another node that is not scheduled to receive.

j i

Sj (t) is supposed to be

transmitted by node j

f

node i observes Si,j (t)
f

Fig. 5. Node j’s scheduled transmission vs. node i’s observation.

To defend against protocol-violation attacks, we adopt a

similar neighborhood watch strategy that we used previously

for queue backlogs. As shown in Fig. 5, node j is scheduled

to transmit data with amount S
f
j (t), which is known to its

neighbor node i during information exchange in backpressure

scheduling. If node j obeys the scheduling decision, then

node i’s observation on the transmission is Ŝ
f
i,j(t) = S

f
j (t).

Otherwise, Ŝ
f
i,j(t) 6= S

f
j (t). For example, if node j does not

transmit or transmits to a wrong destination, Ŝ
f
i,j(t) = 0. If

node j uses a lower rate to transmit, Ŝ
f
i,j(t) < S

f
j (t). Note that

in this case, imperfect observation or false accusation may also

happen, which can also be mitigated by choosing the value

of service rate equal to the data amount value for a signal

transmission.

As a result, we define the deviation in scheduling as the

absolute difference between node i’s observation Ŝ
f
i,j(t) and

node j’s scheduling S
f
j (t), i.e.,

Ei,j(t) =
∑

f∈F

|Ŝf
i,j(t) − S

f
j (t)| + η, (13)

where η > 0 is a small offset similar to previously defined

ǫ in (7). It is obvious that if a node exhibits large deviations

of scheduling in (13), the node may misbehave and should be

penalized in the backpressure algorithm.

In a similar way, we construct another virtual trust queue:

node i maintains a second virtual trust queue for node j with

size Yi,j(t) that enqueues the deviation in scheduling Ei,j(t)
with constant service rate σ > η > 0; i.e.,

Yi,j(t + 1) = max (Yi,j(t) − σ, 0) + Ei,j(t). (14)

Finally, in order to handle both information-falsification and

protocol-violation attacks, we integrate the two virtual trust

queues together into the backpressure optimization as

u
∗(t)=arg max

u(t)∈R(t)

∑

u
i,j

(t)∈u(t)

(u
i,j

(t)w
i,j

(t)−X
i,j

(t)D
i,j

(t)−Y
i,j

(t)E
i,j

(t)),

(15)

where Xi,j(t) are Yi,j(t) are the virtual trust queues for

deviation in arrival Di,j(t) and deviation in scheduling Ei,j(t),
respectively.

Remark 3: It is easy to verify that Theorems 1 and 2 still

hold when we integrate two virtual trust queues in (15). There-

fore, the designed virtual trust queue mechanism provides

a guaranteed (rather than heuristic) solution to defend the

backpressure algorithm against both information-falsification

and protocol-violation attacks. Moreover, the proposed virtual

trust queue mechanism is generic and flexible to accommodate

more queues for the quantification of any other attack behavior,

and at the same time provides guarantee of attack resilience.

E. Falsifying Virtual Trust Queue

The virtual trust queue mechanism uses (15) to coordinate

node transmissions. On one hand, virtual trust queues provide

attack resilience; on the other hand, it may introduce another

line of vulnerability in the backpressure algorithm. In partic-

ular, nodes need to broadcast additional virtual trust queue

information Xi,j(t), Di,j(t), Yi,j(t), and Ei,j(t) for either

distributed or centralized coordination at time t. It is quite

possible that an attacker can also falsify virtual trust queue

information to circumvent the virtual trust queue mechanism.

There is an effective way to identify and correct such

falsified information. Let us focus on deviation in arrival

Di,j(t) and its virtual trust queue Yi,j . First, notice that Di,j(t)
reflects node i’s observation on node j. This indicates that

if node i is an attacker, it can only falsify its own Di,j(t)
on node j. However, node i is not the only one providing

such information. There are other neighbors that provide their

observations on node j at the same time. Denote by Nj the

set of node j’s neighbors. Then, there are |Nj | observations

on node j. For any pair of benign nodes k, l ∈ Nj , they

receive the same backlog information from node j and can

observe the transmission behavior of node j. Thus, their

quantified deviations in arrival Dk,j(t) and Dl,j(t) should be

in close value (due to some observation errors in practice).

