Hiding Traffic with Camouflage: Minimizing Message Delay in the Smart Grid under Jamming

Zhuo Lu[†], Wenye Wang[†], and Cliff Wang[‡]

[†] Department of Electrical and Computer Engineering North Carolina State University, Raleigh NC, US.

> [‡] Army Research Office Research Triangle Park NC, US.

Outline

1 Motivation

- Challenges in Smart Grid Security
- Why to Minimize Message Delay?

2 Models

- Wireless Network Model for Smart Grid Applications
- Attack Model
- Problem Formulation

3 Main Results

- Theoretical Results: How to Minimize Message Delay
- Experimental Results: Wireless Anti-islanding Application

4 Conclusion

Outline

1 Motivation

- Challenges in Smart Grid Security
- Why to Minimize Message Delay?

Smart Grid Vision

The Smart Grid: the next-generation power grid.

- Power infrastructures with information technologies.
- National Institute of Standards and Technology (NIST): Roadmap and Guidelines. [NIST'09,10,11]

Smart Grid Vision

The Smart Grid: the next-generation power grid.

- Power infrastructures with information technologies.
- National Institute of Standards and Technology (NIST): Roadmap and Guidelines. [NIST'09,10,11]

Wireless networks for power control applications [NIST'11].

- Efficient
- Low-cost
- Convenient network access

Power Applications over Wireless

Example: A generic protection scenario over wireless networking [Cleverland'07,Kanabar'09,El-Khattam'10].

- IED: Intelligent electronic devices
- A needs to tell B: break your circuit!
- The message has a strict delay requirement.
 - Example: 3ms/10ms for substation protection [IEC 61580].

Threat of Jamming Attacks on Power Applications

Example: A generic protection scenario over wireless networking [Cleverland'07,Kanabar'09,El-Khattam'10].

A jammer can disrupt the time-critical messaging, leading to

- denial-of-service, as it does in conventional wireless networks.
- physical damages to power infrastructures.

Communication theory: Spread spectrum technologies

- frequency hopping (FH) or direct sequence (DS)
- building multiple frequency and code channels.
- a practical jammer cannot jam all the channels at the same time.

Communication theory: Spread spectrum technologies

- frequency hopping (FH) or direct sequence (DS)
- building multiple frequency and code channels.
- a practical jammer cannot jam all the channels at the same time.

Conventional results cannot be used in the smart grid.

 How a message can be finally delivered (improving message delivery ratio) [Chiang'08, Strasser'09, Liu'10].

Communication theory: Spread spectrum technologies

- frequency hopping (FH) or direct sequence (DS)
- building multiple frequency and code channels.
- a practical jammer cannot jam all the channels at the same time.

Conventional results cannot be used in the smart grid.

How a message can be finally delivered (improving message delivery ratio) [Chiang'08, Strasser'09, Liu'10].
100% messages delivered ≠ messages arrived on time

Communication theory: Spread spectrum technologies

- frequency hopping (FH) or direct sequence (DS)
- building multiple frequency and code channels.
- a practical jammer cannot jam all the channels at the same time.

Conventional results cannot be used in the smart grid.

- How a message can be finally delivered (improving message delivery ratio) [Chiang'08, Strasser'09, Liu'10]. 100% messages delivered ≠ messages arrived on time
- Case-by-case methodologies when analyzing attacks.
 - Widely-adopted models: memoryless, periodic, reactive, et al [Xu'02, Bayraktaroglu'08].

Communication theory: Spread spectrum technologies

- frequency hopping (FH) or direct sequence (DS)
- building multiple frequency and code channels.
- a practical jammer cannot jam all the channels at the same time.

Conventional results cannot be used in the smart grid.

- How a message can be finally delivered (improving message delivery ratio) [Chiang'08, Strasser'09, Liu'10]. 100% messages delivered ≠ messages arrived on time
- Case-by-case methodologies when analyzing attacks.
 - Widely-adopted models: memoryless, periodic, reactive, *et al* [Xu'02, Bayraktaroglu'08].

NIST requires that power system operations must be able to continue during any security attack or compromise (as much as possible) [NIST'10].

Communication theory: Spread spectrum technologies

- frequency hopping (FH) or direct sequence (DS)
- building multiple frequency and code channels.
- a practical jammer cannot jam all the channels at the same time.

Conventional results cannot be used in the smart grid.

- How a message can be finally delivered (improving message delivery ratio) [Chiang'08, Strasser'09, Liu'10]. 100% messages delivered ≠ messages arrived on time
- Case-by-case methodologies when analyzing attacks.
 - Widely-adopted models: memoryless, periodic, reactive, et al [Xu'02, Bayraktaroglu'08].