Accordingly, Xk,j(t) and Xl,j(t) should also be in close value

(since the queue size is solely based on the deviation in arrival

as shown in (9)). Therefore, we can correct any isolated values

in all reported virtual trust queue information using

Dk,j(t) = arg min
d∈Dj(t)

|d − Dj(t)| (16)

for all k ∈ Nj , where Dj(t) is the set of all deviations

of arrival reported by node j’s neighbors, and Dj(t) is the

average of all these deviations. Similar corrections will also

be applied to Xi,j , Ei,j , and Yi,j .

Fig. 6 shows an example how the correction to falsified

virtual trust queue information works. Suppose that node i

sends false information (Di,j(t) = 9, Xi,j(t) = 2). At

the same time, node i’s other benign neighbors, nodes a,

b, c and d, also send (Da,j(t), Xa,j(t)), (Db,j(t), Xb,j(t)),
(Dc,j(t), Xc,j(t)), and (Dd,j(t), Xd,j(t)), respectively, which

satisfy Di,j(t) 6= Da,j(t) = Da,j(t) = Db,j(t) = Dc,j(t) =
Dd,j(t) = 5 and Xi,j(t) 6= Da,j(t) = Xa,j(t) = Xb,j(t) =
Xc,j(t) = Xd,j(t) = 20. Using (16), the corrections are

Di,j(t) = 5 and Xi,j(t) = 20.

j i

b

c

d

a

Dd, j (t), Xd, j (t)

Dc, j (t) Xc, j (t)

Db, j (t) Xb, j (t)

Da, j (t) Xa, j (t)

Di, j (t), Xi, j (t)

different values here!

Fig. 6. Node j has neighbor nodes i, a, b, c, and d. Node i is falsifying
virtual trust queue information. Nodes a, b, c, and d are benign and send
correct information.

It is also worth noting that the proposed trust mechanism

is fully distributed and maintained at individual nodes. For a

centralized implementation (e.g., [11]), a virtual trust queue

does not need to be maintained at each node. The centralized

controller can establish the queue for each node. At each time

slot, node k reports its computed deviation Dk,j(t) to the con-

troller. Then, the controller chooses the most uniformly agreed

value using (16) into its trust queue for node j. Therefore, the

virtual trust queue mechanism can be further integrated with

a control center for more efficient attack mitigation strategies.

IV. PERFORMANCE EVALUATION

In this section, we conduct an extensive simulation study to

evaluate the performance of the designed secure backpressure

algorithm with virtual trust queues.

We set up a wireless network with 50 nodes with transmis-

sion range 100m uniformly distributed over a 200m-by-200m

area. Each node is half-duplex thus cannot transmit and receive

at the same time. We adopt the protocol interference model;

i.e., if two nodes are within each other’s transmission range,

their link rate is set to be 100 packets/s; otherwise, the rate is

0. In addition, if a node is receiving from a neighbor at a time

slot, none of its other neighbors will be scheduled to transmit.

There are in total 10 end-to-end flows with randomly se-

lected source-destination pairs in the network. Per-flow packet

arrival in each node at each time slot follows the uniform

distribution over time [0, Amax], where Amax = 5 packets/s.

The simulation starts at time 0 with all node’s queue backlogs

equal to zero. Each benign node uses two virtual trust queues

with ǫ = η = 0.5 for each of its neighbors along with the data

packet queues.

We consider a comprehensive set of attack scenarios in

the simulations: 1) Blackhole attacks, which always broadcast

zero queue backlogs and high channel rates to attract packets

to be routed to them, then drop all received packets. 2)

Selective-forwarding attacks, which keep relatively low profile

compared with blackhole attacks. They do not falsify any in-

formation and obey the backpressure scheduling, but only drop

packets routed to them for particular flows. 3) On-off attacks,

which act as blackholes or legitimate nodes during on and off

periods. 4) Transmission-opportunity-wasting attacks, which

never falsify information, but simply abandon its scheduled

transmission opportunity to degrade the network throughput.

5) Selfish nodes, which always attempt to empty its queues by

broadcasting high queue backlogs to capture the transmission

opportunity. 6) Heterogeneous attacks, which include all above

attackers on different nodes in the same network.

In our performance evaluation, we define the metric of

(normalized) throughput as the average amount of delivered

data per time slot normalized by the link rate.