NIST requires that power system operations must be able to continue during any security attack or compromise (as much as possible) [NIST'10].

- Worst-case methodology is vital to smart grid security design.

Research Question and Our Contribution

Open research question

How to minimize the worst-case message delay to provide performance guarantee for smart grid applications under jamming?

Research Question and Our Contribution

Open research question

How to minimize the worst-case message delay to provide performance guarantee for smart grid applications under jamming?

A trivial solution

1 Increase the number of channels \rightarrow reliability.

2 Increase the bandwidth of each channel \rightarrow timing guarantee.

Research Question and Our Contribution

Open research question

How to minimize the worst-case message delay to provide performance guarantee for smart grid applications under jamming?

A trivial solution

1 Increase the number of channels \rightarrow reliability.

2 Increase the bandwidth of each channel \rightarrow timing guarantee.

In this paper, given fixed network setups, we find a new way to minimize the message delay under worst-case jamming attacks.

1 Motivation

2 Models

Wireless Network Model for Smart Grid Applications

9/25

- Attack Model
- Problem Formulation

3 Main Results

4 Conclusion

A local-area power system over a wireless network with m nodes, N_f frequency and N_c code channels.

Time-Critical Message Transmission Model

How to transmit a time-critical message for an IED? [IEC 61850]

- be transmitted multiple times to ensure reliability.
- stop re-transmission after the deadline is passed.

Time-Critical Message Transmission Model

How to transmit a time-critical message for an IED? [IEC 61850]

- be transmitted multiple times to ensure reliability.
- stop re-transmission after the deadline is passed.

We adopt such a simple transmission scheme, and assume

Time-Critical Message Transmission Model

How to transmit a time-critical message for an IED? [IEC 61850]

- be transmitted multiple times to ensure reliability.
- stop re-transmission after the deadline is passed.

We adopt such a simple transmission scheme, and assume

The secret channel selection pattern is not known to the attacker.

Jamming Attack Model

It's vital to use worst-case analysis rather than case-by-case one in the smart grid.

no particular jamming model.

It's vital to use worst-case analysis rather than case-by-case one in the smart grid.

no particular jamming model.

Question: How to adopt the worst-case analysis of jamming attacks

- **1** Define a generic model to cover most existing models.
- 2 Find out what is the worst case induced by the generic model.

It's vital to use worst-case analysis rather than case-by-case one in the smart grid.

no particular jamming model.

Definition (Generic Jamming Process)

A jammer's jamming process is denoted as a Markov-renewal process $((F, C), X) = \{(F_k, C_k), X_k | k = 1, 2, \dots\}.$

- X_k is the interval for the k status.
- (F_k, C_k) is the targeted frequency-code channel.

Generic Jamming Model: Markov-Renewal Process

Why is ((F, C), X) Markovian?

• Two associated transition matrices \mathbf{Q}_F and \mathbf{Q}_C .

uniform jamming

Generic Jamming Model: Markov-Renewal Process

Why is ((F, C), X) Markovian?

• Two associated transition matrices \mathbf{Q}_F and \mathbf{Q}_C .

Reactive or non-reactive? Manipulate the jamming interval X_k

- Non-reactive (jam all the way): X_k is randomly distributed.
- Reactive (sense then jam): $X_k = \tau + S_k \mathbf{1}_A$.
 - τ : constant channel sensing time.
 - **1**() is the indicator function.
 - A: event that the channel is busy, S_k the jamming interval.

1 Under the generic jamming model, find out the worst-case performance;

- Under the generic jamming model, find out the worst-case performance;
 - Delay is critical for measuring the performance of power systems. A message becomes invalid as long as its delay D is larger than the timing requirement σ.

- Under the generic jamming model, find out the worst-case performance;
 - Delay is critical for measuring the performance of power systems. A message becomes invalid as long as its delay D is larger than the timing requirement σ.
 - Metric: message invalidation probability $\mathbb{P}(D > \sigma)$ denoting the probability that the message is not delivered on time

- Under the generic jamming model, find out the worst-case performance;
 - Delay is critical for measuring the performance of power systems. A message becomes invalid as long as its delay D is larger than the timing requirement σ.
 - Metric: message invalidation probability $\mathbb{P}(D > \sigma)$ denoting the probability that the message is not delivered on time
 - We try to find out the worst-case message invalidation probability $\mathbb{P}(D > \sigma)$.