A. Blackhole Attacks

We randomly select one node in the network acting as a

blackhole. Fig. 7 shows the throughput in the network under

the blackhole attack. It is noted from Fig. 7 that initially,

the network throughput increases as run time goes. This is

because the network is lightly loaded in the initial state. As

more packets arrive at each node, the network throughput

increases gradually and becomes stable. When there is no

attack, the throughput approaches near 1 over time. However,

when there is an attacker, we can see over 80% degradation

for the throughput in the network due to the blackhole that

keeps dropping packets.

We deploy the two virtual trust queues with two service

rates: (i) δ = σ = 1 and (ii) δ = σ = 50. As we have

discussed, a smaller value of service rate δ or σ mean a smaller

tolerance level for attack behavior. If an attacker operates

beyond the given tolerance level, which results in an unstable

queue, the attacker will be excluded from the routing decision

as indicated in Theorem 2. Consequently, it is observed from

Fig. 7 that the throughput is substantially improved under the

virtual trust queue strategy, in particular for the low tolerance

case with δ = σ = 1.

Fig. 7 also demonstrates that a low tolerance virtual trust

queue (i.e., small values of δ and σ) exhibits better perfor-

mance than a high tolerance queue. As the virtual trust queue

mechanism is based on the observations on other nodes, which

may have errors in the real world, it is desirable to choose

reasonably small values of δ and σ to account for observation

errors in practical applications.

We also measure the throughput performance under dif-

ferent numbers of blackholes in Table I, which shows that

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

T
h
ro

u
g
h
p
u
t

Run Time [Slot]

No Attack

High Tolerance Trust

Queue δ=σ=50

No Defense under Attack

Low Tolerance Trust

Queue δ=σ=1

Fig. 7. Throughput over run time for different
scenarios.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

T
h
ro

u
g
h
p
u
t

Run Time [Slot]

100%

80%

60%

40%

20%

0%

Fig. 8. Throughput under selective-forwarding
attacks for forwarding ratio ρ from 0% to 100%.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percetange of Forwarding (%)

T
h

ro
u

g
h

p
u

t

No Defense

Trust Queue

Fig. 9. Throughput under selective-forwarding
attacks with and without virtual trust queue.

when the number of blackholes increases to three, the network

exhibits zero throughput. However, when two virtual trust

queues are deployed, the throughput is almost not affected

by the number of blackholes.

TABLE I
THROUGHPUT AT TIME SLOT t = 400.

Number of Blackholes: 0 1 2 3 4

w/o. virtual queues 0.96 0.17 0.0 0.0 0.0

w. virtual queues 0.96 0.96 0.95 0.95 0.95

B. Selective-Forwarding Attacks

Next, we consider selective-forwarding attacks. We ran-

domly select two nodes in the network acting as selective-

forwarding attacks with forwarding ratio ρ ∈ [0%, 100%],
which means that an attacker only forwards packets for a

percentage ρ of all flows in the network.

Fig. 8 depicts the throughput performance under selective-

forwarding attacks for forwarding ratio ρ = 0%, 20%, 40%,

60%, 80%, and 100%, where ρ = 100% means no attack. The

performance is measured without any defense in Fig. 8. We

can see that as the performance is substantially degraded as

ρ decreases. For example, as run time goes, we find that the

throughput is stabilized at around 0.9622 and 0.1821 for the

ρ = 100% and ρ = 0% cases, respectively.

Then, we show in Fig. 9 the throughput at time slot t = 400
with and without our virtual trust queue mechanism that is

set with δ = σ = 2. If there is no defense, the throughput

increases gradually as the forwarding ratio of attackers ρ

increases, and finally reaches the no-attack throughput. If the

virtual trust queues are used, we can see that regardless of

the value of ρ, the throughput is always close to the non-

attack throughput. For example, when ρ = 0%, the virtual

trust queue strategy achieves throughput of 0.9417 compared

with the non-attack throughput of 0.9622.

C. On-Off Attacks

We also consider the on-off attacks, which act as blackholes

and legitimate nodes during on and off periods. We randomly

choose one node in the network as an on-off attacker, whose

on and off periods are both equal to 50 time slots.

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
a

c
k
e

t
D

ro
p

 R
a

ti
o

 O
v
e

r
S

lo
t

Run Time [Slot]

Trust
Queue

On Periods without Defense

Fig. 10. Packet drop ratio in the network under on-off attacks: virtual trust
queue vs. no defense.

To capture how the network reacts in transient states under

the on-off attacker, we use packet drop ratio as the per-

formance metric, which is defined as the ratio between the

number of dropped packets (by the attacker) and the number

of transmitted packets. Fig. 10 illustrates the packet drop ratio

in the network under the on-off attack. It is noted from Fig. 10

that if there is no defense in the network, the packet drop ratio

increases and decreases sharply, and these trends alternate.

This is due to the fact that attackers only attack during the

on-periods. In contrast, if the virtual trust queue mechanism

with δ = σ = 1 is used in the network, we observe in Fig. 10

that the packet drop ratio is always 0, indicating that our

mechanisms can immediately find and exclude the attackers

when they are on.

D. Multiple Heterogonous Attacks

We have shown that the virtual trust queue mechanism is

effective to combat (1) blackhole, (2) selective-forwarding, and

(3) on-off attacks. We next evaluate its effectiveness against (4)

transmission-opportunity-wasting attacks and (5) selfish nodes

as part of heterogeneous attacks. We do not evaluate (4) and

(5) individually due to the page limit. Instead, we combine the

(4) and (5) attacks with the (1), (2), and (3) attacks to form

the attack scenario. In the experiments, the forwarding ratio

of the selective-forwarding attack is set to be ρ = 60%, and

the on and off periods of the on-off attacker are equally set to

be 50 time slots.

TABLE II
THROUGHPUT AT TIME SLOT t = 400 UNDER DIFFERENT ATTACKS.

Combination: 4 5 4,5 3,4,5 2,3,4,5 all

w/o. virtual queues 0.23 0.85 0.21 0.15 0.09 0.0

w. virtual queues 0.96 0.96 0.96 0.96 0.95 0.95

We measure the throughput under different attacks shown in

Table II. We can conclude that the virtual trust queue mecha-

nism always achieves near-optimal performance regardless of

different combinations of attacks present in the network.

V. RELATED WORK

The backpressure algorithm was originally introduced by

Tassiulas and Ephremides in [1]. Since then, significant efforts

have been devoted to adapting the backpressure algorithm

with realistic network constraints (e.g., [2]–[4], [8], [20]), and

developing backpressure based system prototypes for wireless

networks (e.g., [5]–[7], [11]) and emerging network systems

such as smart grids [21]–[23]. The state-of-the-art greatly

enhanced our understanding of the backpressure algorithm,

and supported the feasibility of real-system implementation of

backpressure-based routing and scheduling solutions in multi-

hop wireless networks. However, the backpressure algorithm

and its variants remain vulnerable to insider threats with a vari-

ety of attacking behaviors. This appears as one major obstacle

to practical deployment of the backpressure algorithm.

Another line of work related to this paper has investigated

the design of trust-based routing to combat selfish or malicious

nodes in the network (e.g., [15]–[19]). However, they are

designed for different other routing mechanisms and cannot

be readily adapted to the backpressure algorithm due to its

specific information exchange and optimization characteristics.

It is worth noting that a recent paper [13] proposed a trust-

based backpressure algorithm for wireless senor networks. But

there is no means to track trust over time. In addition, it

is still not clear to what extent the approach can limit or

control various attack behaviors. The proposed virtual trust

queue based mechanism can be regarded as a generic solution

to secure any backpressure based routing and scheduling

protocols against a variety of attacks with a guarantee of

sustaining resilience and throughput.

VI. CONCLUSIONS

In this paper, we provided a systematic study on securing

the backpressure algorithm. We proposed a novel virtual

trust queuing mechanism to defend against both information-

falsification and protocol-violation attacks. We showed that by

jointly stabilizing the virtual trust queue and the real packet

queue, the backpressure algorithm achieves guarantees of at-

tack resilience as well as throughput performance. Finally, we

conducted extensive simulations to validate the effectiveness

of the virtual trust queue mechanism. Our results showed that

the virtual trust queue mechanism secures the backpressure

algorithm against a variety of attacks. Our proposed solution

clears a major barrier for practical deployment of backpressure

algorithm for secure wireless applications.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automatic Control, vol. 37, pp.
1936–1948, Dec. 1992.