- Under the generic jamming model, find out the worst-case performance;
 - Delay is critical for measuring the performance of power systems. A message becomes invalid as long as its delay D is larger than the timing requirement σ.
 - Metric: message invalidation probability $\mathbb{P}(D > \sigma)$ denoting the probability that the message is not delivered on time
 - We try to find out the worst-case message invalidation probability $\mathbb{P}(D > \sigma)$.
- **2** Attempt to minimize the worst-case $\mathbb{P}(D > \sigma)$.

2 Models

3 Main Results

Theoretical Results: How to Minimize Message Delay

Experimental Results: Wireless Anti-islanding Application

4 Conclusion

Theorem (Worst-Case Delay Performance)

For a wireless local-area network $\mathcal{N}(m, N_f, N_c)$, the worst-case delay performance at node k is always induced by the reactive jamming and bounded by

where T_L is the message transmission duration, σ is the message delay threshold, $\gamma_k = \sum_{j=1, j \neq k}^m \lambda_j$, and λ_j is the traffic rate at node j.

Theoretical results tell us

Jammer's achievable region

イロト イポト イヨト イヨト

Theoretical results tell us

There exists an optimal network traffic load to minimize worse-case delay/message invalidation probability.

Theoretical results tell us

In the smart grid, network traffic is usually highly unsaturated for reliable monitoring and control.

 Example: wireless monitoring for substation transformers only needs to transmit a message every second [Cleverland'07].

Theoretical results tell us

This implies that we need to transmit redundant traffic to optimize the traffic load. We call such traffic camouflage.

Intuition of the U-shaped Phenomenon

A reactive jammer can sense channels every fast: if there is no traffic, then go to next channel!

Intuition of the U-shaped Phenomenon

A reactive jammer is busy in jamming camouflage, giving a chance for legitimate traffic to pass through.

We set up an wireless anti-islanding network in the FREEDM systems center in North Carolina State University.

- Spread spectrum: frequency hopping with 8 channels.
- Bandwidth: 125KHz per channel.
- Number of nodes: 5 USRP-based IEDs.
- Jammer: USRP-based reactive jammer, scanning channel one by one.

- Routine traffic: 1 message/second.
- Message length: 400 bytes.
- Anti-islanding message timing requirement: 150ms.

Experimental Results

Routine traffic: 1 message/second. Optimal camouflage traffic load: 14 messages/second.

Experimental Results

Routine traffic: 1 message/second. Optimal camouflage traffic load: 14 messages/second.

Transmitting camouflage traffic will improve the performance in order of magnitude!

1 Motivation

2 Models

3 Main Results

4 Conclusion

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ / 25

Conclusion

- We defined a generic jamming process, and show the worst-case delay bound is due to reactive jamming and exhibits a U-shaped function of network traffic load.
- There exists an optimal load to minimize the worst-case delay, therefore transmitting camouflage traffic can in fact help improve the delay performance.
- We illustrated via experiments that camouflage traffic can substantially improve the delay performance for smart grid applications under jamming attacks.

Conclusion

- We defined a generic jamming process, and show the worst-case delay bound is due to reactive jamming and exhibits a U-shaped function of network traffic load.
- There exists an optimal load to minimize the worst-case delay, therefore transmitting camouflage traffic can in fact help improve the delay performance.
- We illustrated via experiments that camouflage traffic can substantially improve the delay performance for smart grid applications under jamming attacks.
- Future work
 - **1** Consider the case of multiple attackers.
 - 2 Lift the assumption that the secret pattern between a transmit-receive pair is already set up.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Backup 1: Reactive vs Non-reactive

The delay bound $\mathbb{P}(D_k > \sigma)$ versus aggregate traffic γ_k at node k for time-critical applications with delay thresholds of 3–10ms. ($N_f = N_c = 10, T_L = 1$ ms, $\rho = 0.1$, and $\tau = 100 \mu$ s for reactive jamming)

When a transmission fails

イロン イロン イヨン イヨン 三日

When a transmission fails

Interference model

A transmission on the (i,j)-th channel fails only if at least a portion $\rho\in(0,1)$ of the transmission is

- either disrupted by jamming
- or collided by other legitimate traffic.

When a transmission fails

Interference model

A transmission on the (i,j)-th channel fails only if at least a portion $\rho\in(0,1)$ of the transmission is

- either disrupted by jamming
- or collided by other legitimate traffic.

When a transmission fails

Interference model

A transmission on the (i,j)-th channel fails only if at least a portion $\rho\in(0,1)$ of the transmission is

- either disrupted by jamming
- or collided by other legitimate traffic.