[2] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. J. Neely,
“Backpressure with adaptive redundancy (BWAR),” in Proc. of IEEE

INFOCOM, 2012.
[3] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “DiffQ: Practical

differential backlog congestion control for wireless networks,” in Proc.

of IEEE INFOCOM, 2009.
[4] H. Seferoglu and E. Modiano, “Diff-Max: Separation of routing and

scheduling in backpressure-based wireless networks,” in Proc. of IEEE

INFOCOM, 2013.
[5] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “LIFO-

backpressure achieves near optimal utility-delay tradeoff,” ACM/IEEE
Trans. Networking, pp. 831–844, June 2013.

[6] J. Nunez-Martinez, J. Mangues-Bafalluy, and M. Portoles-Comeras,
“Studying practical any-to-any backpressure routing in Wi-Fi mesh
networks from a Lyapunov optimization perspective,” in Proc. of IEEE
MASS, 2011.

[7] J.-Y. Yoo, C. Sengul, R. Merz, and J. Kim, “Experimental analysis of
backpressure scheduling in IEEE 802.11 wireless mesh networks,” in
Proc. of IEEE ICC, 2011.

[8] L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley, “Cross-
layer routing and dynamic spectrum allocation in cognitive radio ad hoc
networks,” IEEE Trans. Vehicular Technology, vol. 59, 2010.

[9] Z. Lu, W. Wang, and C. Wang, “From jammer to gambler: Modeling
and detection of jamming attacks against time-critical traffic,” in Proc.

of IEEE INFOCOM, 2011.
[10] Y. Liu, P. Ning, H. Dai, and A. Liu, “Randomized differential DSSS:

Jamming-resistant wireless broadcast communication,” in Proc. of IEEE

INFOCOM, 2010.
[11] R. Laufer, T. Salonidis, H. Lundgren, and P. L. Guyadec, “XPRESS: A

cross-layer backpressure architecture for wireless multi-hop networks,”
in Proc. of ACM MobiCom, 2011.

[12] M. J. Neely, “Energy optimal control for time varying wireless net-
works,” IEEE Trans. Information Theory, vol. 52, pp. 2915–2934, Jul.
2006.

[13] R. Venkataraman, S. Moeller, B. Krishnamachari, and T. R. Rao, “Trust-
based backpressure routing in wireless sensor networks,” Int. J. Sensor
Networks, 2014.

[14] Z. Lu, W. Wang, and C. Wang, “On order gain of backoff misbehav-
ing nodes in CSMA/CA-based wireless networks,” in Proc. of IEEE

INFOCOM, 2010.
[15] A. A. Pirzada, C. McDonald, and A. Datta, “Performance comparison of

trust-based reactive routing protocols,” IEEE Trans. Mobile Computing,
vol. 5, pp. 695–710, June 2006.

[16] I. Chen, F. Bao, M. Chang, and J. Cho, “Dynamic trust management
for delay tolerant networks and its application to secure routing,” IEEE

Trans. Parallel and Distributed Systems, Apr. 2013.
[17] C. Zhang, X. Zhu, Y. Song, and Y. Fang, “A formal study of trust-based

routing in wireless ad hoc networks,” in Proc. of IEEE INFOCOM, 2010.
[18] S. Jain and J. Baras, “Distributed trust based routing in mobile ad-hoc

networks,” in Proc. of IEEE MILCOM, 2013.
[19] F. Bao, I.-R. Chen, M. Chang, and J.-H. Cho, “Hierarchical trust

management for wireless sensor networks and its applications to trust-
based routing and intrusion detection,” IEEE Trans. Network and Service

Management, vol. 9, pp. 169–183, Mar. 2012.
[20] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Foundations and Trends in

Networking, vol. 1, pp. 1–144, 2006.
[21] M. Wei and W. Wang, “Greenbench: A benchmark for observing

power grid vlunerability under data-centric threats,” in Proc. of IEEE

INFOCOM, 2014.
[22] B. Hu and H. Gharavi, “Greedy backpressure routing for smart grid

sensor networks,” in Proc. of IEEE CCNC, 2014.
[23] M. Wei and W. Wang, “Toward distributed intelligent: A case study of

peer to peer communication in smart grid,” in Proc. of IEEE GlobeCom,
2013, pp. 2210–2216.

